Skip to main content
Log in

Collateral projections from the ventral tegmental area/substantia nigra pars compacta to the nucleus accumbens and insular cortex in the rat

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Midbrain dopaminergic (DAergic) regions including ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) are involved in diverse brain functions. Previous studies demonstrated that the VTA/SNc to nucleus accumbens (NAc) pathway is critical in reward and motivation. Moreover, DAergic innervations within the insular cortex (IC) are reported to play important roles in pain regulation. To investigate whether VTA/SNc sends collateral projections to NAc and IC, we injected retrograde tracer Fluoro-Gold (FG) into the NAc and Fluorescent retrograde tracer beads (RetroBeads) into the ipsilateral IC in rats. Then, to detect whether collateral projection neurons participate in neuropathic pain, parts of the rats received the spare nerve injury (SNI) surgery. The immunofluorescence staining results showed that FG, RetroBeads, and FG/RetroBeads double-labeled neurons were distributed in the VTA/SNc bilaterally with an ipsilateral predominance. The proportion of FG/RetroBeads double-labeled neurons to the total number of FG and RetroBeads-labeled neurons was 16.7% and 30.3%, respectively. About 90.3% of FG/RetroBeads double-labeled neurons showed DAergic neuron marker tyrosine hydroxylase (TH)-immunoreactive (IR), whereas, only 7.5% exhibited a subset of GABAergic inhibitory projection neuron marker parvalbumin (PV)-IR. One week after SNI, about 53.1% and 33.6% of FG- and RetroBeads-labeled neurons were FG/Fos- and RetroBeads/Fos-IR neurons, respectively. Finally, about 35.9% of the FG/RetroBeads double-labeled neurons showed Fos-IR. The present study indicates that parts of DAergic and PV-IR GABAergic neurons in the VTA/SNc send collateral projections to both NAc and IC, which are activated under SNI-induced neuropathic pain, and probably contribute to the regulation of nociception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Arimura D, Shinohara K, Takahashi Y et al (2019) Primary role of the amygdala in spontaneous inflammatory pain-associated activation of pain networks-a chemogenetic manganese-enhanced MRI approach. Front Neural Circuits 13:58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barker DJ, Root DH, Zhang S, Morales M (2016) Multiplexed neurochemical signaling by neurons of the ventral tegmental area. J Chem Neuroanat 73:33–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beier KT, Steinberg EE, Deloach KE et al (2015) Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 162(3):622–634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brischoux F, Chakraborty S, Brierley DI, Ungless MA (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A 106(12):4894–4899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buhmann C, Kassubek J, Jost WH (2020) Management of pain in parkinson’s disease. J Parkinsons Dis 10(s1):S37–S48

    PubMed  PubMed Central  Google Scholar 

  • Bushnell MC, Ceko M, Low LA (2013) Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 14(7):502–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen APF, Chen L, Kim TA, Xiong Q (2021) Integrating the roles of midbrain dopamine circuits in behavior and neuropsychiatric disease. Biomedicines 9(6):647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coffeen U, Lopez-Avila A, Ortega-Legaspi JM, Del Angel R, Lopez-Munoz FJ, Pellicer F (2008) Dopamine receptors in the anterior insular cortex modulate long-term nociception in the rat. Eur J Pain 12(5):535–543

    CAS  PubMed  Google Scholar 

  • Coffeen U, Ortega-Legaspi JM, De Gortari P et al (2010) Inflammatory nociception diminishes dopamine release and increases dopamine D2 receptor mRNA in the rat’s insular cortex. Mol Pain 6:75

    PubMed  PubMed Central  Google Scholar 

  • Coggeshall RE (1992) A consideration of neural counting methods. Trends Neurosci 15(1):9–13

    CAS  PubMed  Google Scholar 

  • Dieb W, Ouachikh O, Durif F, Hafidi A (2016) Nigrostriatal dopaminergic depletion produces orofacial static mechanical allodynia. Eur J Pain 20(2):196–205

    CAS  PubMed  Google Scholar 

  • Fallon JH (1981) Collateralization of monoamine neurons: mesotelencephalic dopamine projections to caudate, septum, and frontal cortex. J Neurosci 1(12):1361–1368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geha PY, Baliki MN, Chialvo DR, Harden RN, Paice JA, Apkarian AV (2007) Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain 128(1–2):88–100

    CAS  PubMed  Google Scholar 

  • Geisler S, Berod A, Zahm DS, Rostene W (2006) Brain neurotensin, psychostimulants, and stress–emphasis on neuroanatomical substrates. Peptides 27(10):2364–2384

    CAS  PubMed  Google Scholar 

  • Ikeda E, Li T, Kobinata H, Zhang S, Kurata J (2018) Anterior insular volume decrease is associated with dysfunction of the reward system in patients with chronic pain. Eur J Pain 22(6):1170–1179

    CAS  PubMed  Google Scholar 

  • Jarcho JM, Mayer EA, Jiang ZK, Feier NA, London ED (2012) Pain, affective symptoms, and cognitive deficits in patients with cerebral dopamine dysfunction. Pain 153(4):744–754

    CAS  PubMed  Google Scholar 

  • Jasmin L, Burkey AR, Granato A, Ohara PT (2004) Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol 468(3):425–440

    PubMed  Google Scholar 

  • Kirouac GJ, Li S, Mabrouk G (2004) GABAergic projection from the ventral tegmental area and substantia nigra to the periaqueductal gray region and the dorsal raphe nucleus. J Comp Neurol 469(2):170–184

    CAS  PubMed  Google Scholar 

  • Ohara PT, Granato A, Moallem TM, Wang BR, Tillet Y, Jasmin L (2003) Dopaminergic input to GABAergic neurons in the rostral agranular insular cortex of the rat. J Neurocytol 32(2):131–141

    CAS  PubMed  Google Scholar 

  • Olson VG, Nestler EJ (2007) Topographical organization of GABAergic neurons within the ventral tegmental area of the rat. Synapse 61(2):87–95

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 5th edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Polgar E, Gray S, Riddell JS, Todd AJ (2004) Lack of evidence for significant neuronal loss in laminae I-III of the spinal dorsal horn of the rat in the chronic constriction injury model. Pain 111(1–2):144–150

    CAS  PubMed  Google Scholar 

  • Porreca F, Navratilova E (2017) Reward, motivation, and emotion of pain and its relief. Pain 158(Suppl 1):S43–S49

    PubMed  PubMed Central  Google Scholar 

  • Poulin JF, Caronia G, Hofer C et al (2018) Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat Neurosci 21(9):1260–1271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao Y, Zhang CK, Li ZH, NiuU ZH, Li J, Li JL (2019) Collateral projections from the lateral parabrachial nucleus to the central amygdaloid nucleus and the ventral tegmental area in the rat. Anat Rec (hoboken) 302(7):1178–1186

    CAS  PubMed  Google Scholar 

  • Rodriguez M, Gonzalez-Hernandez T (1999) Electrophysiological and morphological evidence for a GABAergic nigrostriatal pathway. J Neurosci 19(11):4682–4694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Root DH, Mejias-Aponte CA, Zhang S et al (2014) Single rodent mesohabenular axons release glutamate and GABA. Nat Neurosci 17(11):1543–1551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sagheddu C, Aroni S, De Felice M et al (2015) Enhanced serotonin and mesolimbic dopamine transmissions in a rat model of neuropathic pain. Neuropharmacology 97:383–393

    CAS  PubMed  Google Scholar 

  • Sanchez-Catalan MJ, Kaufling J, Georges F, Veinante P, Barrot M (2014) The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience 282:198–216

    CAS  PubMed  Google Scholar 

  • Seroogy K, Ceccatelli S, Schalling M et al (1988) A subpopulation of dopaminergic neurons in rat ventral mesencephalon contains both neurotensin and cholecystokinin. Brain Res 455(1):88–98

    CAS  PubMed  Google Scholar 

  • Sugiyama E, Kondo T, Kuzumaki N et al (2019) Mechanical allodynia induced by optogenetic sensory nerve excitation activates dopamine signaling and metabolism in medial nucleus accumbens. Neurochem Int 129:104494

    CAS  PubMed  Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9(1–6):321–353

    CAS  PubMed  Google Scholar 

  • Taylor AM, Castonguay A, Taylor AJ et al (2015) Microglia disrupt mesolimbic reward circuitry in chronic pain. J Neurosci 35(22):8442–8450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor AMW, Becker S, Schweinhardt P, Cahill C (2016) Mesolimbic dopamine signaling in acute and chronic pain: implications for motivation, analgesia, and addiction. Pain 157(6):1194–1198

    PubMed  PubMed Central  Google Scholar 

  • Taylor NE, Long H, Pei J et al (2019) The rostromedial tegmental nucleus: a key modulator of pain and opioid analgesia. Pain 160(11):2524–2534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ungless MA, Magill PJ, Bolam JP (2004) Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303(5666):2040–2042

    CAS  PubMed  Google Scholar 

  • Wang J, Zhang H, Feng YP et al (2014) Morphological evidence for a neurotensinergic periaqueductal gray-rostral ventromedial medulla-spinal dorsal horn descending pathway in rat. Front Neuroanat 8:112

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Feng DY, Li ZH et al (2015a) Activation of the mammalian target of rapamycin in the rostral ventromedial medulla contributes to the maintenance of nerve injury-induced neuropathic pain in rat. Neural Plast 2015:394820

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Li ZH, Feng B et al (2015b) Corticotrigeminal projections from the insular cortex to the trigeminal caudal subnucleus regulate orofacial pain after nerve injury via extracellular signal-regulated kinase activation in insular cortex neurons. Front Cell Neurosci 9:493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wu XC, Zhang MM et al (2021) Spinal cord stimulation reduces cardiac pain through microglial deactivation in rats with chronic myocardial ischemia. Mol Med Rep 24(6):835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Narita M (2018) Brain reward circuit and pain. Adv Exp Med Biol 1099:201–210

    CAS  PubMed  Google Scholar 

  • Watanabe M, Narita M, Hamada Y et al (2018) Activation of ventral tegmental area dopaminergic neurons reverses pathological allodynia resulting from nerve injury or bone cancer. Mol Pain 14:1744806918756406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Boudier-Reveret M, Choo YJ, Chang MC (2020) Association between chronic pain and alterations in the mesolimbic dopaminergic system. Brain Sci 10(10):701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yetnikoff L, Lavezzi HN, Reichard RA, Zahm DS (2014) An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 282:23–48

    CAS  PubMed  Google Scholar 

  • Yoo JH, Zell V, Gutierrez-Reed N et al (2016) Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement. Nat Commun 7:13697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Dou YN, Sun YG (2019) Topography of reward and aversion encoding in the mesolimbic dopaminergic system. J Neurosci 39(33):6472–6481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang MM, Geng AQ, Chen K et al (2022) Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. Neuron 110(12):1993–2008

    CAS  PubMed  Google Scholar 

  • Zhuo M (2019) Long-term cortical synaptic changes contribute to chronic pain and emotional disorders. Neurosci Lett 702:66–70

    CAS  PubMed  Google Scholar 

  • Zweifel LS, Fadok JP, Argilli E et al (2011) Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat Neurosci 14(5):620–626

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81701115, 82130034), Innovation Capability Support Program of Shaanxi Province (No. 2021TD-57), and Natural Science Foundation of Sichuan Province (No. 2023NSFSC1566).

Author information

Authors and Affiliations

Authors

Contributions

YQL, JW, and YLD designed the study; JW and CBH wrote the manuscript; CBH, JY, YL, YB, MX, and JY conducted the experiments; CBH, JY, YL, YB and MX complete the data analysis; YQL, YLD, QZ and XNY provided language modification and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jian Wang or Yun-Qing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, CB., Jin, Y., Li, Y. et al. Collateral projections from the ventral tegmental area/substantia nigra pars compacta to the nucleus accumbens and insular cortex in the rat. Anat Sci Int 98, 580–592 (2023). https://doi.org/10.1007/s12565-023-00728-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-023-00728-4

Keywords

Navigation