Skip to main content
Log in

Unique polysulfide reaction on VO2 for restraining shuttle effect in soft-packaged Li–S pouch cells

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

多硫化锂的穿梭和转化反应动力学过程缓慢现象在锂硫软包电池中较为严重。VO2因其氧化还原电位处于硫工作窗口而表现出独特的多硫化锂吸附机制:Li2Sn(n≥4)⇄硫代硫酸盐⇄连多硫酸盐。研究人员充分利用了VO2这一独特的作用机制优化软包锂硫电池的电化学性能,促进其实用化过程。通过调整VO2在硫正极中的含量,软包电池在0.2C时的初始放电比容量可达1075.1 mAh·g–1,且在1C下循环200次后依然保持了593.6 mAh·g–1的容量。本工作为解决软包锂硫电池的关键科学问题提供了深入的见解和解决方案。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Tang TY, Zhang LG, Guo ZF, Gu XX. Development of cathode and anode materials in lithium sulfur batteries. Chin J Rare Met. 2022;46(7):954. https://doi.org/10.13373/j.cnki.cjrm.XY21070001.

    Article  Google Scholar 

  2. Liu WD, Tang X, Feng JA, Zhang CY, Liu H, Shi C, Zhao XX, Song JJ. Recent advances in vacancy engineering for reliable lithium-sulfur batteries. Rare Met. 2024. https://doi.org/10.1007/s12598-023-02417-7.

    Article  CAS  PubMed  Google Scholar 

  3. Yuan N, Deng YR, Wang SH, Gao L, Yang JL, Zou NC, Liu BX, Zhang JQ, Liu RP, Zhang L. Towards superior lithium-sulfur batteries with metal–organic frameworks and their derivatives. Tungsten. 2022;4(4):269. https://doi.org/10.1007/s42864-022-00186-x.

    Article  Google Scholar 

  4. Zhang XY, Lei MN, Tian S, Wang JG. Cage-confinement synthesis of MoC nanoclusers as efficient sulfiphilic and lithiophilic regulator for superior Li–S batteries. Rare Met. 2024;43(2):624. https://doi.org/10.1007/s12598-023-02455-1.

    Article  CAS  Google Scholar 

  5. Zuo JH, Gong YJ. Applications of transition-metal sulfides in the cathodes of lithium-sulfur batteries. Tungsten. 2020;2(2):134. https://doi.org/10.1007/s42864-020-00046-6.

    Article  Google Scholar 

  6. Yu LH, Tao X, Feng SR, Liu JT, Zhang LL, Zhao GZ, Zhu G. Recent development of three-dimension printed graphene oxide and MXene-based energy storage devices. Tungsten. 2022. https://doi.org/10.1007/s42864-022-00181-2.

    Article  Google Scholar 

  7. Long JJ, Yu H, Liu WB. Titanium nitride nanorod array/carbon cloth as flexible integrated host for highly stable lithium-sulfur batteries. Rare Met. 2023;43(4):1370. https://doi.org/10.1007/s12598-023-02378-x.

    Article  CAS  Google Scholar 

  8. Ma S, Ruan QL, Liu XC, Zhu GJ, Yuan D, Hu LQ, Huang YM, Gu XX. Insight into lithium–sulfur batteries performance enhancement: from metal nanoparticles to metal nanoclusters to single metal atoms. Tungsten. 2023. https://doi.org/10.1007/s42864-023-00248-8.

    Article  Google Scholar 

  9. Al-Shawesh GH, Zhu J, Zhang W, Xie S, Xu J, Cai G, Al-Ansi AY, Wei Y, Jin S, Ji H. Iron atom–nanoparticles for interactional enhancing the electrocatalytic reaction activity in Li–S batteries. Chinese Chem Lett. 2023;34(11):108190. https://doi.org/10.1016/j.cclet.2023.108190.

    Article  CAS  Google Scholar 

  10. Geng PB, Du M, Guo XT, Pang H, Tian ZQ, Braunstein P, Xu Q. Bimetallic metal-organic framework with high-adsorption capacity toward lithium polysulfides for lithium-sulfur batteries. Energy Environ Mater. 2021;5(2):599. https://doi.org/10.1002/eem2.12196.

    Article  CAS  Google Scholar 

  11. Wang F, Yang CM, Wang YQ, You D, Yang WH, Huang RW, Hou JY, Wang Q, Zhang YJ, Wang Y, Zeng YJ, Zhang YY, Li X. Heterostructure: application of absorption-catalytic center in lithium-sulfur batteries. Rare Met. 2024;43(4):1461. https://doi.org/10.1007/s12598-023-02486-8.

    Article  CAS  Google Scholar 

  12. Zhao WM, Shen JD, Xu XJ, He WX, Liu L, Chen ZH, Liu J. Functional catalysts for polysulfide conversion in Li–S batteries: from micro/nanoscale to single atom. Rare Met. 2022;41(4):1080. https://doi.org/10.1007/s12598-021-01865-3.

    Article  CAS  Google Scholar 

  13. Pang Q, Kundu D, Cuisinier M, Nazar L. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun. 2014;5(1):1. https://doi.org/10.1038/ncomms5759.

    Article  CAS  Google Scholar 

  14. Wang XW, Gao T, Fan XL, Han FD, Wu YQ, Zhang Z, Li J, Wang CS. Tailoring surface acidity of metal oxide for better polysulfide entrapment in Li–S batteries. Adv Funct Mater. 2016;26(39):7164. https://doi.org/10.1002/adfm.201602264.

    Article  CAS  Google Scholar 

  15. Wei Seh Z, Li W, Cha JJ, Zheng G, Yang Y, McDowell MT, Hsu PC, Cui Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat Commun. 2013;4(1):1331. https://doi.org/10.1038/ncomms2327.

    Article  CAS  PubMed  Google Scholar 

  16. Li Z, Zhang JT, Lou XW. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew Chem Int Ed. 2015;127(44):13078. https://doi.org/10.1002/ange.201506972.

    Article  Google Scholar 

  17. Rehman S, Tang TY, Ali Z, Huang XX, Hou YL. Integrated design of MnO2@ carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small. 2017;13(20):1700087. https://doi.org/10.1002/smll.201700087.

    Article  CAS  Google Scholar 

  18. Zhang J, Shi Y, Ding Y, Zhang WK, Yu GH. In situ reactive synthesis of polypyrrole-MnO2 coaxial nanotubes as sulfur hosts for high-performance lithium-sulfur battery. Nano Lett. 2016;16(11):7276. https://doi.org/10.1021/acs.nanolett.6b03849.

    Article  CAS  PubMed  Google Scholar 

  19. Hu LY, Dai CL, Lim JM, Chen YM, Lian X, Wang MQ, Li Y, Xiao PH, Henkelman G, Xu MW. A highly efficient double-hierarchical sulfur host for advanced lithium-sulfur batteries. Chem Sci. 2018;9(3):666. https://doi.org/10.1039/c7sc03960c.

    Article  CAS  PubMed  Google Scholar 

  20. Liang X, Garsuch A, Nazar LF. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew Chem Int Ed. 2015;127(13):3979. https://doi.org/10.1002/anie.201410174.

    Article  CAS  Google Scholar 

  21. Zhang SZ, Zhong N, Zhou X, Zhang MJ, Huang XP, Yang XL, Meng RJ, Liang X. Comprehensive design of the high-sulfur-loading Li–S battery based on MXene nanosheets. Nano-Micro Lett. 2020;12(1):112. https://doi.org/10.1007/s40820-020-00449-7.

    Article  CAS  Google Scholar 

  22. Wang HQ, Zhou TF, Li D, Gao H, Gao GP, Du AJ, Liu HK, Guo ZP. Ultrathin cobaltosic oxide nanosheets as an effective sulfur encapsulation matrix with strong affinity toward polysulfides. ACS Appl Mater Interfaces. 2017;9(5):4320. https://doi.org/10.1021/acsami.6b07961.

    Article  CAS  PubMed  Google Scholar 

  23. Xie KY, You Y, Yuan K, Lu W, Zhang K, Xu F, Ye M, Ke SM, Shen C, Zeng XR. Ferroelectric-enhanced polysulfide trapping for lithium-sulfur battery improvement. Adv Mater. 2017;29(6):1604724. https://doi.org/10.1002/adma.201604724.

    Article  CAS  Google Scholar 

  24. Deng DR, Xue F, Jia YJ, Ye JC, Bai CD, Zheng MS, Dong QF. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries. ACS Nano. 2017;11(6):6031. https://doi.org/10.1021/acsnano.7b01945.

    Article  CAS  PubMed  Google Scholar 

  25. Huang YZ, Lin L, Zhang YG, Liu L, Sa BS, Lin J, Wang LS, Peng DL, Xie QS. Dual-functional lithiophilic/sulfiphilic binary-metal selenide quantum dots toward high-performance Li–S full batteries. Nano-Micro Lett. 2023;15(1):67. https://doi.org/10.1007/s40820-023-01037-1.

    Article  CAS  Google Scholar 

  26. Wang SM, Li HN, Zhao GF, Xu LF, Liu DL, Sun YJ, Guo H. Ni3FeN anchored on porous carbon as electrocatalyst for advanced Li–S batteries. Rare Met. 2022;42(2):515. https://doi.org/10.1007/s12598-022-02140-9.

    Article  CAS  Google Scholar 

  27. Song YZ, Zhao W, Zhu XY, Zhang L, Li QC, Ding F, Liu ZF, Sun JY. Vanadium dioxide-graphene composite with ultrafast anchoring behavior of polysulfides for lithium-sulfur batteries. ACS Appl Mater Interfaces. 2018;10(18):15733. https://doi.org/10.1021/acsami.8b02920.

    Article  CAS  PubMed  Google Scholar 

  28. Liang X, Kwok CY, Lodi-Marzano F, Pang QQ, Cuisinier M, Huang H, Hart CJ, Houtarde D, Kaup K, Sommer H, Brezesinski T, Janek J, Nazar LF. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle. Adv Energy Mater. 2016;6(6):1501636. https://doi.org/10.1002/aenm.201501636.

    Article  CAS  Google Scholar 

  29. Jin Q, Zhao KX, Li L, Ma XZ, Wu LL, Zhang XT. Tailoring the spatial distribution and content of inorganic nitrides in solid–electrolyte interphases for the stable Li anode in Li–S batteries. Energy Environ Mater. 2021;5(4):1180. https://doi.org/10.1002/eem2.12230.

    Article  CAS  Google Scholar 

  30. Guo Y, Jin ZQ, Lu JH, Wang ZL, Song ZH, Wang AB, Wang WK, Huang YQ. Revealing the multifunctional electrocatalysis of indium-modulated phthalocyanine for high-performance lithium-sulfur batteries. Energy Environ Mater. 2022. https://doi.org/10.1002/eem2.12479.

    Article  Google Scholar 

  31. Yu HT, Siebert A, Mei SL, Garcia-Diez R, Félix R, Quan T, Xu YL, Frisch J, Wilks RG, Bär M, Pei C, Lu Y. Electrochemical realization of 3D interconnected MoS3/PPy nanowire frameworks as sulfur-equivalent cathode materials for Li–S batteries. Energy Environ Mater. 2023. https://doi.org/10.1002/eem2.12539.

    Article  Google Scholar 

  32. Sun WH, Song ZH, Feng ZX, Huang YQ, Xu ZJ, Lu YC, Zou QL. Carbon-nitride-based materials for advanced lithium-sulfur batteries. Nano-Micro Lett. 2022;14(1):222. https://doi.org/10.1007/s40820-022-00954-x.

    Article  CAS  Google Scholar 

  33. Fan XZ, Liu M, Zhang RQ, Zhang YZ, Wang SC, Nan HX, Han YH, Kong L. An odyssey of lithium metal anode in liquid lithium-sulfur batteries. Chinese Chem Lett. 2022;33(10):4421. https://doi.org/10.1016/j.cclet.2021.12.064.

    Article  CAS  Google Scholar 

  34. Zhang W, Ma FF, Wu Q, Zeng ZQ, Zhong W, Cheng SJ, Chen X, Xie J. Dual-functional organotelluride additive for highly efficient sulfur redox kinetics and lithium regulation in lithium-sulfur batteries. Energy Environ Mater. 2022;6(3): e12369. https://doi.org/10.1002/eem2.12369.

    Article  CAS  Google Scholar 

  35. Gu LL, Gao J, Wang C, Qiu SY, Wang KX, Gao XT, Sun KN, Zuo PJ, Zhu XD. Thin-carbon-layer-enveloped cobalt–iron oxide nanocages as a high-efficiency sulfur container for Li–S batteries. J Mater Chem A. 2020;8(39):20604. https://doi.org/10.1039/d0ta07579e.

    Article  CAS  Google Scholar 

  36. He BW, Wang ZY, Li GR, Liu S, Gao XP. Perovskite transition metal oxide of nanofibers as catalytic hosts for lithium-sulfur battery. J Alloys Compd. 2022;918:165660. https://doi.org/10.1016/j.jallcom.2022.165660.

    Article  CAS  Google Scholar 

  37. Pang Q, Kundu D, Cuisinier M, Nazar LF. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun. 2014;5(1):4759. https://doi.org/10.1038/ncomms5759.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang H, Zhang PG, Pan L, He W, Qi Q, Bao ZH, Yang L, Zhang W, Barsoum MW, Sun ZM. Ti3C2Tx nanosheet wrapped core-shell MnO2 nanorods @ hollow porous carbon as a multifunctional polysulfide mediator for improved Li–S batteries. Nanoscale. 2020;12(47):24196. https://doi.org/10.1039/d0nr06151d.

    Article  CAS  PubMed  Google Scholar 

  39. Song YZ, Zhao W, Wei N, Zhang L, Ding F, Liu ZF, Sun JY. In-situ PECVD-enabled graphene-V2O3 hybrid host for lithium-sulfur batteries. Nano Energy. 2018;53:432. https://doi.org/10.1016/j.nanoen.2018.09.002.

    Article  CAS  Google Scholar 

  40. Gao XT, Zhu XD, Gu LL, Wang C, Sun KN, Hou YL. Efficient polysulfides anchoring for Li-S batteries: combined physical adsorption and chemical conversion in V2O5 hollow spheres wrapped in nitrogen-doped graphene network. Chem Eng J. 2019;378:122189. https://doi.org/10.1016/j.cej.2019.122189.

    Article  CAS  Google Scholar 

  41. Adi A, Taniguchi I. Porous-crystalline C/Fe3O4 microspheres with highly accessible adsorptive/catalytic and conductive interfaces to manipulate polysulfide shuttling in Li–S batteries. Electrochim Acta. 2022;435:141385. https://doi.org/10.1016/j.electacta.2022.141385.

    Article  CAS  Google Scholar 

  42. Luo L, Li JY, Yaghoobnejad Asl H, Manthiram A. In-situ assembled VS4 as a polysulfide mediator for high-loading lithium-sulfur batteries. ACS Energy Lett. 2020;5(4):1177. https://doi.org/10.1021/acsenergylett.0c00292.

    Article  CAS  Google Scholar 

  43. Fang ZH, Luo YF, Wu HC, Yan LJ, Zhao F, Li QQ, Fan SS, Wang JP. Mesoporous carbon nanotube aerogel-sulfur cathodes: a strategy to achieve ultrahigh areal capacity for lithium-sulfur batteries via capillary action. Carbon. 2020;166:183. https://doi.org/10.1016/j.carbon.2020.05.047.

    Article  CAS  Google Scholar 

  44. Song YZ, Sun ZT, Fan ZD, Cai WL, Shao YL, Sheng G, Wang ML, Song LX, Liu ZF, Zhang Q, Sun JY. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li–S chemistry. Nano Energy. 2020;70:104555. https://doi.org/10.1016/j.nanoen.2020.104555.

    Article  CAS  Google Scholar 

  45. Cai JS, Song YZ, Chen X, Sun ZT, Yi YY, Sun JY, Zhang Q. MOF-derived conductive carbon nitrides for separator-modified Li–S batteries and flexible supercapacitors. J Mater Chem A. 2020;8(4):1757. https://doi.org/10.1039/c9ta11958b.

    Article  CAS  Google Scholar 

  46. Wang PF, Dai X, Xu P, Hu SJ, Xiong XY, Zou KY, Guo SW, Sun J, Zhang CF, Liu YN, Zhou TF, Chen YZ. Hierarchical and lamellar porous carbon as interconnected sulfur host and polysulfide-proof interlayer for Li–S batteries. eScience. 2023;3(1):100088. https://doi.org/10.1016/j.esci.2022.100088.

    Article  Google Scholar 

  47. Li CP, Qiu M, Li RL, Li X, Wang MX, He JB, Lin GG, Xiao LR, Qian QR, Chen QH, Wu JX, Li XY, Mai YW, Chen YM. Electrospinning engineering enables high-performance sodium-ion batteries. Adv Fiber Mater. 2022;4:43. https://doi.org/10.1007/s42765-021-00088-6.

    Article  CAS  Google Scholar 

  48. Xiong FY, Jiang YL, Cheng L, Yu RH, Tan SS, Tang C, Zuo CL, An QY, Zhao YL, Gaumet JJ, Mai LQ. Low-strain TiP2O7 with three-dimensional ion channels as long-life and high-rate anode material for Mg-ion batteries. Interdiscip Mater. 2022;1:140. https://doi.org/10.1002/idm2.12004.

    Article  CAS  Google Scholar 

  49. Zhang CY, Zhang CQ, Pan JL, Sun GW, Shi ZD, Li CH, Chang XQ, Sun GZ, Zhou JY, Cabot A. Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries. eScience. 2022;2(4):405. https://doi.org/10.1016/j.esci.2022.07.001.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Project of State Key Laboratory of Environment-Friendly Energy Materials (SWUST, Nos. 21fksy24 and 18ZD320304), Frontier Project of Chengdu Tianfu New Area Institute (SWUST, No. 2022ZY017) and Natural Science Foundation of Jiangsu Province (No. BK20230713).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Chun Zhang, Jing-Sheng Cai, Ying-Ze Song or Wei Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 976 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, RX., Zhang, QC., Cai, JS. et al. Unique polysulfide reaction on VO2 for restraining shuttle effect in soft-packaged Li–S pouch cells. Rare Met. 43, 2842–2850 (2024). https://doi.org/10.1007/s12598-024-02635-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-024-02635-7

Navigation