Skip to main content

Advertisement

Log in

Autonomous adaptation to climate-driven change in marine biodiversity in a global marine hotspot

  • Biodiversity Change and Human Adaptation
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

While governments and natural resource managers grapple with how to respond to climatic changes, many marine-dependent individuals, organisations and user-groups in fast-changing regions of the world are already adjusting their behaviour to accommodate these. However, we have little information on the nature of these autonomous adaptations that are being initiated by resource user-groups. The east coast of Tasmania, Australia, is one of the world’s fastest warming marine regions with extensive climate-driven changes in biodiversity already observed. We present and compare examples of autonomous adaptations from marine users of the region to provide insights into factors that may have constrained or facilitated the available range of autonomous adaptation options and discuss potential interactions with governmental planned adaptations. We aim to support effective adaptation by identifying the suite of changes that marine users are making largely without government or management intervention, i.e. autonomous adaptations, to better understand these and their potential interactions with formal adaptation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • ABARES. 2016. Australian Fisheries and Aquaculture Statistics 2015. Canberra.

  • Adger, W.N. 2003. Social capital, collective action, and adaptation to climate change. Economic Geography 79: 387–404.

    Article  Google Scholar 

  • Adger, W.N., N.W. Arnell, and E.L. Tompkins. 2005. Successful adaptation to climate change across scales. Global Environmental Change 15: 77–86. https://doi.org/10.1016/j.gloenvcha.2004.12.005.

    Article  Google Scholar 

  • Badjeck, M.-C., E.H. Allison, A.S. Halls, and N.K. Dulvy. 2010. Impacts of climate variability and change on fishery-based livelihoods. Marine Policy 34: 375–383.

    Article  Google Scholar 

  • Bannon, S.L.B. 2016. Citizen science in a marine climate change hotspot. Hobart: University of Tasmania.

    Google Scholar 

  • Barnes, R.K., H. King, and C.G. Carter. 2011. Hypoxia tolerance and oxygen regulation in Atlantic salmon, Salmo salar from a Tasmanian population. Aquaculture 318: 397–401. https://doi.org/10.1016/j.aquaculture.2011.06.003.

    Article  Google Scholar 

  • Barton, B.A. 1996. General biology of salmonids. In Principles of Salmonid Aquaculture, ed. W. Pennell and B.A. Barton, 29–95. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Battaglene, S., C. Carter, A. J. Hobday, V. Lyne, and B. Nowak. 2008. Scoping Study into Adaptation of the Tasmanian Salmonid Aquaculture Industry to Potential Impacts of Climate Change. National Agriculture & Climate Change Action Plan: Implementation Programme report.

  • Berkes, F. 2009. Evolution of co-management: Role of knowledge generation, bridging organizations and social learning. Journal of Environmental Management 90: 1692–1702.

    Article  Google Scholar 

  • Biagini, B., R. Bierbaum, M. Stults, S. Dobardzic, and S.M. McNeeley. 2014. A typology of adaptation actions: A global look at climate adaptation actions financed through the Global Environment Facility. Global Environmental Change 25: 97–108. https://doi.org/10.1016/j.gloenvcha.2014.01.003.

    Article  Google Scholar 

  • Bradley, M., I. van Putten, and M. Sheaves. 2015. The pace and progress of adaptation: Marine climate change preparedness in Australia’s coastal communities. Marine Policy 53: 13–20. https://doi.org/10.1016/j.marpol.2014.11.004.

    Article  Google Scholar 

  • Caillon, S., G. Cullman, B. Verschuuren, and E.J. Sterling. 2017. Moving beyond the human–nature dichotomy through biocultural approaches: Including ecological well-being in resilience indicators. Ecology and Society. https://doi.org/10.5751/es-09746-220427.

    Article  Google Scholar 

  • Champion, C., A. Hobday, X. Zhang, G. Pecl, and S. Tracey. 2018. Changing windows of opportunity: Past and future climate-driven shifts in temporal persistence of kingfish (Seriola lalandi) oceanographic habitat within southeast Australian bioregions. Marine & Freshwater Research 69: 1–10. https://doi.org/10.1071/MF17387.

    Article  Google Scholar 

  • Cinner, J.E., C. Folke, T. Daw, and C.C. Hicks. 2011. Responding to change: Using scenarios to understand how socioeconomic factors may influence amplifying or dampening exploitation feedbacks among Tanzanian fishers. Global Environmental Change 21: 7–12.

    Article  Google Scholar 

  • Couturier, L.I.E., F.R.A. Jaine, and T. Kashiwagi. 2015. First photographic records of the giant manta ray Manta birostris off eastern Australia. PeerJ 3: e742. https://doi.org/10.7717/peerj.742.

    Article  Google Scholar 

  • Crawford, C.M., C.K. Macleod, and I.M. Mitchell. 2003. Effects of shellfish farming on the benthic environment. Aquaculture 224: 117–140.

    Article  Google Scholar 

  • Creighton, C., A.J. Hobday, M. Lockwood, and G.T. Pecl. 2016. Adapting Management of Marine Environments to a Changing Climate: A Checklist to Guide Reform and Assess Progress. Ecosystems 19: 187–219. https://doi.org/10.1007/s10021-015-9925-2.

    Article  CAS  Google Scholar 

  • de Kantzow, M.C., P.M. Hick, N.K. Dhand, and R.J. Whittington. 2017. Risk factors for mortality during the first occurrence of Pacific Oyster Mortality Syndrome due to Ostreid herpesvirus—1 in Tasmania, 2016. Aquaculture 468: 328–336. https://doi.org/10.1016/j.aquaculture.2016.10.025.

    Article  Google Scholar 

  • Dominik, S., J.M. Henshall, P.D. Kube, H. King, S. Lien, M.P. Kent, and N.G. Elliott. 2010. Evaluation of an Atlantic salmon SNP chip as a genomic tool for the application in a Tasmanian Atlantic salmon (Salmo salar) breeding population. Aquaculture 308: S56–S61. https://doi.org/10.1016/j.aquaculture.2010.05.038.

    Article  CAS  Google Scholar 

  • Dorantes-Aranda, J.J., K. Campbell, A. Bradbury, C.T. Elliott, D.T. Harwood, S.A. Murray, and G.M. Hallegraeff. 2017. Comparative performance of four immunological test kits for the detection of Paralytic Shellfish Toxins in Tasmanian shellfish. Toxicon 125: 110–119.

    Article  CAS  Google Scholar 

  • Doubleday, Z., S. Clarke, X. Li, G. Pecl, T. Ward, S. Battaglene, S. Frusher, P. Gibbs, et al. 2013. Assessing the risk of climate change to aquaculture: A case study from south-east Australia. Aquaculture Environment Interactions 3: 163–175. https://doi.org/10.3354/aei00058.

    Article  Google Scholar 

  • Douglas-Helders, M., S. Saksida, S. Raverty, and B.F. Nowak. 2001. Temperature as a risk factor for outbreaks of Amoebic Gill Disease in farmed Atlantic salmon (Salmo salar). Bulletin of the European Association of Fish Pathologists 21: 114–116.

    Google Scholar 

  • DPIPWE. 2017. Sustainable industry growth plan for the salmon industry. Hobart, Tasmania. https://dpipwe.tas.gov.au/Documents/salmonplan.pdf.

  • DPIPWE. 2017. Tasmanian Shellfish Quality Assurance Program—Biotoxin Management Plan, Version 5, 4th December 2017. https://dpipwe.tas.gov.au/Documents/TSQAP_Biotoxin_Management_Plan.PDF.

  • Fankhauser, S., J.B. Smith, and R.S.J. Tol. 1999. Weathering climate change: Some simple rules to guide adaptation decisions. Ecological Economics 30: 67–78. https://doi.org/10.1016/S0921-8009(98)00117-7.

    Article  Google Scholar 

  • Fjelldal, P.G., T. Hansen, and T. Huang. 2011. Continuous light and elevated temperature can trigger maturation both during and immediately after smoltification in male Atlantic salmon (Salmo salar). Aquaculture 321: 93–100. https://doi.org/10.1016/j.aquaculture.2011.08.017.

    Article  Google Scholar 

  • Frusher, S.D., A.J. Hobday, S.M. Jennings, C. Creighton, D. D’Silva, M. Haward, N.J. Holbrook, M. Nursey-Bray, et al. 2014. The short history of research in a marine climate change hotspot: From anecdote to adaptation in south-east Australia. Reviews in Fish Biology and Fisheries 24: 593–611. https://doi.org/10.1007/s11160-013-9325-7.

    Article  Google Scholar 

  • Galea, S., E. Street, and J. Dunlevie. 2018. Macquarie Harbour salmon: 1.35 million fish deaths prompt call to “empty” waterway of farms. ABC News.

  • Gledhill, D.C., A.J. Hobday, D.J. Welch, S.G. Sutton, M.J. Lansdell, M. Koopman, A. Jeloudev, A. Smith, et al. 2015. Collaborative approaches to accessing and utilising historical citizen science data: A case-study with spearfishers from eastern Australia. Marine & Freshwater Research 66: 195–201. https://doi.org/10.1071/MF14071.

    Article  Google Scholar 

  • Grüneis, H., M. Penker, and K.M. Höferl. 2016. The full spectrum of climate change adaptation: Testing an analytical framework in Tyrolean mountain agriculture (Austria). SpringerPlus 5: 1–14. https://doi.org/10.1186/s40064-016-3542-1.

    Article  Google Scholar 

  • Gutiérrez, A.T., and S. Morgan. 2017. Impediments to fisheries sustainability—Coordination between public and private fisheries governance systems. Ocean and Coastal Management 135: 79–92. https://doi.org/10.1016/j.ocecoaman.2016.10.016.

    Article  Google Scholar 

  • Hahn, M.B., A.M. Riederer, and S.O. Foster. 2009. The Livelihood Vulnerability Index: A pragmatic approach to assessing risks from climate variability and change—A case study in Mozambique. Global Environmental Change 19: 74–88.

    Article  Google Scholar 

  • Hallegraeff, G.M. 2010. Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. Journal of Phycology 46: 220–235.

    Article  CAS  Google Scholar 

  • Hallegraeff, G., and C. Bolch. 2016. Unprecedented toxic algal blooms impact on Tasmanian seafood industry. Microbiology Australia 37: 143–144.

    Google Scholar 

  • Hallegraeff, G, C. Bolch, A. Bradbury, K. Campbell, S.A. Condie, J. Dorantes, T. Harwood, S. Murray, A. Turnball, S.C. Ugalde, K. Wilson. 2017. Improved understanding of Tasmanian harmful algal blooms and biotoxin events to support seafood risk management. Fisheries Research & Development Corporation 1–132.

  • Hallegraeff, G., W. Hosja, R. Knuckey, and C. Wilkinson. 2008. Recent range expansion of the red-tide dinoflagellate Noctiluca scintillans in Australian coastal waters. Harmful Algae News 38: 10–11.

    Google Scholar 

  • Hobday, A.J., L.V. Alexander, S.E. Perkins, D.A. Smale, S.C. Straub, E.C.J. Oliver, J.A. Benthuysen, M.T. Burrows, et al. 2016a. A hierarchical approach to defining marine heatwaves. Progress in Oceanography 141: 227–238. https://doi.org/10.1016/j.pocean.2015.12.014.

    Article  Google Scholar 

  • Hobday, A.J., and G.T. Pecl. 2014. Identification of global marine hotspots: Sentinels for change and vanguards for adaptation action. Reviews in Fish Biology and Fisheries 24: 415–425. https://doi.org/10.1007/s11160-013-9326-6.

    Article  Google Scholar 

  • Hobday, A.J., C.M. Spillman, P. Eveson, J.R. Hartog, X. Zhang, and S. Brodie. 2018. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2018.00137.

    Article  Google Scholar 

  • Hobday, A.J., C.M. Spillman, J. Paige Eveson, and J.R. Hartog. 2016b. Seasonal forecasting for decision support in marine fisheries and aquaculture. Fisheries Oceanography 25: 45–56. https://doi.org/10.1111/fog.12083.

    Article  Google Scholar 

  • Hodgkinson, J.H., A.J. Hobday, and E.A. Pinkard. 2014. Climate adaptation in Australia’s resource-extraction industries: Ready or not? Regional Environmental Change 14: 1663–1678. https://doi.org/10.1007/s10113-014-0618-8.

    Article  Google Scholar 

  • Hoegh-Guldberg, O., R. Cai, E.S. Poloczanska, P.G. Brewer, S. Sundby, K. Hilmi, V.J. Fabry, and S. Jung. 2014. The Ocean. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M. Chatterjee, K. L. Ebi, et al., 1655–1731. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. https://doi.org/10.1017/cbo9781107415386.010.

  • Huntington, H.P., A. Begossi, S. Fox Gearheard, B. Kersey, P.A. Loring, T. Mustonen, P.K. Paudel, R.A.M. Silvano, and R. Vave. 2017. How small communities respond to environmental change: Patterns from tropical to polar ecosystems. Ecology and Society 22: 9.

    Google Scholar 

  • IPCC. 2007. Summary for Policymakers. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. M.L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, and C. E. Hanson, 7–22. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. https://doi.org/10.1038/446727a.

    Article  CAS  Google Scholar 

  • Jennings, S., S. Pascoe, S. Hall-Aspland, B. Le Bouhellec, A. Norman-Lopez, A. Sullivan, and G. Pecl. 2016. Setting objectives for evaluating management adaptation actions to address climate change impacts in south-eastern Australian fisheries. Fisheries Oceanography 25: 29–44.

    Article  Google Scholar 

  • Jentoft, S. 2007. In the power of power: the understated aspect of fisheries and coastal management. Human Organization: 426–437.

    Article  Google Scholar 

  • Johnson, C.R., S.C. Banks, N.S. Barrett, F. Cazassus, P.K. Dunstan, G.J. Edgar, S.D. Frusher, C. Gardner, et al. 2011. Climate change cascades: Shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. Journal of Experimental Marine Biology and Ecology 400: 17–32. https://doi.org/10.1016/j.jembe.2011.02.032.

    Article  Google Scholar 

  • Kailis, G. 2013. Unintended consequences? Rights to fish and the ownership of wild fish. Macquarie Law Journal 11: 99–123.

    Google Scholar 

  • Keller, K., and D. McInerney. 2008. The dynamics of learning about a climate threshold. Climate Dynamics 30: 321–332. https://doi.org/10.1007/s00382-007-0290-5.

    Article  Google Scholar 

  • Kelly, P., L. Clementson, C. Davies, S. Corney, and K. Swadling. 2016. Zooplankton responses to increasing sea surface temperatures in the southeastern Australia global marine hotspot. Estuarine, Coastal and Shelf Science 180: 242–257. https://doi.org/10.1016/j.ecss.2016.07.019.

    Article  Google Scholar 

  • King, A.S., N.G. Elliott, M.A. James, C.K. MacLeod, and T. Bjorndal. 2016. Technology selection—The impact of economic risk on decision making. Aquaculture Economics & Management.. https://doi.org/10.1080/13657305.2016.1261962.

    Article  Google Scholar 

  • Kube, P.D., R.S. Taylor, and N.G. Elliott. 2012. Genetic variation in parasite resistance of Atlantic salmon to amoebic gill disease over multiple infections. Aquaculture 364–365: 165–172. https://doi.org/10.1016/j.aquaculture.2012.08.026.

    Article  Google Scholar 

  • Last, P.R., W.T. White, D.C. Gledhill, A.J. Hobday, R. Brown, G.J. Edgar, and G. Pecl. 2011. Long-term shifts in abundance and distribution of a temperate fish fauna: A response to climate change and fishing practices. Global Ecology and Biogeography 20: 58–72. https://doi.org/10.1111/j.1466-8238.2010.00575.x.

    Article  Google Scholar 

  • Lee, E. 2017. Performing colonisation: The manufacture of Black female bodies in tourism research. Annals of Tourism Research 66: 95–104. https://doi.org/10.1016/j.annals.2017.06.001.

    Article  Google Scholar 

  • Lee, E., and T. Tran. 2016. From boardroom to kitchen table: Shifting the power seat of Indigenous governance in protected area management. Australian Aboriginal Studies 2: 81–93.

    Google Scholar 

  • Ling, S.D. 2008. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: A new and impoverished reef state. Oecologia 156: 883–894. https://doi.org/10.1007/s00442-008-1043-9.

    Article  CAS  Google Scholar 

  • Ling, S. D., and M. Jacques. 2009. Subtidal reef monitoring and community awareness project: data report on the long-spined sea urchin. A Tasmanian Government Fishwise Community Grant project.

  • Ling, S.D., C.R. Johnson, K. Ridgway, A.J. Hobday, and M. Haddon. 2009. Climate-driven range extension of a sea urchin: Inferring future trends by analysis of recent population dynamics. Global Change Biology 15: 719–731. https://doi.org/10.1111/j.1365-2486.2008.01734.x.

    Article  Google Scholar 

  • Lourandos, H. 1968. Dispersal of activities—the east Tasmanian aboriginal sites. Papers and Proceedings of the Royal Society of Tasmania 102: 41–46.

    Google Scholar 

  • Lyle, J., K.E. Stark, and S.R. Tracey. 2014. 2012-13 survey of recreational fishing in Tasmania. Hobart: Tasmania, IMAS, University of Tasmania.

    Google Scholar 

  • Malik, A., X. Qin, and S. C. Smith. 2010. Autonomous adaptation to climate change: A literature review. Institute for International Economic Policy Working Paper Series 1–25.

  • Marshall, N.A., P.A. Marshall, J. Tamelander, D. Obura, King D. Mallaret, and J.M. Cinner. 2010. A framework for social adaptation to climate change; sustaining tropical coastal communities and industries, 36. Gland, Switzerland: IUCN.

    Google Scholar 

  • Mccright, A.M., and R.E. Dunlap. 2011. The politicization of climate change and polarization in the American public’s views of global warming, 2001-2010. Sociological Quarterly 52: 155–194. https://doi.org/10.1111/j.1533-8525.2011.01198.x.

    Article  Google Scholar 

  • McGoodwin, J.R. 2001. Understanding the culture of fishing communities: A key to fisheries management and food security. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Metcalf, S.J., E.I. van Putten, S. Frusher, N.A. Marshall, M. Tull, N. Caputi, M. Haward, A.J. Hobday, et al. 2015. Measuring the vulnerability of marine social-ecological systems: A prerequisite for the identification of climate change adaptations. Ecology and Society 20: 35. https://doi.org/10.5751/ES-07509-200235.

    Article  Google Scholar 

  • Miller, M.R., P.D. Nichols, J. Barnes, N.W. Davies, E.J. Peacock, and C.G. Carter. 2006. Regiospecificity profiles of storage and membrane lipids from the gill and muscle tissue of Atlantic salmon (Salmo salar L.) grown at elevated temperature. Lipids 41: 865–876. https://doi.org/10.1007/s11745-006-5042-5.

    Article  CAS  Google Scholar 

  • Miller, D.D., Y. Ota, U.R. Sumaila, A.M. Cisneros-Montemayor, and W.W.L. Cheung. 2018. Adaptation strategies to climate change in marine systems. Global Change Biology 24: e1–e14. https://doi.org/10.1111/gcb.13829.

    Article  Google Scholar 

  • Moltschaniwskyj, N.A., C. Mundy, and J. Harris. 2014. Maximising value by reducing stress-related mortality in wild harvested black-lip Abalone (Haliotis rubra). Fisheries Research & Development Corporation Report, Project No. 2010/704. www.frdc.com.au/project?id=692.

  • Mundy C., and H. Jones. 2017. Tasmanian abalone fishery assessment 2016. Institute for Marine and Antarctic Studies Report, University of Tasmania.

  • Mundy, C., and J. McAllister. 2018. Tasmanian abalone fishery assessment 2017. Institute for Marine and Antarctic Studies Report, University of Tasmania.

  • Mustonen, T., and K. Mustonen. 2011. Eastern Sámi Atlas. Kontiolahti: Snowchange Cooperative.

    Google Scholar 

  • Nasiritousi, N., M. Hjerpe, and B.-O. Linnér. 2014. The roles of non-state actors in climate change governance: Understanding agency through governance profiles. International Environmental Agreements: Politics, Law and Economics 16: 109–126.

    Article  Google Scholar 

  • Nayak, P.K. 2017. Fisher communities in transition: Understanding change from a livelihood perspective in Chilika Lagoon, India. Maritime Studies 1: 16. https://doi.org/10.1186/s40152-017-0067-3.

    Article  Google Scholar 

  • Nelson, D.R., C.T. West, and T.J. Finan. 2009. Introduction to “In focus: Global change and adaptation in local places”. American Anthropologist 111: 271–274.

    Article  Google Scholar 

  • Nightingale, A.J. 2017. Power and politics in climate change adaptation efforts: Struggles over authority and recognition in the context of political instability. Geoforum 84: 11–20.

    Article  Google Scholar 

  • Norman, R. 2013. Necklace making and placedness in Tasmania. Coolabah 11: 1–16.

    Google Scholar 

  • Nunn, P.D., and N.J. Reid. 2016. Aboriginal memories of inundation of the Australian coast dating from more than 7000 years ago. Australian Geographer 47: 11–47. https://doi.org/10.1080/00049182.2015.1077539.

    Article  Google Scholar 

  • Nursey-Bray, M., R. Palmer, and G. Pecl. 2018. Spot, log, map: Assessing a marine virtual citizen science program against Reed’s best practice for stakeholder participation in environmental management. Ocean and Coastal Management 151: 1–9. https://doi.org/10.1016/j.ocecoaman.2017.10.031.

    Article  Google Scholar 

  • Nursey-Bray, M., G.T. Pecl, S. Frusher, C. Gardner, M. Haward, A.J. Hobday, S. Jennings, A.E. Punt, et al. 2012. Communicating climate change: Climate change risk perceptions and rock lobster fishers, Tasmania. Marine Policy 36: 753–759. https://doi.org/10.1016/j.marpol.2011.10.015.

    Article  Google Scholar 

  • Ogier, E.M., J. Davidson, P. Fidelman, M. Haward, A.J. Hobday, N.J. Holbrook, E. Hoshino, and G.T. Pecl. 2016. Fisheries management approaches as platforms for climate change adaptation: Comparing theory and practice in Australian fisheries. Marine Policy 71: 82–93. https://doi.org/10.1016/j.marpol.2016.05.014.

    Article  Google Scholar 

  • Ojea, E., I. Pearlman, S.D. Gaines, and S.E. Lester. 2017. Fisheries regulatory regimes and resilience to climate change. Ambio 46: 399–412. https://doi.org/10.1007/s13280-016-0850-1.

    Article  Google Scholar 

  • Oliver, E.C.J., J.A. Benthuysen, N.L. Bindoff, A.J. Hobday, N.J. Holbrook, C.N. Mundy, and S.E. Perkins-Kirkpatrick. 2017a. The unprecedented 2015/16 Tasman Sea marine heatwave. Nature Communications 8: 16101.

    Article  Google Scholar 

  • Oliver, E.C.J., V. Lago, N.J. Holbrook, S.D. Ling, C.N. Mundy, and A.J. Hobday. 2017b. Eastern Tasmania marine heatwave atlas. Hobart: Institute for Marine and Antarctic Studies, University of Tasmania.

    Google Scholar 

  • Ostrom, E. 2009. A general framework for analyzing sustainability of social-ecological systems. Science 325: 419–422.

    Article  CAS  Google Scholar 

  • Pankhurst, N.W., and H.R. King. 2010. Temperature and salmonid reproduction: Implications for aquaculture. Journal of Fish Biology 76: 69–85. https://doi.org/10.1111/j.1095-8649.2009.02484.x.

    Article  CAS  Google Scholar 

  • Paul-Pont, I., O. Evans, N.K. Dhand, A. Rubio, P. Coad, and R.J. Whittington. 2014. Descriptive epidemiology of mass mortality due to Ostreid herpesvirus-1 (OsHV-1) in commercially farmed Pacific oysters (Crassostrea gigas) in the Hawkesbury River estuary, Australia. Aquaculture 422–423: 146–159. https://doi.org/10.1016/j.aquaculture.2013.12.009.

    Article  Google Scholar 

  • Pecl, G.T., M.B. Araújo, J.D. Bell, J. Blanchard, T.C. Bonebrake, I.-C. Chen, T.D. Clark, R.K. Colwell, et al. 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355: eaai9214. https://doi.org/10.1126/science.aai9214.

    Article  CAS  Google Scholar 

  • Pecl, G.T., T. Ward, F. Briceño, A. Fowler, S. Frusher, C. Gardner, P. Hamer, K. Hartmann, et al. 2014b. Preparing fisheries for climate change: identifying adaptation options for four key fisheries in South Eastern Australia. Fisheries Research and Development Corporation, Project 2011/039.

  • Pecl, G.T., T.M. Ward, Z.A. Doubleday, S. Clarke, J. Day, C. Dixon, S. Frusher, P. Gibbs, et al. 2014a. Rapid assessment of fisheries species sensitivity to climate change. Climatic Change 127: 505–520. https://doi.org/10.1007/s10584-014-1284-z.

    Article  Google Scholar 

  • Pinkerton, E. 2011. Co-operative management of local fisheries: New directions for improved management and community development. Vancouver: UBC Press.

    Google Scholar 

  • Pinkerton, E. 2018. Legitimacy and effectiveness through fisheries co-management, 333–337. Brill Nijhoff: The Future of Ocean Governance and Capacity Development.

    Google Scholar 

  • Pitt, N.R., E.S. Poloczanska, and A.J. Hobday. 2010. Climate-driven range changes in Tasmanian intertidal fauna. Marine & Freshwater Research 61: 963–970. https://doi.org/10.1071/MF09225.

    Article  CAS  Google Scholar 

  • Ramos, J.E., G.T. Pecl, N.A. Moltschaniwskyj, J.M. Semmens, C.A. Souza, and J.M. Strugnell. 2018. Population genetic signatures of a climate change driven marine range extension. Scientific Reports 8: 9558. https://doi.org/10.1038/s41598-018-27351-y.

    Article  CAS  Google Scholar 

  • Ramos, J.E., G.T. Pecl, J.M. Semmens, J.M. Strugnell, R.I. León, and N.A. Moltschaniwskyj. 2015. Reproductive capacity of a marine species (Octopus tetricus) at its range extension. Marine and Freshwater Research. https://doi.org/10.1071/mf14126.

    Article  Google Scholar 

  • Reddin, D.G., J. Helbig, A. Thomas, B.G. Whitehouse, and K. D. Friedland. 2000. Survival of Atlantic salmon (Salmo salar L.) related to marine climate. In The ocean life of Atlantic salmon, ed. D. Mills, 88–91. Oxford: Blackwell Science.

  • Ridgway, K.R. 2007. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophysical Research Letters 34: 1–5. https://doi.org/10.1029/2007GL030393.

    Article  Google Scholar 

  • Ridgway, K.R., and S.A. Condie. 2004. The 5500-km-long boundary flow off western and southern Australia. Journal of Geophysical Research, C: Oceans 109: 1–18. https://doi.org/10.1029/2003JC001921.

    Article  Google Scholar 

  • Robinson, L.M., D.C. Gledhill, N.A. Moltschaniwskyj, A.J. Hobday, S. Frusher, N. Barrett, J. Stuart-Smith, and G.T. Pecl. 2015. Rapid assessment of an ocean warming hotspot reveals “high” confidence in potential species’ range extensions. Global Environmental Change 31: 28–37. https://doi.org/10.1016/j.gloenvcha.2014.12.003.

    Article  Google Scholar 

  • Smith, B., I. Burton, R.J.T. Klein, I.A.N.J. Wang, B. Smit, and J. Wandel. 2000. An anatomy of adaptation to climate change and variability. Climate Change. https://doi.org/10.1023/a:1005661622966.

    Article  Google Scholar 

  • Sova, C.A., A. Helfgott, A.S. Chaudhury, D. Matthews, T.F. Thornton, and S.J. Vermeulen. 2014. Multi-level stakeholder influence mapping: Visualizing power relations across actor levels in Nepal’s agricultural climate change adaptation regime. Systemic Practice and Action Research 28: 383–409.

    Article  Google Scholar 

  • Spillman, C.M., and A.J. Hobday. 2014. Dynamical seasonal ocean forecasts to aid salmon farm management in a climate hotspot. Climate Risk Management 1: 25–38. https://doi.org/10.1016/j.crm.2013.12.001.

    Article  Google Scholar 

  • Stöhr, C., C. Lundholm, B. Crona and I. Chabay. 2014. Stakeholder participation and sustainable fisheries: an integrative framework for assessing adaptive comanagement processes. Ecology and Society 19

  • Stuart-Smith, J., G. Pecl, A. Pender, S. Tracey, C. Villanueva, and W.F. Smith-Vaniz. 2016. Southernmost records of two Seriola species in an Australian ocean-warming hotspot. Marine Biodiversity. https://doi.org/10.1007/s12526-016-0580-4.

    Article  Google Scholar 

  • Sunday, J.M., G.T. Pecl, S. Frusher, A.J. Hobday, N. Hill, N.J. Holbrook, G.J. Edgar, R. Stuart-Smith, et al. 2015. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecology Letters 18: 944–953. https://doi.org/10.1111/ele.12474.

    Article  Google Scholar 

  • Taylor, M. 2014. Political ecology of climate change adaptation: Livelihoods, agrarian change and the conflicts of development. London: Routledge/Earthscan.

    Book  Google Scholar 

  • Taylor, R.S., P.D. Kube, W.J. Muller, and N.G. Elliott. 2009. Genetic variation of gross gill pathology and survival of Atlantic salmon (Salmo salar L.) during natural amoebic gill disease challenge. Aquaculture 294: 172–179. https://doi.org/10.1016/j.aquaculture.2009.06.007

    Article  Google Scholar 

  • Taylor, R.S., J.W. Wynne, P.D. Kube, and N.G. Elliott. 2007. Genetic variation of resistance to amoebic gill disease in Atlantic salmon (Salmo salar) assessed in a challenge system. Aquaculture 272: 94–99. https://doi.org/10.1016/j.aquaculture.2007.08.007.

    Article  Google Scholar 

  • Thompson, P.A., M.E. Baird, T. Ingleton, and M.A. Doblin. 2009. Long-term changes in temperate Australian coastal waters: Implications for phytoplankton. Marine Ecology Progress Series 394: 1–19. https://doi.org/10.3354/meps08297.

    Article  CAS  Google Scholar 

  • Tompkins, E.L., and H. Eakin. 2012. Managing private and public adaptation to climate change. Global Environmental Change 22: 3–11. https://doi.org/10.1016/j.gloenvcha.2011.09.010.

    Article  Google Scholar 

  • van Putten, I.E., S. Frusher, E.A. Fulton, A.J. Hobday, S.M. Jennings, S. Metcalf, and G.T. Pecl. 2015. Empirical evidence for different cognitive effects in explaining the attribution of marine range shifts to climate change. ICES Journal of Marine Science. https://doi.org/10.1093/icesjms/fsv192.

    Article  Google Scholar 

  • Wahl, M., M. Molis, A.J. Hobday, S. Dudgeon, R. Neumann, P. Steinberg, A.H. Campbell, E. Marzinelli, et al. 2015. The responses of brown macroalgae to environmental change from local to global scales: direct versus ecologically mediated effects. Perspectives in Phycology 2: 11–29. https://doi.org/10.1127/pip/2015/0019.

    Article  Google Scholar 

  • Wali, A., D. Alvira, P.S. Tallman, A. Ravikumar, and M.O. Macedo. 2017. A new approach to conservation: Using community empowerment for sustainable well-being. Ecology and Society. https://doi.org/10.5751/es-09598-220406.

    Article  Google Scholar 

  • Weber, E.U. 2010. What shapes perceptions of climate change? Wiley Interdisciplinary Reviews: Climate Change 1: 332–342. https://doi.org/10.1002/wcc.41.

    Article  Google Scholar 

  • Weber, E.U., and P.C. Stern. 2011. Public understanding of climate change in the United States. American Psychologist 66: 315–328. https://doi.org/10.1037/a0023253.

    Article  Google Scholar 

  • Whitmarsh, L. 2011. Scepticism and uncertainty about climate change: Dimensions, determinants and change over time. Global Environmental Change 21: 690–700. https://doi.org/10.1016/j.gloenvcha.2011.01.016.

    Article  Google Scholar 

  • Whittington, R., P. Hick, O. Evans, A. Rubio, N. Dhand, and I. Paul-Pont. 2016. Pacific oyster mortality syndrome: A marine herpesvirus active in Australia. Microbiology Australia 37: 126–128.

    Google Scholar 

  • Wise, R.M., I. Fazey, M. Stafford Smith, S.E. Park, H.C. Eakin, E.R.M. Archer Van Garderen, and B. Campbell. 2014. Reconceptualising adaptation to climate change as part of pathways of change and response. Global Environmental Change 28: 325–336. https://doi.org/10.1016/j.gloenvcha.2013.12.002.

    Article  Google Scholar 

  • Yin, R.K. 2014. Case study research design and methods, 5th ed. Thousand Oaks: Sage.

    Google Scholar 

Download references

Acknowledgements

We thank the recreational and commercial fishers, divers, resource managers, tourism operators and seafood processors that shared their knowledge and information regarding their practices. We are particularly grateful to the Tasmanian Indigenous community that generously shared their experiences and perspectives, especially Dr Aunty Patsy Cameron. Citizen science contributors to the Redmap Australia project (www.redmap.org.au) provided the observations and associated images for Table S1. We are grateful to the resource managers, researchers and fishing industry representatives from the project “Preparing fisheries for climate change: identifying adaptation options for four key fisheries in South Eastern Australia”, FRDC Project No 2011/039 that attended the March 2012 workshop and provided the observations in Table S2. GP was supported by an Australian Research Council Future Fellowship. Animate Your Science produced Fig. 1, under our guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gretta T. Pecl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pecl, G.T., Ogier, E., Jennings, S. et al. Autonomous adaptation to climate-driven change in marine biodiversity in a global marine hotspot. Ambio 48, 1498–1515 (2019). https://doi.org/10.1007/s13280-019-01186-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-019-01186-x

Keywords

Navigation