Skip to main content
Log in

The Effects of AT-533 and AT-533 gel on Liver Cytochrome P450 Enzymes in Rats

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

AT-533 is a novel heat shock protein 90 inhibitor, which exhibits various biological activities in vitro and in vivo. Cytochrome P450 (CYP) enzymes in the liver are involved in the biotransformation of drugs and considered to be essential indicators of liver toxicity. The aim of this study was to assess the effect of AT-533, either as active pharmaceutical ingredient or in gel form, on liver CYP enzymes.

Methods

The effect of AT-533 or AT-533 gel on rat liver cytochrome P450 enzymes, including CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, was analyzed using LC-MS/MS.

Results

AT-533 and AT-533 gel did not significantly increase or reduce the enzymatic activity of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 at any treatment dose.

Conclusions

AT-533 and AT-533 gel did not have any effect on CYP activity and may be considered safe for external use in gel form, as an alternative to conventional treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pinto N, Dolan ME. Clinically relevant genetic variations in drug metabolizing enzymes. Curr Drug Metab. 2011;12(5):487–97. https://doi.org/10.2174/138920011795495321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xu S-F, Hu A-L, Xie L, Liu J-J, Wu Q, Liu J. Age-associated changes of cytochrome P450 and related phase-2 gene/proteins in livers of rats. PeerJ. 2019;7: e7429. https://doi.org/10.7717/peerj.7429.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Daskalopoulos EP, Lang MA, Marselos M, Malliou F, Konstandi M. D-2-dopaminergic receptor-linked pathways: critical regulators of CYP3A, CYP2C, and CYP2D. Mol Pharmacol. 2012;82(4):668–78. https://doi.org/10.1124/mol.112.078709.

    Article  CAS  PubMed  Google Scholar 

  4. Kot M, Daujat-Chavanieu M. Altered cytokine profile under control of the serotonergic system determines the regulation of CYP2C11 and CYP3A isoforms (vol 116, pg 369, 2018). Food Chem Toxicol. 2018;118:471–2. https://doi.org/10.1016/j.fct.2018.05.028.

    Article  CAS  PubMed  Google Scholar 

  5. Park SY, Kim CH, Lee JY, Jeon JS, Kim MJ, Chae SH, et al. Hepatic expression of cytochrome P450 in Zucker diabetic fatty rats. Food Chem Toxicol. 2016;96:244–53. https://doi.org/10.1016/j.fct.2016.08.010.

    Article  CAS  PubMed  Google Scholar 

  6. Pathania S, Bhatia R, Baldi A, Singh R, Rawal RK. Drug metabolizing enzymes and their inhibitors’ role in cancer resistance. Biomed Pharmacother Biomed Pharmacothe. 2018;105:53–65. https://doi.org/10.1016/j.biopha.2018.05.117.

    Article  CAS  Google Scholar 

  7. Kaur G, Gupta SK, Singh P, Ali V, Kumar V, Verma M. Drug-metabolizing enzymes: role in drug resistance in cancer. Clin Transl Oncol. 2020;22(10):1667–80. https://doi.org/10.1007/s12094-020-02325-7.

    Article  CAS  PubMed  Google Scholar 

  8. Rendic S, Guengerich FP. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem Res Toxicol. 2015;28(1):38–42. https://doi.org/10.1021/tx500444e.

    Article  CAS  PubMed  Google Scholar 

  9. Sychev DA, Ashraf GM, Svistunov AA, Maksimov ML, Tarasov VV, Chubarev VN, et al. The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interaction in vivo. Drug Des Dev Ther. 2018;12:1147–56. https://doi.org/10.2147/DDDT.S149069.

    Article  CAS  Google Scholar 

  10. Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discovery. 2005;4(10):825–33. https://doi.org/10.1038/nrd1851.

    Article  CAS  PubMed  Google Scholar 

  11. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: A pharmacokinetic explanation for typically observed low exposure (AUC(i)/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–8. https://doi.org/10.1124/dmd.104.000794.

    Article  CAS  PubMed  Google Scholar 

  12. Thunell S, Pomp E, Brun A. Guide to drug porphyrogenicity prediction and drug prescription in the acute porphyrias. Br J Clin Pharmacol. 2007;64(5):668–79. https://doi.org/10.1111/j.0306-5251.2007.02955.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vasanthanathan P, Taboureau O, Oostenbrink C, Vermeulen NPE, Olsen L, Jørgensen FS. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques. Drug Metab Dispos. 2009;37(3):658–64. https://doi.org/10.1124/dmd.108.023507.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou S-F, Yang L-P, Zhou Z-W, Liu Y-H, Chan E. Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. AAPS J. 2009;11(3):481–94. https://doi.org/10.1208/s12248-009-9127-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vaghela M, Sahu N, Kharkar P, Pandita N. In vivo pharmacokinetic interaction by ethanolic extract of Gymnema sylvestre with CYP2C9 (Tolbutamide), CYP3A4 (Amlodipine) and CYP1A2 (Phenacetin) in rats. Chem-Biol Interact. 2017;278:141–51. https://doi.org/10.1016/j.cbi.2017.10.015.

    Article  CAS  PubMed  Google Scholar 

  16. Van Booven D, Marsh S, McLeod H, Carrillo MW, Sangkuhl K, Klein TE, et al. Cytochrome P450 2C9-CYP2C9. Pharmacogenet Genomics. 2010;20(4):277–81. https://doi.org/10.1097/FPC.0b013e3283349e84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krasniqi V, Dimovski A, Domjanović IK, Bilić I, Božina N. How polymorphisms of the cytochrome P450 genes affect ibuprofen and diclofenac metabolism and toxicity. Arh Hig Rada Toksikol. 2016;67(1):1–8. https://doi.org/10.1515/aiht-2016-67-2754.

    Article  CAS  PubMed  Google Scholar 

  18. Baumann P, Eap CB, Gastpar M. The effect of perazine on the CYP2D6 and CYP2C19 phenotypes as measured by the dextromethorphan and mephenytoin tests in psychiatric patients. Basic Clin Pharmacol. 2020;126(5):444–7. https://doi.org/10.1111/bcpt.13373.

    Article  CAS  Google Scholar 

  19. Wang Y, Wang C, Wang S, Zhou Q, Dai D, Shi J, et al. Cytochrome P450-based drug-drug interactions of vonoprazan and. Front Pharmacol. 2020;11:53. https://doi.org/10.3389/fphar.2020.00053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41. https://doi.org/10.1016/j.pharmthera.2012.12.007.

    Article  CAS  PubMed  Google Scholar 

  21. Šarić Mustapić D, Debeljak Ž, Maleš Ž, Bojić M. The inhibitory effect of flavonoid aglycones on the metabolic activity of CYP3A4 enzyme. Molecules (Basel, Switzerland). 2018. https://doi.org/10.3390/molecules23102553.

    Article  PubMed Central  Google Scholar 

  22. Xiao K, Gao J, Weng S-J, Fang Y, Gao N, Wen Q, et al. CYP3A4/5 activity probed with testosterone and midazolam: correlation between two substrates at the microsomal and enzyme levels. Mol Pharmaceut. 2019;16(1):382–92. https://doi.org/10.1021/acs.molpharmaceut.8b01043.

    Article  CAS  Google Scholar 

  23. Wang SX, Wang X, Du Z, Liu YT, Huang DN, Zheng K, et al. SNX-25a, a novel Hsp90 inhibitor, inhibited human cancer growth more potently than 17-AAG. Biochem Bioph Res Co. 2014;450(1):73–80. https://doi.org/10.1016/j.bbrc.2014.05.076.

    Article  CAS  Google Scholar 

  24. Zhang P-C, Liu X, Li M-M, Ma Y-Y, Sun H-T, Tian X-Y, et al. AT-533, a novel Hsp90 inhibitor, inhibits breast cancer growth and HIF-1α/VEGF/VEGFR-2-mediated angiogenesis in vitro and in vivo. Biochem Pharmacol. 2020;172: 113771. https://doi.org/10.1016/j.bcp.2019.113771.

    Article  CAS  PubMed  Google Scholar 

  25. Li F, Jin F, Wang Y, Zheng D, Liu J, Zhang Z, et al. Hsp90 inhibitor AT-533 blocks HSV-1 nuclear egress and assembly. J Biochem. 2018;164(6):397–406. https://doi.org/10.1093/jb/mvy066.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Wang R, Li F, Wang Y, Zhang Z, Wang Q, et al. Heat-shock protein 90alpha is involved in maintaining the stability of VP16 and VP16-mediated transactivation of alpha genes from herpes simplex virus-1. Mol Med. 2018;24(1):65. https://doi.org/10.1186/s10020-018-0066-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xiang YF, Qian CW, Xing GW, Hao J, Xia M, Wang YF. Anti-herpes simplex virus efficacies of 2-aminobenzamide derivatives as novel HSP90 inhibitors. Bioorg Med Chem Lett. 2012;22(14):4703–6. https://doi.org/10.1016/j.bmcl.2012.05.079.

    Article  CAS  PubMed  Google Scholar 

  28. Li F, Song X, Su G, Wang Y, Wang Z, Qing S, et al. AT-533, a Hsp90 inhibitor, attenuates HSV-1-induced inflammation. Biochem Pharmacol. 2019;166:82–92. https://doi.org/10.1016/j.bcp.2019.05.003.

    Article  CAS  PubMed  Google Scholar 

  29. Zeng Y. The evaluation of the safety and lead accumulation of Gou-pi plaster (a traditional external preparation) [PhD dissertation]: Chengdu University of TCM; 2012.

  30. Renwick AB, Lavignette G, Worboys PD, Williams B, Surry D, Lewis DFV, et al. Evaluation of 7-benzyloxy-4-trifluoromethylcoumarin, some other 7-hydroxy-4-trifluoromethylcoumarin derivatives and 7-benzyloxyquinoline as fluorescent substrates for rat hepatic cytochrome P450 enzymes. Xenobiotica. 2001;31(12):861–78. https://doi.org/10.1080/00498250110074063.

    Article  CAS  PubMed  Google Scholar 

  31. Krogstad V, Peric A, Robertsen I, Kringen MK, Vistnes M, Hjelmesæth J, et al. Correlation of body weight and composition with hepatic activities of cytochrome P450 enzymes. J Pharm Sci. 2021;110(1):432–7. https://doi.org/10.1016/j.xphs.2020.10.027.

    Article  CAS  PubMed  Google Scholar 

  32. Brill MJE, Diepstraten J, van Rongen A, van Kralingen S, van den Anker JN, Knibbe CAJ. Impact of obesity on drug metabolism and elimination in adults and children. Clin Pharmacokinet. 2012;51(5):277–304. https://doi.org/10.2165/11599410-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  33. Zhong D-F, Zhang S-Q, Sun L, Zhao X-Y. Metabolism of roxithromycin in phenobarbital-treated rat liver microsomes. Acta Pharmacol Sin. 2002;23(5):455–60.

    CAS  PubMed  Google Scholar 

  34. Handschin C, Meyer UA. Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev. 2003;55(4):649–73. https://doi.org/10.1124/pr.55.4.2.

    Article  CAS  PubMed  Google Scholar 

  35. Bojić M, Kondža M, Rimac H, Benković G, Maleš Ž. The Effect of Flavonoid Aglycones on the CYP1A2, CYP2A6, CYP2C8 and CYP2D6 Enzymes Activity. Molecules (Basel, Switzerland). 2019. https://doi.org/10.3390/molecules24173174.

    Article  Google Scholar 

  36. Glowacki LL, Hodges LD, Wynne PM, Wright PFA, Kalafatis N, Macrides TA. LC-MSMS characterisations of scymnol and oxoscymnol biotransformations in incubation mixtures of rat liver microsomes. Biochimie. 2019;160:130–40. https://doi.org/10.1016/j.biochi.2019.02.016.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Yanting Wu would like to thank Mr. Hui Chen (Guangzhou University of Chinese Medicine) for the care and encouragement of the experimental progress.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifei Wang.

Ethics declarations

Funding

This work was supported by the Guangzhou Major Program of the Industry-University-Research collaborative innovation (Grant numbers: 201604020178 & 201704030087).

Conflicts of interest

The authors declare no conflict of interest.

Ethics Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed and the study protocols were approved by The Institutional Animal Care and Use Committee of Jinan University Guangzhou, PR China.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

All authors confirm that all data and materials as well as software application or custom code support their published claims and comply with field standards.

Code availability

Not applicable.

Authors' contributions

YW designed the study. YW, ML, YG, TL, LZ, CH, CY, QL and ZR performed the experiments. YW and ML performed the statistical analysis. YW drafted the manuscript. ML and YG made significant conceptual contributions to the manuscript. ZR and YW reviewed the final version of the paper. All the authors provided intellectual content and approved the final version of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Li, M., Guo, Y. et al. The Effects of AT-533 and AT-533 gel on Liver Cytochrome P450 Enzymes in Rats. Eur J Drug Metab Pharmacokinet 47, 345–352 (2022). https://doi.org/10.1007/s13318-022-00757-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-022-00757-w

Navigation