Skip to main content

Advertisement

Log in

Pentoxifylline reduces inflammation and prevents myocardial perfusion derangements in experimental chronic Chagas’ cardiomyopathy

  • ORIGINAL ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Myocardial perfusion defect (MPD) is common in chronic Chagas cardiomyopathy (CCC) and is associated with inflammation and development of left ventricular systolic dysfunction. We tested the hypothesis that pentoxifylline (PTX) could reduce inflammation and prevent the development of MPD in a model of CCC in hamsters.

Methods and results

We investigated with echocardiogram and rest myocardial perfusion scintigraphy at baseline (6-months after T. cruzi infection/saline) and post-treatment (after additional 2-months of PTX/saline administration), female Syrian hamsters assigned to 3 groups: T. cruzi-infected animals treated with PTX (CH + PTX) or saline (CH + SLN); and uninfected control animals (CO). At the baseline, all groups showed similar left ventricular ejection fraction (LVEF) and MPD areas. At post-treatment evaluation, there was a significant increase of MPD in CH + SLN group (0.8 ± 1.6 to 9.4 ± 9.7%), but not in CH + PTX (1.9 ± 3.0% to 2.7 ± 2.7%) that exhibited MPD area similar to CO (0.0 ± 0.0% to 0.0 ± 0.0%). The LVEF decreased in both infected groups. Histological analysis showed a reduced inflammatory infiltrate in CH + PTX group (395.7 ± 88.3 cell/mm2), as compared to CH + SLN (515.1 ± 133.0 cell/mm2), but larger than CO (193.0 ± 25.7 cell/mm2). The fibrosis and TNF-α expression was higher in both infected groups.

Conclusions

The prolonged use of PTX is associated with positive effects, including prevention of MPD development and reduction of inflammation in the chronic hamster model of CCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

CCC:

Chronic Chagas’ cardiomyopathy

MPD:

Myocardial perfusion defect

PTX:

Pentoxifylline

PLB:

Placebo

LV:

Left ventricle

LVEDD:

Left ventricle end diastolic dimension

LVESD:

Left ventricle end systolic dimension

LVEF:

Left ventricular ejection function

SPECT:

Single-photon emission computerized tomography

References

  1. Bern C, Messenger LA, Whitman JD, Maguire JH. Chagas disease in the United States: a public health approach. Clin Microbiol Rev 2019;33.

  2. Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388:1545‐602.

    Article  Google Scholar 

  3. Monge-Maillo B, Lopez-Velez R. Challenges in the management of Chagas disease in Latin-American migrants in Europe. Clin Microbiol Infect 2017;23:290‐5.

    Article  CAS  PubMed  Google Scholar 

  4. Pérez-Molina JA, Molina I. Chagas disease. The Lancet 2018;391:82‐94.

    Article  Google Scholar 

  5. Bocchi EA, Bestetti RB, Scanavacca MI, Cunha Neto E, Issa VS. Chronic chagas heart disease management: from etiology to cardiomyopathy treatment. J Am Coll Cardiol 2017;70:1510‐24.

    Article  PubMed  Google Scholar 

  6. Marin-Neto JA, Simoes MV, Rassi JA. Pathogenesis of chronic Chagas cardiomyopathy: the role of coronary microvascular derangements. Rev Soc Bras Med Trop 2013;46:536‐41.

    Article  PubMed  Google Scholar 

  7. Marin-Neto JA, Cunha-Neto E, Maciel BC, Simoes MV. Pathogenesis of chronic Chagas heart disease. Circulation 2007;115:1109‐23.

    Article  PubMed  Google Scholar 

  8. Petkova SB, Huang H, Factor SM, Pestell RG, Bouzahzah B, Jelicks LA, et al. The role of endothelin in the pathogenesis of Chagas’ disease. Int J Parasitol 2001;31:499‐511.

    Article  CAS  PubMed  Google Scholar 

  9. Rossi MA, Tanowitz HB, Malvestio LM, Celes MR, Campos EC, Blefari V et al. Coronary microvascular disease in chronic Chagas cardiomyopathy including an overview on history, pathology, and other proposed pathogenic mechanisms. PLoS Negl Trop Dis 2010;4.

  10. Yan G, You B, Chen SP, Liao JK, Sun J. Tumor necrosis factor-alpha downregulates endothelial nitric oxide synthase mRNA stability via translation elongation factor 1-alpha 1. Circ Res 2008;103:591‐7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Didion SP. Cellular and oxidative mechanisms associated with interleukin-6 signaling in the vasculature. Int J Mol Sci 2017;18.

  12. Simoes MV, Pintya AO, Bromberg-Marin G, Sarabanda AV, Antloga CM, Pazin-Filho A, et al. Relation of regional sympathetic denervation and myocardial perfusion disturbance to wall motion impairment in Chagas’ cardiomyopathy. Am J Cardiol 2000;86:975‐81.

    Article  CAS  PubMed  Google Scholar 

  13. Hiss FC, Lascala TF, Maciel BC, Marin-Neto JA, Simoes MV. Changes in myocardial perfusion correlate with deterioration of left ventricular systolic function in chronic Chagas’ cardiomyopathy. JACC Cardiovasc Imaging 2009;2:164‐72.

    Article  PubMed  Google Scholar 

  14. Lemos de Oliveira LF, Thackeray JT, Marin Neto JA, Dias Romano MM, Vieira de Carvalho EE, Mejia J et al. Regional myocardial perfusion disturbance in experimental chronic chagas cardiomyopathy. J Nucl Med 2018;59:1430–6.

  15. Umezawa ES, Nascimento MS, Kesper N Jr, Coura JR, Borges-Pereira J, Junqueira AC, et al. Immunoblot assay using excreted-secreted antigens of Trypanosoma cruzi in serodiagnosis of congenital, acute, and chronic Chagas’ disease. J Clin Microbiol 1996;34:2143‐7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bilate AM, Salemi VM, Ramires FJ, de Brito T, Silva AM, Umezawa ES, et al. The Syrian hamster as a model for the dilated cardiomyopathy of Chagas’ disease: a quantitative echocardiographical and histopathological analysis. Microbes Infect 2003;5:1116‐24.

    Article  PubMed  Google Scholar 

  17. Pereira IR, Vilar-Pereira G, Moreira OC, Ramos IP, Gibaldi D, Britto C, et al. Pentoxifylline reverses chronic experimental Chagasic cardiomyopathy in association with repositioning of abnormal CD8+ T-cell response. PLoS Negl Trop Dis 2015;9:e0003659.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Barros Filho ACL, Moreira HT, Dias BP, Ribeiro FFF, Tanaka DM, Schmidt A, et al. Feasibility and reference intervals assessed by conventional and speckle-tracking echocardiography in normal hamsters. Physiol Rep 2021;9:e14776.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schmidt A, Dias Romano MM, Marin-Neto JA, Rao-Melacini P, Rassi A Jr, Mattos A, et al. Effects of trypanocidal treatment on echocardiographic parameters in chagas cardiomyopathy and prognostic value of wall motion score index: a BENEFIT trial echocardiographic substudy. J Am Soc Echocardiogr 2019;32:e3.

    Google Scholar 

  20. Mejia J, Galvis-Alonso OY, Castro AA, Braga J, Leite JP, Simoes MV. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging. Braz J Med Biol Res 2010;43:1160‐6.

    Article  CAS  PubMed  Google Scholar 

  21. Oliveira LF, Mejia J, Carvalho EE, Lataro RM, Frassetto SN, Fazan R Jr, et al. Myocardial infarction area quantification using high-resolution SPECT images in rats. Arq Bras Cardiol 2013;101:59‐67.

    PubMed  PubMed Central  Google Scholar 

  22. Tanaka DM, de Oliveira LFL, Marin-Neto JA, Romano MMD, de Carvalho EEV, de Barros Filho ACL et al. Prolonged dipyridamole administration reduces myocardial perfusion defects in experimental chronic Chagas cardiomyopathy. J Nucl Cardiol 2018.

  23. Bilate AM, Salemi VM, Ramires FJ, de Brito T, Russo M, Fonseca SG, et al. TNF blockade aggravates experimental chronic Chagas disease cardiomyopathy. Microbes Infect 2007;9:1104‐13.

    Article  CAS  PubMed  Google Scholar 

  24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402‐8.

    Article  CAS  PubMed  Google Scholar 

  25. Konrad FM, Neudeck G, Vollmer I, Ngamsri KC, Thiel M, Reutershan J. Protective effects of pentoxifylline in pulmonary inflammation are adenosine receptor A2A dependent. FASEB J 2013;27:3524‐35.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Alcaide P, Liu L, Sun J, He A, Luscinskas FW, et al. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils. PLoS ONE 2011;6:e14525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang X, Meng F, Song J, Zhang L, Wang J, Li D, et al. Pentoxifylline ameliorates cardiac fibrosis, pathological hypertrophy, and cardiac dysfunction in angiotensin II-induced hypertensive rats. J Cardiovasc Pharmacol 2016;67:76‐85.

    Article  CAS  PubMed  Google Scholar 

  28. Ferreira RC, Ianni BM, Abel LC, Buck P, Mady C, Kalil J, et al. Increased plasma levels of tumor necrosis factor-α α α α α in asymptomatic/“indeterminate” and Chagas disease cardiomyopathy patients. Mem Inst Oswaldo Cruz 2003;98:6.

    Article  Google Scholar 

  29. Cunha-Neto E, Nogueira LG, Teixeira PC, Ramasawmy R, Drigo SA, Goldberg AC, et al. Immunological and non-immunological effects of cytokines and chemokines in the pathogenesis of chronic Chagas disease cardiomyopathy. Mem Inst Oswaldo Cruz 2009;104:252‐8.

    Article  CAS  PubMed  Google Scholar 

  30. Algoet M, Janssens S, Himmelreich U, Gsell W, Pusovnik M, Van den Eynde J et al. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc Med 2022.

  31. Hammerschmidt DE, Kotasek D, McCarthy T, Huh PW, Freyburger G, Vercellotti GM. Pentoxifylline inhibits granulocyte and platelet function, including granulocyte priming by platelet activating factor. J Lab Clin Med 1988;112:254‐63.

    CAS  PubMed  Google Scholar 

  32. Ferrari E, Fioravanti M, Patti AL, Viola C, Solerte SB. Effects of long-term treatment (4 years) with pentoxifylline on haemorheological changes and vascular complications in diabetic patients. Pharmatherapeutica 1987;5:26‐39.

    CAS  PubMed  Google Scholar 

  33. Vilar-Pereira G, Resende Pereira I, de Souza Ruivo LA, Cruz Moreira O, da Silva AA, Britto C, et al. Combination chemotherapy with suboptimal doses of benznidazole and pentoxifylline sustains partial reversion of experimental Chagas’ heart disease. Antimicrob Agents Chemother 2016;60:4297‐309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burleigh BA, Andrews NW. The mechanisms of Trypanosoma cruzi invasion of mammalian cells. Annu Rev Microbiol 1995;49:175‐200.

    Article  CAS  PubMed  Google Scholar 

  35. Andrade LO, Machado CR, Chiari E, Pena SD, Macedo AM. Trypanosoma cruzi: role of host genetic background in the differential tissue distribution of parasite clonal populations. Exp Parasitol 2002;100:269‐75.

    Article  PubMed  Google Scholar 

  36. Pereira IR, Vilar-Pereira G, Silva AA, Lannes-Vieira J. Severity of chronic experimental Chagas’ heart disease parallels tumour necrosis factor and nitric oxide levels in the serum: models of mild and severe disease. Mem Inst Oswaldo Cruz 2014;109:289‐98.

    Article  PubMed  PubMed Central  Google Scholar 

  37. da Silva MV, de Almeida VL, de Oliveira WD, Matos Cascudo NC, de Oliveira PG, da Silva CA, et al. Upregulation of cardiac IL-10 and downregulation of IFN-gamma in Balb/c IL-4(-/-) in acute Chagasic myocarditis due to colombian strain of trypanosoma cruzi. Mediators Inflamm 2018;2018:3421897.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cunha-Neto E, Chevillard C. Chagas disease cardiomyopathy: immunopathology and genetics. Mediators Inflamm 2014;2014:683230.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lewis MD, Kelly JM. Putting infection dynamics at the heart of Chagas disease. Trends Parasitol 2016;32:899‐911.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lewis MD, Francisco AF, Taylor MC, Jayawardhana S, Kelly JM. Host and parasite genetics shape a link between Trypanosoma cruzi infection dynamics and chronic cardiomyopathy. Cell Microbiol 2016;18:1429‐43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schwartz RG, Wexler O. Early identification and monitoring progression of Chagas’ cardiomyopathy with SPECT myocardial perfusion imaging. JACC Cardiovasc Imaging 2009;2:173‐5.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by a research grant from Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP – Process: 2017/16450-6, 2016/25403-9 and 2019/21250-1) and Fundação de Apoio ao Ensino Pesquisa e Assistência do Hospital das Clínicas (FAEPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Vinícius Simões PhD.

Ethics declarations

Disclosures

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

The authors have also provided an audio summary of the article, which is available to download as ESM, or to listen to via the JNC/ASNC Podcast.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 20187 kb)

Supplementary file2 (MP3 4308 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, D.M., Fabricio, C.G., Marin-Neto, J.A. et al. Pentoxifylline reduces inflammation and prevents myocardial perfusion derangements in experimental chronic Chagas’ cardiomyopathy. J. Nucl. Cardiol. 30, 2327–2337 (2023). https://doi.org/10.1007/s12350-023-03270-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-023-03270-y

Keywords

Navigation