Skip to main content
Log in

Corrosion behavior of single- and poly-crystalline dual-phase TiAl-Ti3Al alloy in NaCl solution

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

To clarify the correlation of single-crystalline structure with corrosion performance in high-strength TiAl alloys, electrochemical and surface characterization was performed by comparing Ti-45Al-8Nb dual-phase single crystals with their polycrystalline counterparts in NaCl solution. Polarization curves show a lower corrosion rate and a higher pitting potential of ∼280 mV for the dual-phase single crystals. Electrochemical impedance spectroscopy and potentiostatic polarization plots revealed a higher impedance of the charge transfer through the compact passive film. Surface composition analysis indicated a compact film with more content of Nb, as twice as that in the film on the polycrystals. Our results reflect that the dual-phase Ti-45Al-8Nb single crystals possess a higher corrosion resistance in NaCl solution, compared with their polycrystalline counterpart, arising from a more homogeneous microstructure and composition distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. Liu, J.H. Schneibel, P.J. Maziasz, J.L. Wright, and D.S. Easton, Tensile properties and fracture toughness of TiAl alloys with controlled microstructures, Intermetallics, 4(1996), No. 6, p. 429.

    Article  CAS  Google Scholar 

  2. G. Chen, Y. Peng, G. Zheng, et al., Polysynthetic twinned TiAl single crystals for high-temperature applications, Nat. Mater., 15(2016), No. 8, p. 876.

    Article  CAS  Google Scholar 

  3. J.C. Williams and E.A. Starke Jr, Progress in structural materials for aerospace systems, Acta Mater., 51(2003), No. 19, p. 5775.

    Article  CAS  Google Scholar 

  4. D. Wu, W.L. Wang, L.G. Zhang, et al., New high-strength Ti-Al-V-Mo alloy: From high-throughput composition design to mechanical properties, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1151.

    Article  CAS  Google Scholar 

  5. M. Yamaguchi, H. Inui, and K. Ito, High-temperature structural intermetallics, Acta Mater., 48(2000), No. 1, p. 307.

    Article  CAS  Google Scholar 

  6. N.D. Tomashov, R.M. Altovsky, and G. Chernova, Passivity and corrosion resistance of titanium and its alloys, J. Electrochem. Soc., 108(1961), p. 113.

    Article  CAS  Google Scholar 

  7. Y. Koizumi, A. Sugihara, H. Tsuchiya, et al., Selective dissolution of nanolamellar Ti-41at.%Al alloy single crystals, Acta Mater., 58(2010), No. 8, p. 2876.

    Article  CAS  Google Scholar 

  8. A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, et al., Corrosion resistance of ultra fine-grained Ti, Scripta Mater., 51(2004), No. 3, p. 225.

    Article  CAS  Google Scholar 

  9. B.D.C. Bell, S.T. Murphy, R.W. Grimes, and M.R. Wenman, The effect of Nb on the corrosion and hydrogen pick-up of Zr alloys, Acta Mater., 132(2017), p. 425.

    Article  CAS  Google Scholar 

  10. M. Geetha, U. Kamachi Mudali, A.K. Gogia, R. Asokamani, and B. Raj, Influence of microstructure and alloying elements on corrosion behavior of Ti-13Nb-13Zr alloy, Corros. Sci., 46(2004), No. 4, p. 877.

    Article  CAS  Google Scholar 

  11. S.L. de Assis, S. Wolynec, and I. Costa, Corrosion characterization of titanium alloys by electrochemical techniques, Electrochim. Acta, 51(2006), No. 8–9, p. 1815.

    Article  Google Scholar 

  12. H.J. Rack and J.I. Qazi, Titanium alloys for biomedical applications, Mater. Sci. Eng. C, 26(2006), No. 8, p. 1269.

    Article  CAS  Google Scholar 

  13. Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, and Y.X. Qiao, Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid, Corros. Sci., 103(2016), p. 50.

    Article  CAS  Google Scholar 

  14. I. Milošev, T. Kosec, and H.H. Strehblow, XPS and EIS study of the passive film formed on orthopaedic Ti-6Al-7Nb alloy in Hank’s physiological solution, Electrochim. Acta, 53(2008), No. 9, p. 3547.

    Article  Google Scholar 

  15. Y.X. Qiao, Y.P. Chen, L.L. Li, et al., Corrosion behavior of a nickel-free high-nitrogen stainless steel with hydrogen charging, JOM, 73(2021), No. 4, p. 1165.

    Article  CAS  Google Scholar 

  16. R. Merello, F.J. Botana, J. Botella, M.V. Matres, and M. Marcos, Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn-N duplex stainless steels, Corros. Sci., 45(2003), No. 5, p. 909.

    Article  CAS  Google Scholar 

  17. J.J. Dai, H.X. Zhang, C.X. Sun, et al., The effect of Nb and Si on the hot corrosion behaviors of TiAl coatings on a Ti-6Al-4V alloy, Corros. Sci., 168(2020), art. No. 108578.

  18. T. Aburada, J. Fitz-Gerald, and J. Scully, Pitting and dealloying of solute-rich Al-Cu-Mg-based amorphous alloys: Effect of alloying with minor concentrations of nickel, J. Electrochem. Soc., 158(2011), No. 9, p. C253.

    Article  CAS  Google Scholar 

  19. L. Wang, C.F. Dong, C. Man, et al., Effect of microstructure on corrosion behavior of high strength martensite steel—A literature review, Int. J. Miner. Metall. Mater., 28(2021), p. 754.

    Article  CAS  Google Scholar 

  20. P.Y. Guo, H. Sun, Y. Shao, et al., The evolution of microstructure and electrical performance in doped Mn-Co and Cu-Mn oxide layers with the extended oxidation time, Corros. Sci., 172(2020), art. No. 108738.

  21. R.C. Zeng, L. Sun, Y.F. Zheng, H.Z. Cui, and E.H. Han, Corrosion and characterisation of dual phase Mg-Li-Ca alloy in Hank’s solution: The influence of microstructural features, Corros. Sci., 79(2014), p. 69.

    Article  CAS  Google Scholar 

  22. P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112.

    Article  CAS  Google Scholar 

  23. D.P. Wang, S.L. Wang, and J.Q. Wang, Relationship between amorphous structure and corrosion behaviour in a Zr-Ni metallic glass, Corros. Sci., 59(2012), p. 88.

    Article  CAS  Google Scholar 

  24. P. Marcus, On some fundamental factors in the effect of alloying elements on passivation of alloys, Corros. Sci., 36(1994), No. 12, p. 2155.

    Article  CAS  Google Scholar 

  25. J. Xu, L. Liu, Z. Li, P. Munroe, and Z.H. Xie, Niobium addition enhancing the corrosion resistance of nanocrystalline Ti5Si3 coating in H2SO4 solution, Acta Mater., 63(2014), p. 245.

    Article  CAS  Google Scholar 

  26. Y. Deng, Z.M. Yin, K. Zhao, et al., Effects of Sc and Zr microalloying additions and aging time at 120°C on the corrosion behaviour of an Al-Zn-Mg alloy, Corros. Sci., 65(2012), p. 288.

    Article  CAS  Google Scholar 

  27. Z.P. Sun, W.Q. Wu, Y.N. Chen, et al., Microstructure characterization and hot corrosion mechanism of as-cast and heat treated high Nb containing TiAl alloy, Corros. Sci., 185(2021), art. No. 109399.

  28. D.P. Wang, H.T. Zhang, P.Y. Guo, B.A. Sun, and Y.X. Wang, Nanoscale periodic distribution of energy dissipation at the shear band plane in a Zr-based metallic glass, Scripta Mater., 197(2021), art. No. 113784.

  29. D.P. Wang, Z.X. Qi, H.T. Zhang, et al., Microscale mechanical properties of ultra-high-strength polysynthetic TiAl-Ti3Al single crystals, Mater. Sci. Eng. A, 732(2018), p. 14.

    Article  CAS  Google Scholar 

  30. G.H. Liu, Z.D. Wang, T.L. Fu, et al., Study on the microstructure, phase transition and hardness for the TiAl-Nb alloy design during directional solidification, J. Alloys Compd., 650(2015), p. 45.

    Article  CAS  Google Scholar 

  31. M.M. Verdian, K. Raeissi, and M. Salehi, Corrosion performance of HVOF and APS thermally sprayed NiTi intermetallic coatings in 3.5% NaCl solution, Corros. Sci., 52(2010), No. 3, p. 1052.

    Article  CAS  Google Scholar 

  32. S. Tamilselvi, V. Raman, and N. Rajendran, Corrosion behaviour of Ti-6Al-7Nb and Ti-6Al-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy, Electrochim. Acta, 52(2006), No. 3, p. 839.

    Article  CAS  Google Scholar 

  33. Ö. Bayrak, H. Ghahramanzadeh Asl, and A. Ak, Protein adsorption, cell viability and corrosion properties of Ti6Al4V alloy treated by plasma oxidation and anodic oxidation, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1269.

    Article  Google Scholar 

  34. D.P. Wang, X. Li, Z. Chen, et al., Susceptibility of chloride ion concentration, temperature, and surface roughness on pitting corrosion of CoCrFeNi medium-entropy alloy, Mater. Corros., 73(2022), No. 1, p. 106.

    Article  CAS  Google Scholar 

  35. Q.X. Hu, X.L. Wang, X.W. Shen, and Z.M. Tan, Microstructure and corrosion resistance in bimetal materials of Q345 and 308 steel wire-arc additive manufacturing, Crystals, 11(2021), No. 11, art. No. 1401.

  36. J.W. Schultze and M.M. Lohrengel, Stability, reactivity and breakdown of passive films. Problems of recent and future research, Electrochim. Acta, 45(2000), No. 15–16, p. 2499.

    Article  CAS  Google Scholar 

  37. R.M. Carranza and J.R. Galvele, Repassivation kinetics in stress corrosion cracking—I. Type AISI 304 stainless steel in chloride solutions, Corros. Sci., 28(1988), No. 3, p. 233.

    Article  CAS  Google Scholar 

  38. M.M. Lohrengel, Thin anodic oxide layers on aluminium and other valve metals: High field regime, Mater. Sci. Eng. R Rep., 11(1993), No. 6, p. 243.

    Article  Google Scholar 

  39. Z.M. Wang, Y.T. Ma, J. Zhang, et al., Influence of yttrium as a minority alloying element on the corrosion behavior in Fe-based bulk metallic glasses, Electrochim. Acta, 54(2008), No. 2, p. 261.

    Article  Google Scholar 

  40. D.P. Wang, J.W. Shen, Z. Chen, et al., Relationship of corrosion behavior between single-phase equiatomic CoCrNi, CoCrNiFe, CoCrNiFeMn alloys and their constituents in NaCl solution, Acta Metall. Sin. Engl. Lett., 34(2021), No. 11, p. 1574.

    Article  CAS  Google Scholar 

  41. M. Zhu, Q. Zhang, Y.F. Yuan, and S.Y. Guo, Effect of microstructure and passive film on corrosion resistance of 2507 super duplex stainless steel prepared by different cooling methods in simulated marine environment, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1100.

    Article  CAS  Google Scholar 

  42. J.L. Gu, Y. Shao, H.T. Bu, J.L. Jia, and K.F. Yao, An abnormal correlation between electron work function and corrosion resistance in Ti-Zr-Be-(Ni/Fe) metallic glasses, Corros. Sci., 165(2020), art. No. 108392.

  43. S.J. Pang, T. Zhang, K. Asami, and A. Inoue, Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance, Acta Mater., 50(2002), No. 3, p. 489.

    Article  CAS  Google Scholar 

  44. W. Li and D.Y. Li, Influence of surface morphology on corrosion and electronic behavior, Acta Mater., 54(2006), No. 2, p. 445.

    Article  CAS  Google Scholar 

  45. P. Leblanc and G. Frankel, A study of corrosion and pitting initiation of AA2024-T3 using atomic force microscopy, J. Electrochem. Soc., 149(2002), No. 6, p. B239.

    Article  CAS  Google Scholar 

  46. W.H. Wang, Z.G. Zheng, B. Huang, J.W. Lai, Q. Zhou, L. Lei, and D.C. Zeng, Magnetocaloric effect, corrosion and mechanical properties of Mn1.05Fe0.9P0.5Si0.5Cux alloys, Intermetallics, 113(2019), art. No. 106539.

  47. D.N. Wasnik, V. Kain, I. Samajdar, B. Verlinden, and P.K. de, Resistance to sensitization and intergranular corrosion through extreme randomization of grain boundaries, Acta Mater., 50(2002), No. 18, p. 4587.

    Article  CAS  Google Scholar 

  48. S. Pawar, T.J.A. Slater, T.L. Burnett, et al., Crystallographic effects on the corrosion of twin roll cast AZ31 Mg alloy sheet, Acta Mater., 133(2017), p. 90.

    Article  CAS  Google Scholar 

  49. L.P. Huang, K.H. Chen, S. Li, and M. Song, Influence of high-temperature pre-precipitation on local corrosion behaviors of Al-Zn-Mg alloy, Scripta Mater., 56(2007), No. 4, p. 305.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the CityU internal supports under “The Structural Material Development Funding” program (No. CityU 7004894), National Natural Science Foundation of China (Nos. 51901086 and 51731006), and Natural Science Foundation of Jiangsu Province, China (Nos. BK20190977 and BK 20180984).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongpeng Wang or Yuxin Wang.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Chen, G., Wang, A. et al. Corrosion behavior of single- and poly-crystalline dual-phase TiAl-Ti3Al alloy in NaCl solution. Int J Miner Metall Mater 30, 689–696 (2023). https://doi.org/10.1007/s12613-022-2513-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2513-5

Keywords

Navigation