Skip to main content

Advertisement

Log in

Contribution of Humanized Liver Chimeric Mice to the Study of Human Hepatic Drug Transporters: State of the Art and Perspectives

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Chimeric mice with humanized livers constitute an attractive emergent experimental model for investigating human metabolism and disposition of drugs. The present review was designed to summarize key findings about the use of this model for studying human hepatic drug transporters, which are now recognized as important players in pharmacokinetics and consequently have to be considered from a regulatory perspective during pharmaceutical drug development. The reviewed data indicate that chimeric mice with humanized livers have been successfully used for analysing the implications of human hepatic drug transporters for drug hepatobiliary elimination, drug–drug interactions and drug-induced cholestasis. Such transporter studies have been performed in vivo with chimeric mice and/or in vitro with human hepatocytes isolated from humanized liver and used either in suspension or in culture. The residual presence of mouse hepatocytes and the potential morphological/histological alterations of the humanized liver, as well as its immunodeficient mouse environment, have, however, to be considered when using chimeric mice with humanized livers for transporter studies. Finally, if the proof of concept of applying chimeric mice with humanized livers to hepatic drug transport is established, more experimental data on this topic, including from standardization approaches, are likely required to completely and accurately demonstrate the robustness, convenience and added value of this chimeric mouse model for drug transporter studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grompe M, Strom S. Mice with human livers. Gastroenterology. 2013;145:1209–14.

    Article  PubMed  Google Scholar 

  2. Yoshizato K, Tateno C. A mouse with humanized liver as an animal model for predicting drug effects and for studying hepatic viral infection: where to next? Expert Opin Drug Metab Toxicol. 2013;9:1419–35.

    Article  CAS  PubMed  Google Scholar 

  3. Sugahara G, Ishida Y, Sun J, Tateno C, Saito T. Art of making artificial liver: depicting human liver biology and diseases in mice. Semin Liver Dis. 2020;40:189–212.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tateno C, Yoshizane Y, Saito N, Kataoka M, Utoh R, Yamasaki C, Tachibana A, Soeno Y, Asahina K, Hino H, Asahara T, Yokoi T, Furukawa T, Yoshizato K. Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol. 2004;165:901–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tateno C, Kawase Y, Tobita Y, Hamamura S, Ohshita H, Yokomichi H, Sanada H, Kakuni M, Shiota A, Kojima Y, Ishida Y, Shitara H, Wada NA, Tateishi H, Sudoh M, Nagatsuka S, Jishage K, Kohara M. Generation of novel chimeric mice with humanized livers by using hemizygous cDNA-uPA/SCID mice. PLoS One. 2015;10: e0142145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E, Strom S, Kay MA, Finegold M, Grompe M. Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. Nat Biotechnol. 2007;25:903–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bissig KD, Le TT, Woods NB, Verma IM. Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal model. Proc Natl Acad Sci U S A. 2007;104:20507–11.

  8. Hasegawa M, Kawai K, Mitsui T, Taniguchi K, Monnai M, Wakui M, Ito M, Suematsu M, Peltz G, Nakamura M, Suemizu H. The reconstituted “humanized liver” in TK-NOG mice is mature and functional. Biochem Biophys Res Commun. 2011;405:405–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scheer N, Wilson ID. A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity. Drug Discov Today. 2016;21:250–63.

    Article  CAS  PubMed  Google Scholar 

  10. Kosaka K, Hiraga N, Imamura M, Yoshimi S, Murakami E, Nakahara T, Honda Y, Ono A, Kawaoka T, Tsuge M, Abe H, Hayes CN, Miki D, Aikata H, Ochi H, Ishida Y, Tateno C, Yoshizato K, Sasaki T, Chayama K. A novel TK-NOG based humanized mouse model for the study of HBV and HCV infections. Biochem Biophys Res Commun. 2013;441:230–5.

    Article  CAS  PubMed  Google Scholar 

  11. Katoh M, Matsui T, Nakajima M, Tateno C, Kataoka M, Soeno Y, Horie T, Iwasaki K, Yoshizato K, Yokoi T. Expression of human cytochromes P450 in chimeric mice with humanized liver. Drug Metab Dispos. 2004;32:1402–10.

    Article  CAS  PubMed  Google Scholar 

  12. Katoh M, Matsui T, Okumura H, Nakajima M, Nishimura M, Naito S, Tateno C, Yoshizato K, Yokoi T. Expression of human phase II enzymes in chimeric mice with humanized liver. Drug Metab Dispos. 2005;33:1333–40.

    Article  CAS  PubMed  Google Scholar 

  13. Bateman TJ, Reddy VG, Kakuni M, Morikawa Y, Kumar S. Application of chimeric mice with humanized liver for study of human-specific drug metabolism. Drug Metab Dispos. 2014;42:1055–65.

    Article  PubMed  CAS  Google Scholar 

  14. Kitamura S, Sugihara K. Current status of prediction of drug disposition and toxicity in humans using chimeric mice with humanized liver. Xenobiotica. 2014;44:123–34.

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki E, Koyama K, Nakai D, Goda R, Kuga H, Chiba K. Observation of clinically relevant drug interaction in chimeric mice with humanized livers: the case of valproic acid and carbapenem antibiotics. Eur J Drug Metab Pharmacokinet. 2017;42:965–72.

    Article  CAS  PubMed  Google Scholar 

  16. Nishimura T, Hu Y, Wu M, Pham E, Suemizu H, Elazar M, Liu M, Idilman R, Yurdaydin C, Angus P, Stedman C, Murphy B, Glenn J, Nakamura M, Nomura T, Chen Y, Zheng M, Fitch WL, Peltz G. Using chimeric mice with humanized livers to predict human drug metabolism and a drug-drug interaction. J Pharmacol Exp Ther. 2013;344:388–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sanoh S, Horiguchi A, Sugihara K, Kotake Y, Tayama Y, Ohshita H, Tateno C, Horie T, Kitamura S, Ohta S. Prediction of in vivo hepatic clearance and half-life of drug candidates in human using chimeric mice with humanized liver. Drug Metab Dispos. 2012;40:322–8.

    Article  CAS  PubMed  Google Scholar 

  18. Xu D, Peltz G. Can humanized mice predict drug “behavior” in humans? Annu Rev Pharmacol Toxicol. 2016;56:323–38.

    Article  CAS  PubMed  Google Scholar 

  19. Toxicology CJ. “Humanized” mouse detects deadly drug side effects. Science. 2014;344:244–5.

    Article  Google Scholar 

  20. Xu D, Nishimura T, Nishimura S, Zhang H, Zheng M, Guo YY, Masek M, Michie SA, Glenn J, Peltz G. Fialuridine induces acute liver failure in chimeric TK-NOG mice: a model for detecting hepatic drug toxicity prior to human testing. PLoS Med. 2014;11: e1001628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Peltz G. Can “humanized” mice improve drug development in the 21st century? Trends Pharmacol Sci. 2013;34:255–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshida K, Doi Y, Iwazaki N, Yasuhara H, Ikenaga Y, Shimizu H, Nakada T, Watanabe T, Tateno C, Sanoh S, Kotake Y. Prediction of human pharmacokinetics for low-clearance compounds using pharmacokinetic data from chimeric mice with humanized livers. Clin Transl Sci. 2022;15: 79-91.

  23. Watari R, Kakiki M, Oshikata A, Takezawa T, Yamasaki C, Ishida Y, Tateno C, Kuroda Y, Ishida S, Kusano K. A long-term culture system based on a collagen vitrigel membrane chamber that supports liver-specific functions of hepatocytes isolated from mice with humanized livers. J Toxicol Sci. 2018;43:521–9.

    Article  CAS  PubMed  Google Scholar 

  24. Yamasaki C, Kataoka M, Kato Y, Kakuni M, Usuda S, Ohzone Y, Matsuda S, Adachi Y, Ninomiya S, Itamoto T, Asahara T, Yoshizato K, Tateno C. In vitro evaluation of cytochrome P450 and glucuronidation activities in hepatocytes isolated from liver-humanized mice. Drug Metab Pharmacokinet. 2010;25:539–50.

    Article  CAS  PubMed  Google Scholar 

  25. Yamasaki C, Ishida Y, Yanagi A, Yoshizane Y, Kojima Y, Ogawa Y, Kageyama Y, Iwasaki Y, Ishida S, Chayama K, Tateno C. Culture density contributes to hepatic functions of fresh human hepatocytes isolated from chimeric mice with humanized livers: novel, long-term, functional two-dimensional in vitro tool for developing new drugs. PLoS One. 2020;15: e0237809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jetter A, Kullak-Ublick GA. Drugs and hepatic transporters: a review. Pharmacol Res. 2020;154: 104234.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou Y, Zhang GQ, Wei YH, Zhang JP, Zhang GR, Ren JX, Duan HG, Rao Z, Wu XA. The impact of drug transporters on adverse drug reaction. Eur J Drug Metab Pharmacokinet. 2013;38:77–85.

    Article  PubMed  CAS  Google Scholar 

  28. Patel M, Taskar KS, Zamek-Gliszczynski MJ. Importance of hepatic transporters in clinical disposition of drugs and their metabolites. J Clin Pharmacol. 2016;56(Suppl 7):S23-39.

    Article  CAS  PubMed  Google Scholar 

  29. Pan G. Roles of hepatic drug transporters in drug disposition and liver toxicity. Adv Exp Med Biol. 2019;1141:293–340.

    Article  CAS  PubMed  Google Scholar 

  30. Liu H, Sahi J. Role of hepatic drug transporters in drug development. J Clin Pharmacol. 2016;56(Suppl 7):S11-22.

    Article  CAS  PubMed  Google Scholar 

  31. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.

    Article  CAS  PubMed  Google Scholar 

  32. Lee SC, Arya V, Yang X, Volpe DA, Zhang L. Evaluation of transporters in drug development: current status and contemporary issues. Adv Drug Deliv Rev. 2017;116:100–18.

    Article  CAS  PubMed  Google Scholar 

  33. Prueksaritanont T, Chu X, Gibson C, Cui D, Yee KL, Ballard J, Cabalu T, Hochman J. Drug-drug interaction studies: regulatory guidance and an industry perspective. AAPS J. 2013;15:629–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jaiswal S, Sharma A, Shukla M, Vaghasiya K, Rangaraj N, Lal J. Novel pre-clinical methodologies for pharmacokinetic drug-drug interaction studies: spotlight on “humanized” animal models. Drug Metab Rev. 2014;46:475–93.

    Article  CAS  PubMed  Google Scholar 

  35. Sawant-Basak A, Obach RS. Emerging models of drug metabolism, transporters, and toxicity. Drug Metab Dispos. 2018;46:1556–61.

    Article  CAS  PubMed  Google Scholar 

  36. Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol. 2013;9:237–52.

    Article  CAS  PubMed  Google Scholar 

  37. Tatrai P, Zolnerciks JK, Gaborik Z, De Wilde R, Petro N. The transporter book from the experts. 4th ed. Budapest: Solvo Biotechnology; 2021.

  38. Zelcer N, Van De Wetering K, Hillebrand M, Sarton E, Kuil A, Wielinga PR, Tephly T, Dahan A, Beijnen JH, Borst P. Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc Natl Acad Sci U S A. 2005;102:7274–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferslew BC, Köck K, Bridges AS, Brouwer KL. Role of multidrug resistance-associated protein 4 in the basolateral efflux of hepatically derived enalaprilat. Drug Metab Dispos. 2014;42:1567–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Stieger B. Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug Metab Rev. 2010;42:437–45.

    Article  CAS  PubMed  Google Scholar 

  41. Vildhede A, Wiśniewski JR, Norén A, Karlgren M, Artursson P. Comparative proteomic analysis of human liver tissue and isolated hepatocytes with a focus on proteins determining drug exposure. J Proteome Res. 2015;14:3305–14.

    Article  CAS  PubMed  Google Scholar 

  42. Drozdzik M, Busch D, Lapczuk J, Müller J, Ostrowski M, Kurzawski M, Oswald S. Protein abundance of clinically relevant drug transporters in the human liver and intestine: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther. 2019;105:1204–12.

    Article  CAS  PubMed  Google Scholar 

  43. Burt HJ, Riedmaier AE, Harwood MD, Crewe HK, Gill KL, Neuhoff S. Abundance of hepatic transporters in Caucasians: a meta-analysis. Drug Metab Dispos. 2016;44:1550–61.

  44. Lecureur V, Courtois A, Payen L, Verhnet L, Guillouzo A, Fardel O. Expression and regulation of hepatic drug and bile acid transporters. Toxicology. 2000;153:203–19.

    Article  CAS  PubMed  Google Scholar 

  45. Jigorel E, Le Vee M, Boursier-Neyret C, Parmentier Y, Fardel O. Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes. Drug Metab Dispos. 2006;34:1756–63.

    Article  CAS  PubMed  Google Scholar 

  46. Amacher DE. The regulation of human hepatic drug transporter expression by activation of xenobiotic-sensing nuclear receptors. Expert Opin Drug Metab Toxicol. 2016;12:1463–77.

    Article  CAS  PubMed  Google Scholar 

  47. Fardel O, Le Vée M. Regulation of human hepatic drug transporter expression by pro-inflammatory cytokines. Expert Opin Drug Metab Toxicol. 2009;5:1469–81.

    Article  CAS  PubMed  Google Scholar 

  48. Yee SW, Brackman DJ, Ennis EA, Sugiyama Y, Kamdem LK, Blanchard R, Galetin A, Zhang L, Giacomini KM. Influence of transporter polymorphisms on drug disposition and response: a perspective from the International Transporter Consortium. Clin Pharmacol Ther. 2018;104:803–17.

  49. Brezillon NM, Dasilva L, L'hôte D, Bernex F, Piquet J, Binart N, Morosan S, Kremsdorf D. Rescue of fertility in homozygous mice for the urokinase plasminogen activator transgene by the transplantation of mouse hepatocytes. Cell Transplant. 2008;17:803–12.

  50. Strom SC, Davila J, Grompe M. Chimeric mice with humanized liver: tools for the study of drug metabolism, excretion, and toxicity. Methods Mol Biol. 2010;640:491–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Uehara S, Higuchi Y, Yoneda N, Kawai K, Yamamoto M, Kamimura H, Iida Y, Oshimura M, Kazuki Y, Yamazaki H, Hikita H, Takehara T, Suemizu H. An improved TK-NOG mouse as a novel platform for humanized liver that overcomes limitations in both male and female animals. Drug Metab Pharmacokinet. 2022;42: 100410.

    Article  CAS  PubMed  Google Scholar 

  52. Suemizu H, Hasegawa M, Kawai K, Taniguchi K, Monnai M, Wakui M, Suematsu M, Ito M, Peltz G, Nakamura M. Establishment of a humanized model of liver using NOD/Shi-scid IL2Rgnull mice. Biochem Biophys Res Commun. 2008;377:248–52.

    Article  CAS  PubMed  Google Scholar 

  53. Tateno C, Kojima Y. Characterization and applications of chimeric mice with humanized livers for preclinical drug development. Lab Anim Res. 2020;36:2.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bissig KD, Han W, Barzi M, Kovalchuk N, Ding L, Fan X, Pankowicz FP, Zhang QY, Ding X. P450-humanized and human liver chimeric mouse models for studying xenobiotic metabolism and toxicity. Drug Metab Dispos. 2018;46:1734–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo Y, Lu H, Peng D, Ruan X, Eugene Chen Y, Guo Y. Liver-humanized mice: a translational strategy to study metabolic disorders. J Cell Physiol. 2022;237:489–506.

    Article  CAS  PubMed  Google Scholar 

  56. Suemizu H, Kawai K, Murayama N, Nakamura M, Yamazaki H. Chimeric mice with humanized liver as a model for testing organophosphate and carbamate pesticide exposure. Pest Manag Sci. 2018;74:1424–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Uehara S, Higuchi Y, Yoneda N, Yamazaki H, Suemizu H. Expression and inducibility of cytochrome P450s in human hepatocytes isolated from chimeric mice with humanised livers. Xenobiotica. 2019;49:678–87.

    Article  CAS  PubMed  Google Scholar 

  58. Michailidis E, Vercauteren K, Mancio-Silva L, Andrus L, Jahan C, Ricardo-Lax I, Zou C, Kabbani M, Park P, Quirk C, Pyrgaki C, Razooky B, Verhoye L, Zoluthkin I, Lu WY, Forbes SJ, Chiriboga L, Theise ND, Herzog RW, Suemizu H, Schneider WM, Shlomai A, Meuleman P, Bhatia SN, Rice CM, De Jong YP. Expansion, in vivo-ex vivo cycling, and genetic manipulation of primary human hepatocytes. Proc Natl Acad Sci U S A. 2020;117:1678–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ohshita H, Tateno C. Propagation of human hepatocytes in uPA/SCID mice: producing chimeric mice with humanized liver. Methods Mol Biol. 2017;1506:91–100.

    Article  CAS  PubMed  Google Scholar 

  60. Harimoto N, Nakagawara H, Shirabe K, Yoshizumi T, Itoh S, Ikegami T, Soejima Y, Maehara Y, Ishida Y, Tateno C, Tanaka Y. Functional analysis of human hepatocytes isolated from chimeric mouse liver. Transplant Proc. 2018;50:3858–62.

    Article  CAS  PubMed  Google Scholar 

  61. Uehara S, Yoneda N, Higuchi Y, Yamazaki H, Suemizu H. Oxidative metabolism and pharmacokinetics of the EGFR inhibitor BIBX1382 in chimeric NOG-TKm30 mice transplanted with human hepatocytes. Drug Metab Pharmacokinet. 2021;41: 100419.

    Article  CAS  PubMed  Google Scholar 

  62. Ishida Y, Yamasaki C, Iwanari H, Yamashita H, Ogawa Y, Yanagi A, Furukawa S, Kojima Y, Chayama K, Kamiie J, Tateno C. Detection of acute toxicity of aflatoxin B1 to human hepatocytes in vitro and in vivo using chimeric mice with humanized livers. PLoS One. 2020;15: e0239540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nishimura M, Yoshitsugu H, Yokoi T, Tateno C, Kataoka M, Horie T, Yoshizato K, Naito S. Evaluation of mRNA expression of human drug-metabolizing enzymes and transporters in chimeric mouse with humanized liver. Xenobiotica. 2005;35:877–90.

    Article  CAS  PubMed  Google Scholar 

  64. Okumura H, Katoh M, Sawada T, Nakajima M, Soeno Y, Yabuuchi H, Ikeda T, Tateno C, Yoshizato K, Yokoi T. Humanization of excretory pathway in chimeric mice with humanized liver. Toxicol Sci. 2007;97:533–8.

    Article  CAS  PubMed  Google Scholar 

  65. Chow EC, Wang JZ, Quach HP, Tang H, Evans DC, Li AP, Silva J, Pang KS. Functional integrity of the chimeric (humanized) mouse liver: enzyme zonation, physiologic spaces, and hepatic enzymes and transporters. Drug Metab Dispos. 2016;44:1524–35.

    Article  CAS  PubMed  Google Scholar 

  66. Uehara S, Yoneda N, Higuchi Y, Yamazaki H, Suemizu H. Cytochrome P450-dependent drug oxidation activities and their expression levels in liver microsomes of chimeric TK-NOG mice with humanized livers. Drug Metab Pharmacokinet. 2022;44:100454.

  67. Tateno C, Miya F, Wake K, Kataoka M, Ishida Y, Yamasaki C, Yanagi A, Kakuni M, Wisse E, Verheyen F, Inoue K, Sato K, Kudo A, Arii S, Itamoto T, Asahara T, Tsunoda T, Yoshizato K. Morphological and microarray analyses of human hepatocytes from xenogeneic host livers. Lab Invest. 2013;93:54–71.

    Article  CAS  PubMed  Google Scholar 

  68. Bleasby K, Castle JC, Roberts CJ, Cheng C, Bailey WJ, Sina JF, Kulkarni AV, Hafey MJ, Evers R, Johnson JM, Ulrich RG, Slatter JG. Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica. 2006;36:963–88.

    Article  CAS  PubMed  Google Scholar 

  69. Mooij MG, Schwarz UI, De Koning BA, Leeder JS, Gaedigk R, Samsom JN, Spaans E, Van Goudoever JB, Tibboel D, Kim RB, De Wildt SN. Ontogeny of human hepatic and intestinal transporter gene expression during childhood: age matters. Drug Metab Dispos. 2014;42:1268–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kim M, Choi B, Joo SY, Lee H, Lee JH, Lee KW, Lee S, Park JB, Lee SK, Kim SJ. Generation of humanized liver mouse model by transplant of patient-derived fresh human hepatocytes. Transplant Proc. 2014;46:1186–90.

    Article  CAS  PubMed  Google Scholar 

  71. Hammer H, Schmidt F, Marx-Stoelting P, Pötz O, Braeuning A. Cross-species analysis of hepatic cytochrome P450 and transport protein expression. Arch Toxicol. 2021;95:117–33.

    Article  CAS  PubMed  Google Scholar 

  72. Ohtsuki S, Kawakami H, Inoue T, Nakamura K, Tateno C, Katsukura Y, Obuchi W, Uchida Y, Kamiie J, Horie T, Terasaki T. Validation of uPA/SCID mouse with humanized liver as a human liver model: protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases by LC-MS/MS. Drug Metab Dispos. 2014;42:1039–43.

    Article  PubMed  CAS  Google Scholar 

  73. Chow EC, Quach HP, Zhang Y, Wang JZ, Evans DC, Li AP, Silva J, Tirona RG, Lai Y, Pang KS. Disrupted murine gut-to-human liver signaling alters bile acid homeostasis in humanized mouse liver models. J Pharmacol Exp Ther. 2017;360:174–91.

    Article  CAS  PubMed  Google Scholar 

  74. Le Bot MA, Swirsky-Simon H, Kernaleguen D, Riche C. P-glycoprotein expression and function in rat hepatocytes in culture. Biochem Pharmacol. 1994;47:2302–6.

    Article  PubMed  Google Scholar 

  75. Fardel O, Moreau A, Le Vée M, Denizot C, Parmentier Y. Evaluation of drug biliary excretion using sandwich-cultured human hepatocytes. Eur J Drug Metab Pharmacokinet. 2019;44:13–30.

    Article  CAS  PubMed  Google Scholar 

  76. Kohara H, Bajaj P, Yamanaka K, Miyawaki A, Harada K, Miyamoto K, Matsui T, Okai Y, Wagoner M, Shinozawa T. High-throughput screening to evaluate inhibition of bile acid transporters using human hepatocytes isolated from chimeric mice. Toxicol Sci. 2020;173:347–61.

    Article  CAS  PubMed  Google Scholar 

  77. Grime K, Paine SW. Species differences in biliary clearance and possible relevance of hepatic uptake and efflux transporters involvement. Drug Metab Dispos. 2013;41:372–8.

    Article  CAS  PubMed  Google Scholar 

  78. Martignoni M, Groothuis GM, De Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2:875–94.

    Article  CAS  PubMed  Google Scholar 

  79. Samuelsson K, Pickup K, Sarda S, Foster JR, Randall K, Abrahamsson A, Jacobsen M, Weidolf L, Wilson I. Troglitazone metabolism and transporter effects in chimeric mice: a comparison between chimeric humanized and chimeric murinized FRG mice. Xenobiotica. 2014;44:186–95.

    Article  CAS  PubMed  Google Scholar 

  80. Schulz-Utermoehl T, Sarda S, Foster JR, Jacobsen M, Kenna JG, Morikawa Y, Salmu J, Gross G, Wilson ID. Evaluation of the pharmacokinetics, biotransformation and hepatic transporter effects of troglitazone in mice with humanized livers. Xenobiotica. 2012;42:503–17.

    Article  CAS  PubMed  Google Scholar 

  81. Sanoh S, Naritomi Y, Kitamura S, Shinagawa A, Kakuni M, Tateno C, Ohta S. Predictability of human pharmacokinetics of drugs that undergo hepatic organic anion transporting polypeptide (OATP)-mediated transport using single-species allometric scaling in chimeric mice with humanized liver: integration with hepatic drug metabolism. Xenobiotica. 2020;50:1370–9.

    Article  CAS  PubMed  Google Scholar 

  82. Feng B, Pemberton R, Dworakowski W, Ye Z, Zetterberg C, Wang G, Morikawa Y, Kumar S. Evaluation of the utility of PXB chimeric mice for predicting human liver partitioning of hepatic organic anion-transporting polypeptide transporter substrates. Drug Metab Dispos. 2021;49:254–64.

    Article  CAS  PubMed  Google Scholar 

  83. Ogawa SI, Shimizu M, Kamiya Y, Uehara S, Suemizu H, Yamazaki H. Increased plasma concentrations of an antidyslipidemic drug pemafibrate co-administered with rifampicin or cyclosporine A in cynomolgus monkeys genotyped for the organic anion transporting polypeptide 1B1. Drug Metab Pharmacokinet. 2020;35:354–60.

    Article  CAS  PubMed  Google Scholar 

  84. Tornio A, Filppula AM, Niemi M, Backman JT. Clinical studies on drug-drug interactions involving metabolism and transport: methodology, pitfalls, and interpretation. Clin Pharmacol Ther. 2019;105:1345–61.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Balasubramanian R, Maideen NMP. HMG-CoA reductase inhibitors (statins) and their drug interactions involving CYP enzymes, P-glycoprotein and OATP transporters—an overview. Curr Drug Metab. 2021;22:328–41.

  86. Cho SK, Kim CO, Park ES, Chung JY. Verapamil decreases the glucose-lowering effect of metformin in healthy volunteers. Br J Clin Pharmacol. 2014;78:1426–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Uchida M, Tajima Y, Kakuni M, Kageyama Y, Okada T, Sakurada E, Tateno C, Hayashi R. Organic anion-transporting polypeptide (OATP)-mediated drug-drug interaction study between rosuvastatin and cyclosporine A in chimeric mice with humanized liver. Drug Metab Dispos. 2018;46:11–9.

    Article  CAS  PubMed  Google Scholar 

  88. Stout SM, Nemerovski CW, Streetman DS, Berg M, Hoffman J, Burke K, Bemben NM, Sklar SJ. Interpretation of cytochrome P-450 inhibition and induction effects from clinical data: current standards and recommendations for implementation. Clin Pharmacol Ther. 2021;109:82–6.

    Article  CAS  PubMed  Google Scholar 

  89. Williamson B, Riley RJ. Hepatic transporter drug-drug interactions: an evaluation of approaches and methodologies. Expert Opin Drug Metab Toxicol. 2017;13:1237–50.

    Article  CAS  PubMed  Google Scholar 

  90. Zamek-Gliszczynski MJ, Patel M, Yang X, Lutz JD, Chu X, Brouwer KLR, Lai Y, Lee CA, Neuhoff S, Paine MF, Sugiyama Y, Taskar KS, Galetin A. Intestinal P-gp and putative hepatic OATP1B induction: International Transporter Consortium perspective on drug development implications. Clin Pharmacol Ther. 2021;109:55–64.

  91. Robbins JA, Menzel K, Lassman M, Zhao T, Fancourt C, Chu X, Mostoller K, Witter R, Marceau West R, Stoch SA, Mccrea JB, Iwamoto M. Acute and chronic effects of rifampin on letermovir suggest transporter inhibition and induction contribute to letermovir pharmacokinetics. Clin Pharmacol Ther. 2022;111:664–75.

    Article  CAS  PubMed  Google Scholar 

  92. Rodrigues AD, Lai Y, Shen H, Varma MVS, Rowland A, Oswald S. Induction of human intestinal and hepatic organic anion transporting polypeptides: where is the evidence for its relevance in drug-drug interactions? Drug Metab Dispos. 2020;48:205–16.

    Article  PubMed  CAS  Google Scholar 

  93. Tan KP, Wang B, Yang M, Boutros PC, Macaulay J, Xu H, Chuang AI, Kosuge K, Yamamoto M, Takahashi S, Wu AM, Ross DD, Harper PA, Ito S. Aryl hydrocarbon receptor is a transcriptional activator of the human breast cancer resistance protein (BCRP/ABCG2). Mol Pharmacol. 2010;78:175–85.

    Article  CAS  PubMed  Google Scholar 

  94. Badolo L, Jensen B, Säll C, Norinder U, Kallunki P, Montanari D. Evaluation of 309 molecules as inducers of CYP3A4, CYP2B6, CYP1A2, OATP1B1, OCT1, MDR1, MRP2, MRP3 and BCRP in cryopreserved human hepatocytes in sandwich culture. Xenobiotica. 2015;45:177–87.

    Article  CAS  PubMed  Google Scholar 

  95. Katoh M, Matsui T, Nakajima M, Tateno C, Soeno Y, Horie T, Iwasaki K, Yoshizato K, Yokoi T. In vivo induction of human cytochrome P450 enzymes expressed in chimeric mice with humanized liver. Drug Metab Dispos. 2005;33:754–63.

    Article  CAS  PubMed  Google Scholar 

  96. Hasegawa M, Tahara H, Inoue R, Kakuni M, Tateno C, Ushiki J. Investigation of drug-drug interactions caused by human pregnane X receptor-mediated induction of CYP3A4 and CYP2C subfamilies in chimeric mice with a humanized liver. Drug Metab Dispos. 2012;40:474–80.

    Article  CAS  PubMed  Google Scholar 

  97. Nishimura M, Yokoi T, Tateno C, Kataoka M, Takahashi E, Horie T, Yoshizato K, Naito S. Induction of human CYP1A2 and CYP3A4 in primary culture of hepatocytes from chimeric mice with humanized liver. Drug Metab Pharmacokinet. 2005;20:121–6.

    Article  CAS  PubMed  Google Scholar 

  98. Kakuni M, Yamasaki C, Tachibana A, Yoshizane Y, Ishida Y, Tateno C. Chimeric mice with humanized livers: a unique tool for in vivo and in vitro enzyme induction studies. Int J Mol Sci. 2013;15:58–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Shehu AI, Zhu J, Li J, Lu J, Mcmahon D, Xie W, Gonzalez FJ, Ma X. Targeting xenobiotic nuclear receptors PXR and CAR to prevent cobicistat hepatotoxicity. Toxicol Sci. 2021;181:58–67.

  100. Katoh M, Watanabe M, Tabata T, Sato Y, Nakajima M, Nishimura M, Naito S, Tateno C, Iwasaki K, Yoshizato K, Yokoi T. In vivo induction of human cytochrome P450 3A4 by rifabutin in chimeric mice with humanized liver. Xenobiotica. 2005;35:863–75.

    Article  CAS  PubMed  Google Scholar 

  101. Okada K, Shoda J, Kano M, Suzuki S, Ohtake N, Yamamoto M, Takahashi H, Utsunomiya H, Oda K, Sato K, Watanabe A, Ishii T, Itoh K, Yamamoto M, Yokoi T, Yoshizato K, Sugiyama Y, Suzuki H. Inchinkoto, a herbal medicine, and its ingredients dually exert Mrp2/MRP2-mediated choleresis and Nrf2-mediated antioxidative action in rat livers. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1450–63.

    Article  CAS  PubMed  Google Scholar 

  102. Katarey D, Verma S. Drug-induced liver injury. Clin Med (Lond). 2016;16:s104–9.

    Article  Google Scholar 

  103. Stieger B, Meier Y, Meier PJ. The bile salt export pump. Pflugers Arch. 2007;453:611–20.

    Article  CAS  PubMed  Google Scholar 

  104. Chatterjee S, Annaert P. Drug-induced cholestasis: mechanisms, models, and markers. Curr Drug Metab. 2018;19:808–18.

    Article  CAS  PubMed  Google Scholar 

  105. Kenna JG, Taskar KS, Battista C, Bourdet DL, Brouwer KLR, Brouwer KR, Dai D, Funk C, Hafey MJ, Lai Y, Maher J, Pak YA, Pedersen JM, Polli JW, Rodrigues AD, Watkins PB, Yang K, Yucha RW. Can bile salt export pump inhibition testing in drug discovery and development reduce liver injury risk? An International Transporter Consortium perspective. Clin Pharmacol Ther. 2018;104:916–32.

  106. Qiu L, Finley J, Taimi M, Aleo MD, Strock C, Gilbert J, Qin S, Will Y. High-content imaging in human and rat hepatocytes using the fluorescent dyes CLF and CMFDA is not specific enough to assess BSEP/Bsep and/or MRP2/Mrp2 inhibition by cholestatic drugs. Appl In Vitro Toxicol. 2015;1:198–212.

    Article  CAS  Google Scholar 

  107. De Waart DR, Häusler S, Vlaming ML, Kunne C, Hänggi E, Gruss HJ, Oude Elferink RP, Stieger B. Hepatic transport mechanisms of cholyl-L-lysyl-fluorescein. J Pharmacol Exp Ther. 2010;334:78–86.

  108. Botrè F. Humanized animal models to study drug metabolism: no longer a “chimera”? Clin Chem. 2009;55:1763–4.

    Article  PubMed  CAS  Google Scholar 

  109. Evers R, Chu XY. Role of the murine organic anion-transporting polypeptide 1b2 (Oatp1b2) in drug disposition and hepatotoxicity. Mol Pharmacol. 2008;74:309–11.

    Article  CAS  PubMed  Google Scholar 

  110. Peterson RA, Krull DL, Brown HR, De Serres M. Morphologic characterization of PhoenixBio (uPA+/+/SCID) humanized liver chimeric mouse model. Drug Metab Lett. 2010;4:180–4.

    Article  CAS  PubMed  Google Scholar 

  111. Dunvald AD, Järvinen E, Mortensen C, Stage TB. Clinical and molecular perspectives on inflammation-mediated regulation of drug metabolism and transport. Clin Pharmacol Ther. 2021.

  112. Saib S, Delavenne X. Inflammation induces changes in the functional expression of P-gp, BCRP, and MRP2: an overview of different models and consequences for drug disposition. Pharmaceutics. 2021;13:1544

  113. Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 2010;9:929–39.

    Article  CAS  PubMed  Google Scholar 

  114. Miyamoto M, Kosugi Y, Iwasaki S, Chisaki I, Nakagawa S, Amano N, Hirabayashi H. Characterization of plasma protein binding in two mouse models of humanized liver, PXB mouse and humanized TK-NOG mouse. Xenobiotica. 2021;51:51–60.

    Article  CAS  PubMed  Google Scholar 

  115. Bteich M, Poulin P, Haddad S. The potential protein-mediated hepatic uptake: discussion on the molecular interactions between albumin and the hepatocyte cell surface and their implications for the in vitro-to-in vivo extrapolations of hepatic clearance of drugs. Expert Opin Drug Metab Toxicol. 2019;15:633–58.

    Article  CAS  PubMed  Google Scholar 

  116. Bowman CM, Benet LZ. An examination of protein binding and protein-facilitated uptake relating to in vitro–in vivo extrapolation. Eur J Pharm Sci. 2018;123:502–14.

  117. Li N, Badrinarayanan A, Ishida K, Li X, Roberts J, Wang S, Hayashi M, Gupta A. Albumin-mediated uptake improves human clearance prediction for hepatic uptake transporter substrates aiding a mechanistic in vitro–in vivo extrapolation (IVIVE) strategy in discovery research. AAPS J. 2020;23:1.

  118. Evers R, Piquette-Miller M, Polli JW, Russel FGM, Sprowl JA, Tohyama K, Ware JA, De Wildt SN, Xie W, Brouwer KLR. Disease-associated changes in drug transporters may impact the pharmacokinetics and/or toxicity of drugs: a white paper from the International Transporter Consortium. Clin Pharmacol Ther. 2018;104:900–15.

  119. Kisoh K, Sugahara G, Ogawa Y, Furukawa S, Ishida Y, Okanoue T, Kohara M, Tateno C. Estimating drug efficacy with a diet-induced NASH model in chimeric mice with humanized livers. Biomedicines. 2021;9:1647.

  120. Bissig-Choisat B, Alves-Bezerra M, Zorman B, Ochsner SA, Barzi M, Legras X, Yang D, Borowiak M, Dean AM, York RB, Galvan NTN, Goss J, Lagor WR, Moore DD, Cohen DE, Mckenna NJ, Sumazin P, Bissig KD. A human liver chimeric mouse model for non-alcoholic fatty liver disease. JHEP Rep. 2021;3:100281.

  121. Kikuchi R, Mccown M, Olson P, Tateno C, Morikawa Y, Katoh Y, Bourdet DL, Monshouwer M, Fretland AJ. Effect of hepatitis C virus infection on the mRNA expression of drug transporters and cytochrome p450 enzymes in chimeric mice with humanized liver. Drug Metab Dispos. 2010;38:1954–61.

    Article  PubMed  Google Scholar 

  122. Kato K, Ohbuchi M, Hamamura S, Ohshita H, Kazuki Y, Oshimura M, Sato K, Nakada N, Kawamura A, Usui T, Kamimura H, Tateno C. Development of murine Cyp3a knockout chimeric mice with humanized liver. Drug Metab Dispos. 2015;43:1208–17.

    Article  CAS  PubMed  Google Scholar 

  123. Yuan L, Liu X, Zhang L, Li X, Zhang Y, Wu K, Chen Y, Cao J, Hou W, Zhang J, Zhu H, Yuan Q, Tang Q, Cheng T, Xia N. A chimeric humanized mouse model by engrafting the human induced pluripotent stem cell-derived hepatocyte-like cell for the chronic hepatitis B virus infection. Front Microbiol. 2018;9:908.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Le Vee M, Noel G, Jouan E, Stieger B, Fardel O. Polarized expression of drug transporters in differentiated human hepatoma HepaRG cells. Toxicol In Vitro. 2013;27:1979–86.

    Article  PubMed  CAS  Google Scholar 

  125. Yuan L, Liu X, Zhang L, Zhang Y, Chen Y, Li X, Wu K, Cao J, Hou W, Que Y, Zhang J, Zhu H, Yuan Q, Tang Q, Cheng T, Xia N. Optimized HepaRG is a suitable cell source to generate the human liver chimeric mouse model for the chronic hepatitis B virus infection. Emerg Microbes Infect. 2018;7:144.

    PubMed  PubMed Central  Google Scholar 

  126. Higuchi Y, Kawai K, Yamazaki H, Nakamura M, Bree F, Guguen-Guillouzo C, Suemizu H. The human hepatic cell line HepaRG as a possible cell source for the generation of humanized liver TK-NOG mice. Xenobiotica. 2014;44:146–53.

    Article  CAS  PubMed  Google Scholar 

  127. Clerbaux LA, Paini A, Lumen A, Osman-Ponchet H, Worth AP, Fardel O. Membrane transporter data to support kinetically-informed chemical risk assessment using non-animal methods: scientific and regulatory perspectives. Environ Int. 2019;126:659–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Guéniche N, Bruyere A, Le Vée M, Fardel O. Implication of human drug transporters to toxicokinetics and toxicity of pesticides. Pest Manag Sci. 2020;76:18–25.

    Article  PubMed  CAS  Google Scholar 

  129. Yamashita M, Suemizu H, Murayama N, Nishiyama S, Shimizu M, Yamazaki H. Human plasma concentrations of herbicidal carbamate molinate extrapolated from the pharmacokinetics established in in vivo experiments with chimeric mice with humanized liver and physiologically based pharmacokinetic modeling. Regul Toxicol Pharmacol. 2014;70:214–21.

    Article  CAS  PubMed  Google Scholar 

  130. Iwata H, Goto M, Sakai N, Suemizu H, Yamazaki H. Predictability of human pharmacokinetics of diisononyl phthalate (DINP) using chimeric mice with humanized liver. Xenobiotica. 2019;49:1311–22.

    Article  CAS  PubMed  Google Scholar 

  131. Mir FF, Tomaszewski RP, Shuboni-Mulligan DD, Mallett CL, Hix JML, Ether ND, Shapiro EM. Chimeric mouse model for MRI contrast agent evaluation. Magn Reson Med. 2019;82:387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stripecke R, Münz C, Schuringa JJ, Bissig KD, Soper B, Meeham T, Yao LC, Di Santo JP, Brehm M, Rodriguez E, Wege AK, Bonnet D, Guionaud S, Howard KE, Kitchen S, Klein F, Saeb-Parsy K, Sam J, Sharma AD, Trumpp A, Trusolino L, Bult C, Shultz L. Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Mol Med. 2020;12: e8662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Fardel.

Ethics declarations

Author Contributions

Olivier Fardel conceived the review idea and the manuscript design and initiated the drafting and coordination. Anna Zerdoug collected and reviewed published data, elaborated the written sections, and prepared the article, figures and tables. Marc Le Vée, Shotaro Uehara, Béatrice Lopez, Christophe Chesné and Hiroshi Suemizu helped to draft and revise the manuscript. All authors read and approved the final manuscript.

Funding

No sources of funding were used to assist with the preparation of this review.

Availability of Data and Material

Not applicable

Code Availability

Not applicable

Conflict of Interest

The authors declare no conflict of interest which might be relevant to the content of this review.

Ethics Approval

Not applicable.

Consent to participate

Not applicable.

Consent for Publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zerdoug, A., Le Vée, M., Uehara, S. et al. Contribution of Humanized Liver Chimeric Mice to the Study of Human Hepatic Drug Transporters: State of the Art and Perspectives. Eur J Drug Metab Pharmacokinet 47, 621–637 (2022). https://doi.org/10.1007/s13318-022-00782-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-022-00782-9

Navigation