Skip to main content

Advertisement

Log in

Prophylactic and therapeutic measures for emerging and re-emerging viruses: artificial intelligence and machine learning - the key to a promising future

  • Review Paper
  • Published:
Health and Technology Aims and scope Submit manuscript

Abstract

Purpose

Emerging and re-emerging viral infections are accountable for fatal outbreaks across the globe. In the light of the COVID-19 catastrophe and mpox exigency, the gaps in prophylactic measures have been envisaged. Emerging and re-emerging infections like poxviruses, Zika, Marburg, Ebola, Hanta, Nipah viruses have further challenged the healthcare sector by putting additional burden on therapeutic and diagnostic limitations. In the present review we also highlighted potential implications of artificial intelligence for long term solutions.

Methods

Artificial Intelligence (AI) and Machine Learning (ML)-based models have shown promise in accelerating the discovery of new antivirals or potential vaccine candidates. Deep learning (DL) based algorithms can integrate prodigious global data comprising epidemiology, genomics, pathology and molecular behaviour. Subsequently, support vector machine/ random forest/ neural network guided interpretations can comprehensively compile the available datasets for therapeutic and diagnostic predictions.

Results

The present review compiled the various AI-based algorithms and servers which were used for modelling studies as well as prophylactic measures during recent viral outbreaks. The impact of AI on surveillance, outcome prediction, patient monitoring, genomic tracking, clinical assistance, therapeutic screening, drug/ vaccine design and other experimental studies were emphasized.

Conclusions

The present review not only highlighted public-health management models but also provide leads in potential therapeutic targets as well as vaccine/ antiviral candidates. To support the context, the issues with existing therapeutic strategies are also overviewed and the prospects were identified. This review discusses a wide range of applications of AI and ML pertaining to the clinical domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data associated with the manuscript are included in the manuscript.

Code availability

Not applicable.

References

  1. Mukherjee S. Emerging infectious diseases: epidemiological perspective. Indian J Dermatol India. 2017;62:459–67.

    Google Scholar 

  2. McFee RB. Emerging infectious diseases – overview. Disease-a-Month. Elsevier. 2018;64:163–9.

    Google Scholar 

  3. Dharsan R, Geetha RV, Lakshmi T. Emerging and re-emerging virus. Indian J Forensic Med Toxicol. 2020;14:4515–21.

    Google Scholar 

  4. April O, States U, States U, Control D, S-oiv T, General TD- et al. Recent Trends in Emerging Infectious Diseases. Int J Heal Sci Qassim Univ II 1430H) Int J Heal Sci. 2009;3.

  5. Burrell CJ, Howard CR, Murphy FA. Emerging Virus diseases. Fenner White’s Med Virol. 2017;217–25.

  6. Bankar NJ, Tidake AA, Bandre GR, Ambad R, Makade JG, Hawale DV. Emerging and re-emerging viral infections: an Indian perspective. Cureus. 2022;14.

  7. Lindahl JF, Grace D, Strand T. The consequences of human actions on risks for infectious diseases: a review. Infect Ecol Epidemiol. 2015;5:1–11.

    Google Scholar 

  8. Richt JA, Feldmann H. Emerging zoonoses: recent advances and future challenges. Zoonoses Public Health. 2009;56:257.

    Article  CAS  PubMed  Google Scholar 

  9. Recht J, Schuenemann VJ, Sánchez-Villagra MR. Host diversity and origin of zoonoses: the ancient and the new. Animals. 2020;10:1–14.

    Article  Google Scholar 

  10. Spernovasilis N, Tsiodras S, Poulakou G. Emerging and re-emerging infectious diseases: Humankind’s companions and competitors. Microorganisms. 2022;10:1–5.

    Article  Google Scholar 

  11. Patel A, Bilinska J, Tam JCH, Da Silva Fontoura D, Mason CY, Daunt A et al. Clinical features and novel presentations of human monkeypox in a central London centre during the 2022 outbreak: descriptive case series. BMJ. 2022.

  12. Molero-Abraham M, Glutting JP, Flower DR, Lafuente EM, Reche PA. EPIPOX: Immunoinformatic Characterization of the Shared T-Cell Epitome between Variola Virus and Related Pathogenic Orthopoxviruses. J Immunol Res. 2015;2015.

  13. Kosfeld T, McMillan J, Dipaolo RJ, Hou J, Ahn TH. Performance evaluation of viral infection diagnosis using T-Cell receptor sequence and Artificial Intelligence. Proc 11th ACM Int Conf Bioinformatics, Comput Biol Heal Informatics, BCB 2020. Association for Computing Machinery, Inc; 2020.

  14. Kavvas ES, Catoiu E, Mih N, Yurkovich JT, Seif Y, Dillon N et al. Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nat Commun Springer US; 2018;9.

  15. Agrebi S, Larbi A. Use of artificial intelligence in infectious diseases. Artif. Intell. Precis. Heal. Elsevier Inc.; 2020.

  16. Meo SA, Jawaid SA. Human monkeypox: fifty-two years based analysis and updates. Pakistan J Med Sci. 2022;38:1416–9.

    Google Scholar 

  17. Lalmuanawma S, Hussain J, Chhakchhuak L. Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review. Chaos, Solitons and fractals. Volume 139. Elsevier Ltd; 2020. p. 110059.

  18. Rizk JG, Lippi G, Henry BM, Forthal DN, Rizk Y. Prevention and Treatment of Monkeypox. Drugs. 2022;82:957–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Swetha RG, Basu S, Ramaiah S, Anbarasu A. Multi-epitope Vaccine for Monkeypox using Pan-genome and Reverse Vaccinology approaches. Viruses. 2022;14:2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bunge EM, Hoet B, Chen L, Lienert F, Weidenthaler H, Baer LR, et al. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Negl Trop Dis. 2022;16:e0010141.

    Article  PubMed  PubMed Central  Google Scholar 

  21. MacGregor H. Social dimensions of monkeypox: gaps and priority questions? World Health Organization; 2022.

  22. Ibrahima Soce Fall. Building a resilient research architecture and capability to protect us all-WHO Monkeypox research. World Health Organization; 2022.

  23. Amer F, Khalil HES, Elahmady M, ElBadawy NE, Zahran WA, Abdelnasser M et al. Mpox: Risks and approaches to prevention. J Infect Public Health [Internet]. 2023;16:901–10. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1876034123001119.

  24. Harapan H, Ophinni Y, Megawati D, Frediansyah A, Mamada SS, Salampe M et al. Monkeypox: A Comprehensive Review. Viruses [Internet]. 2022;14:2155. Available from: https://www.mdpi.com/1999-4915/14/10/2155.

  25. Kann BH, Hosny A, Aerts HJWL. Artificial intelligence for clinical oncology. Cancer Cell. 2021;39:916–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jaradat AS, Al Mamlook RE, Almakayeel N, Alharbe N, Almuflih AS, Nasayreh A, et al. Automated monkeypox skin lesion detection using deep learning and transfer learning techniques. Int J Environ Res Public Health. 2023;20:4422.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thieme AH, Zheng Y, Machiraju G, Sadee C, Mittermaier M, Gertler M, et al. A deep-learning algorithm to classify skin lesions from mpox virus infection. Nat Med. 2023;29:738–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vega C, Schneider R, Satagopam V. Analysis: flawed datasets of Monkeypox skin images. J Med Syst. 2023;47:37.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Patel CN, Mall R, Bensmail H. AI-driven drug repurposing and binding pose meta dynamics identifies novel targets for monkeypox virus. J Infect Public Health. 2023;16:799–807.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bragazzi NL, Han Q, Iyaniwura SA, Omame A, Shausan A, Wang X et al. Adaptive changes in sexual behavior in the high-risk population in response to human monkeypox transmission in Canada can help control the outbreak: insights from a two‐group, two‐route epidemic model. J Med Virol. 2023.

  31. Saleh AI, Rabie AH. Human monkeypox diagnose (HMD) strategy based on data mining and artificial intelligence techniques. Comput Biol Med. 2023;152:106383.

    Article  PubMed  Google Scholar 

  32. Ahsan MM, Uddin MR, Ali MS, Islam MK, Farjana M, Sakib AN, et al. Deep transfer learning approaches for Monkeypox disease diagnosis. Expert Syst Appl. 2023;216:119483.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Phalak P, Tomba E, Jehoulet P, Kapitan-Gnimdu A, Soladana PM, Vagaggini L, et al. Digital Twin Implementation for Manufacturing of Adjuvants. Processes. 2023;11:1717.

    Article  Google Scholar 

  34. Askin S, Burkhalter D, Calado G, El Dakrouni S. Artificial Intelligence Applied to clinical trials: opportunities and challenges. Health Technol (Berl). 2023;13:203–13.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Weissler EH, Naumann T, Andersson T, Ranganath R, Elemento O, Luo Y et al. Correction to: The role of machine learning in clinical research: transforming the future of evidence generation (Trials, (2021), 22, 1, (537), https://doi.org/10.1186/s13063-021-05489-x). Trials. Trials; 2021;22:1–15.

  36. Srija K, Prithvi PPR, Saxena A, Grover A, Chandra S, Jain SJ. Artificial Intelligence in Personalized Medicine. Artif Intell Mach Learn Healthc. 2021;57–69.

  37. Johnson KB, Wei WQ, Weeraratne D, Frisse ME, Misulis K, Rhee K, et al. Precision Medicine, AI, and the future of Personalized Health Care. Clin Transl Sci. 2021;14:86–93.

    Article  PubMed  Google Scholar 

  38. Chadaga K, Prabhu S, Sampathila N, Nireshwalya S, Katta SS, Tan R-S, et al. Application of Artificial Intelligence techniques for Monkeypox: a systematic review. Diagnostics. 2023;13:824.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dildar M, Akram S, Irfan M, Khan HU, Ramzan M, Mahmood AR et al. Skin cancer detection: a review using deep learning techniques. Int J Environ Res Public Health. 2021;18.

  40. Sarangi L, Mohanty MN, Pattanayak S. Design of MLP Based Model for Analysis of Patient Suffering from Influenza. Procedia Comput Sci the Author(s). 2016;92:396–403.

    Article  Google Scholar 

  41. Men L, Ilk N, Tang X, Liu Y. Multi-disease prediction using LSTM recurrent neural networks. Expert Syst Appl Elsevier Ltd. 2021;177:114905.

    Article  Google Scholar 

  42. Thornton JM, Laskowski RA, Borkakoti N. AlphaFold heralds a data-driven revolution in biology and medicine. Nat Med Springer US. 2021;27:1666–9.

    Article  CAS  Google Scholar 

  43. Trunfio TA, Scala A, Giglio C, Rossi G, Borrelli A, Romano M, et al. Multiple regression model to analyze the total LOS for patients undergoing laparoscopic appendectomy. BMC Med Inform Decis Mak BioMed Central. 2022;22:1–8.

    Google Scholar 

  44. Edinger A, Valdez D, Walsh-Buhi E, Trueblood JS, Lorenzo-Luaces L, Rutter LA et al. Misinformation and Public Health Messaging in the Early Stages of the Mpox Outbreak: Mapping the Twitter Narrative With Deep Learning. J Med Internet Res [Internet]. 2023;25:e43841. Available from: https://www.jmir.org/2023/1/e43841.

  45. Santosh KC. AI-Driven tools for Coronavirus Outbreak: need of active learning and Cross-population Train/Test models on Multitudinal/Multimodal Data. J Med Syst Journal of Medical Systems. 2020;44:1–5.

    Google Scholar 

  46. Rahmatizadeh S, Valizadeh-Haghi S, Dabbagh A. The role of artificial intelligence in management of critical COVID-19 patients. J Cell Mol Anesth. 2020;5:16–22.

    Google Scholar 

  47. Imran A, Posokhova I, Qureshi HN, Masood U, Riaz MS, Ali K et al. AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app. Informatics Med Unlocked. Elsevier Ltd; 2020;20:100378.

  48. Leiner T, Bennink E, Mol CP, Kuijf HJ, Veldhuis WB. Bringing AI to the clinic: blueprint for a vendor – neutral AI deployment infrastructure. Insights imaging. Berlin Heidelberg: Springer; 2021. pp. 1–11.

    Google Scholar 

  49. Iwendi C, Bashir AK, Peshkar A, Sujatha R, Chatterjee JM, Pasupuleti S, et al. COVID-19 patient health prediction using boosted random forest algorithm. Front Public Heal. 2020;8:1–9.

    Google Scholar 

  50. Braun M, Hummel P, Beck S, Dabrock P. Primer on an ethics of AI-based decision support systems in the clinic. J Med Ethics. 2021;47:E3.

    Article  Google Scholar 

  51. Battineni G, Chintalapudi N, Amenta F. Ai Chatbot design during an epidemic like the novel coronavirus. Healthc. 2020;8.

  52. Yan L, Zhang H-T, Goncalves J, Xiao Y, Wang M, Guo Y et al. A machine learning-based model for survival prediction in patients with severe COVID-19 infection. medRxiv. 2020;2020.02.27.20028027.

  53. Vijayan RSK, Kihlberg J, Cross JB, Poongavanam V. Enhancing preclinical drug discovery with artificial intelligence. Drug Discov Today the Author(s). 2022;27:967–84.

    Article  CAS  Google Scholar 

  54. Abdulla A, Wang B, Qian F, Kee T, Blasiak A, Ong YH, et al. Project IDentif.AI: harnessing Artificial Intelligence to rapidly optimize combination Therapy Development for Infectious Disease intervention. Adv Ther. 2020;3:2000034.

    Article  CAS  Google Scholar 

  55. Ong E, Cooke MF, Huffman A, Xiang Z, Wong MU, Wang H et al. Vaxign2: The second generation of the first Web-based vaccine design program using reverse vaccinology and machine learning. Nucleic Acids Res. Oxford University Press; 2021;49:W671–8.

  56. Thomas S, Abraham A, Baldwin J, Piplani S, Petrovsky N. Artificial Intelligence in Vaccine and Drug Design. Methods Mol Biol. 2022;2410:131–46.

    Article  CAS  PubMed  Google Scholar 

  57. Pfab J, Phan NM, Si D. DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on cov-related complexes. Proc Natl Acad Sci U S A. 2021;118.

  58. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  59. Sahoo D, Katkar GD, Khandelwal S, Behroozikhah M, Claire A, Castillo V, et al. EBioMedicine AI-guided discovery of the invariant host response to viral pandemics. EBioMedicine Elsevier B V. 2021;68:103390.

    Article  CAS  Google Scholar 

  60. Mitesh P, Malvi S, Mohd A. Artificial intelligence (AI) in monkeypox infection prevention. J Biomol Struct Dyn Taylor & Francis. 2022;0:1–5.

    Google Scholar 

  61. Arora G, Joshi J, Mandal RS, Shrivastava N, Virmani R, Sethi T. Artificial intelligence in surveillance, diagnosis, drug discovery and vaccine development against covid-19. Pathogens. 2021;10.

  62. Basu S, Ramaiah S, Anbarasu A. In-silico strategies to combat COVID-19: a comprehensive review. Biotechnol Genet Eng Rev. 2021;37:64–81.

    Article  CAS  PubMed  Google Scholar 

  63. Sato RC. esa. Disease management with ARIMA model in time series. Einstein (Sao Paulo). 2013;11:128–31.

  64. Khafaga DS, Ibrahim A, El-Kenawy E-SM, Abdelhamid AA, Karim FK, Mirjalili S, et al. An Al-Biruni Earth Radius optimization-based deep convolutional neural network for classifying Monkeypox Disease. Diagnostics. 2022;12:2892.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the management of VIT, Vellore, for providing the necessary facilities to carry out the research. RGS would like to thank the Indian Council of Medical Research, New Delhi, for the Research Associateship [IRIS ID: 2021–8220]. The authors gratefully acknowledge ICMR for the research grant (Project number: AMR/Adhoc/290/2022-ECD-II).

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Rayapadi G. Swetha, Sudha Ramaiah, and Anand Anbarasu; Data curation: RC Theijeswini, Rayapadi G. Swetha, and Soumya Basu; Writing-original draft preparation: RC Theijeswini, Rayapadi G. Swetha, and Soumya Basu; Validation: Rayapadi G. Swetha, Paul Livingstone, and Jayaraman Tharmalingam; Writing-review and editing: Raja Sreedharan, Paul Livingstone, Jayaraman Tharmalingam, Sudha Ramaiah, RC Theijeswini, and Anand Anbarasu; Supervision: Paul Livingstone, and Anand Anbarasu. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Paul Livingstone or Anand Anbarasu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theijeswini, R., Basu, S., Swetha, R.G. et al. Prophylactic and therapeutic measures for emerging and re-emerging viruses: artificial intelligence and machine learning - the key to a promising future. Health Technol. 14, 251–261 (2024). https://doi.org/10.1007/s12553-024-00816-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12553-024-00816-z

Keywords

Navigation