Skip to main content

Advertisement

Log in

Splenic switch-off in regadenoson 82Rb-PET myocardial perfusion imaging: assessment of clinical utility

  • ORIGINAL ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Splenic switch-off (SSO) is a phenomenon describing a decrease in splenic radiotracer uptake after vasodilatory stress. We aimed to assess the diagnostic utility of regadenoson-induced SSO.

Methods

We included consecutive patients who had clinically indicated Regadenoson Rb-82 PET-MPI for suspected CAD. This derivation cohort (no perfusion defects and myocardial flow reserves (MFR) ≥ 2) was used to calculate the splenic response ratio (SRR). The validation cohort was defined as patients who underwent both PET-MPI studies and invasive coronary angiography (ICA).

Results

The derivation cohort (n = 100, 57.4 ± 11.6 years, 77% female) showed a decrease in splenic uptake from rest to stress (79.9 ± 16.8 kBq⋅mL vs 69.1 ± 16.2 kBq⋅mL, P < .001). From the validation cohort (n = 315, 66.3 ± 10.4 years, 67% male), 28% (via SRR = 0.88) and 15% (visually) were classified as splenic non-responders. MFR was lower in non-responders (SRR; 1.55 ± 0.65 vs 1.76 ± 0.78, P = .02 and visually; 1.18 ± 0.33 vs 1.79 ± 0.77, P < .001). Based on ICA, non-responders were more likely to note obstructive epicardial disease with normal PET scans especially in patients with MFR < 1.5 (SRR; 61% vs 34% P = .05 and visually; 68% vs 33%, P = .01).

Conclusion

Lack of splenic response based on visual or quantitative assessment of SSO may be used to identify an inadequate vasodilatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

PET:

Positron Emission Tomography

MBF:

Myocardial blood flow

MFR:

Myocardial flow reserve

MPI:

Myocardial perfusion imaging

SSO:

Splenic switch-off

SSR:

Splenic response ratio

Rb:

Rubidium

HD:

Hemodynamics

ICA:

Invasive coronary angiography

References

  1. Reeves RA, Halpern EJ, Rao VM. Cardiac imaging trends from 2010 to 2019 in the medicare population. Radiology 2021;3:e210156. https://doi.org/10.1148/ryct.2021210156.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Driessen RS, Danad I, Stuijfzand WJ, et al. Comparison of coronary computed tomography angiography, Fractional Flow reserve, and Perfusion Imaging for ischemia diagnosis. J Am Coll Cardiol 2019;73:161‐73. https://doi.org/10.1016/j.jacc.2018.10.056.

    Article  PubMed  Google Scholar 

  3. Zoghbi G, Iskandrian A. Selective adenosine agonists and myocardial perfusion imaging. J Nucl Cardiol 2012;19:126‐41. https://doi.org/10.1007/s12350-011-9474-9.

    Article  PubMed  Google Scholar 

  4. Al Jaroudi W, Iskandrian AE. Regadenoson: A new myocardial stress agent. J Am Coll Cardiol 2009;54:1123‐30. https://doi.org/10.1016/j.jacc.2009.04.089.

    Article  CAS  PubMed  Google Scholar 

  5. Johnson SG, Peters S. Advances in pharmacologic stress agents: Focus on regadenoson. J Nucl Med Technol 2010;38:163‐71. https://doi.org/10.2967/jnmt.109.065581.

    Article  PubMed  Google Scholar 

  6. Symphony Health Solutions. Lexiscan—symphony health solutions. https://lexiscan.com/OperationalFlexibility/Overview. Updated 2022.

  7. Elkholy KO, Hegazy O, Okunade A, Aktas S, Ajibawo T. Regadenoson stress testing: A comprehensive review with a focused update. Curēus 2021;13:e12940. https://doi.org/10.7759/cureus.12940.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Patel KK, Spertus JA, Chan PS, et al. Myocardial blood flow reserve assessed by positron emission tomography myocardial perfusion imaging identifies patients with a survival benefit from early revascularization. Eur Heart J 2020;41:759‐68. https://doi.org/10.1093/eurheartj/ehz389.

    Article  CAS  PubMed  Google Scholar 

  9. Mc Ardle BA, Dowsley TF, deKemp RA, Wells GA, Beanlands RS. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease? A systematic review and meta-analysis. J Am Coll Cardiol 2012;60:1828‐37. https://doi.org/10.1016/j.jacc.2012.07.038.

    Article  PubMed  Google Scholar 

  10. Go RT, Marwick TH, MacIntyre WJ, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 1990;31:1899‐905.

    CAS  PubMed  Google Scholar 

  11. Hage FG, Dean P, Bhatia V, Iqbal F, Heo J, Iskandrian AE. The prognostic value of the heart rate response to adenosine in relation to diabetes mellitus and chronic kidney disease. Am Heart J 2011;162:356‐62. https://doi.org/10.1016/j.ahj.2011.05.014.

    Article  CAS  PubMed  Google Scholar 

  12. Mishra RK, Dorbala S, Logsetty G, et al. Quantitative relation between hemodynamic changes during intravenous adenosine infusion and the magnitude of coronary hyperemia: Implications for myocardial perfusion imaging. J Am Coll Cardiol 2005;45:553‐8. https://doi.org/10.1016/j.jacc.2004.10.064.

    Article  CAS  PubMed  Google Scholar 

  13. Norlén K. Central and regional haemodynamics during controlled hypotension produced by adenosine, sodium nitroprusside and nitroglycerin. Studies in the pig. Br J Anaesth 1988;61:186‐93. https://doi.org/10.1093/bja/61.2.186.

    Article  PubMed  Google Scholar 

  14. Hunter CR, Hill J, Ziadi MC, Beanlands RS, deKemp RA. Biodistribution and radiation dosimetry of (82)rb at rest and during peak pharmacological stress in patients referred for myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2015;42:1032‐42. https://doi.org/10.1007/s00259-015-3028-3.

    Article  CAS  PubMed  Google Scholar 

  15. Sandler MP, Kronenberg MW, Forman MB, Wolfe OH, Clanton JA, Partain CL. Dynamic fluctuations in blood and spleen radioactivity: Splenic contraction and relation to clinical radionuclide volume calculations. J Am Coll Cardiol 1984;3:1205‐11. https://doi.org/10.1016/s0735-1097(84)80178-3.

    Article  CAS  PubMed  Google Scholar 

  16. Bakula A, Patriki D, von Felten E, et al. Splenic switch-off as a novel marker for adenosine response in nitrogen-13 ammonia PET myocardial perfusion imaging: Cross-validation against CMR using a hybrid PET/MR device. J Nucl Cardiol 2020. https://doi.org/10.1007/s12350-020-02448-y.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Patriki D, von Felten E, Bakula A, et al. Splenic switch-off as a predictor for coronary adenosine response: Validation against 13N-ammonia during co-injection myocardial perfusion imaging on a hybrid PET/CMR scanner. J Cardiovasc Magn Reson 2021;23:196062. https://doi.org/10.5167/uzh-196062.

    Article  Google Scholar 

  18. Manisty C, Ripley DP, Herrey AS, et al. Splenic switch-off: A tool to assess stress adequacy in adenosine perfusion cardiac MR imaging. Radiology 2015;276:732‐40. https://doi.org/10.1148/radiol.2015142059.

    Article  PubMed  Google Scholar 

  19. Hosking A, Koulouroudias M, Zemrak F, et al. Evaluation of splenic switch off in a tertiary imaging centre: Validation and assessment of utility. Eur Heart J Cardiovasc Imaging 2017;18:1216‐21. https://doi.org/10.1093/ehjci/jew205.

    Article  PubMed  Google Scholar 

  20. Bami K, Tewari S, Guirguis F, et al. Prognostic utility of splenic response ratio in dipyridamole PET myocardial perfusion imaging. J Nucl Cardiol 2018;26:1888‐97. https://doi.org/10.1007/s12350-018-1269-9.

    Article  PubMed  Google Scholar 

  21. Dilsizian V, Bacharach SL, Beanlands RS, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol 2016;23:1187‐226. https://doi.org/10.1007/s12350-016-0522-3.

    Article  PubMed  Google Scholar 

  22. Nesterov SV, Deshayes E, Sciagrà R, et al. Quantification of myocardial blood flow in absolute terms using (82)rb PET imaging: The RUBY-10 study. JACC Cardiovasc Imaging 2014;7:1119‐27. https://doi.org/10.1016/j.jcmg.2014.08.003.

    Article  PubMed  PubMed Central  Google Scholar 

  23. El Fakhri G, Sitek A, Guérin B, Kijewski MF, Di Carli MF, Moore SC. Quantitative dynamic cardiac 82Rb PET using generalized factor and compartment analyses. J Nucl Med 2005;46:1264‐71.

    PubMed  Google Scholar 

  24. Youden WJ. Index for rating diagnostic tests. Cancer 1950;3:32‐5. https://doi.org/10.1002/1097-0142(1950)3:13.0.co;2-3.

    Article  CAS  PubMed  Google Scholar 

  25. 2013 american society of nuclear cardiology/MedAxiom nuclear survey. J Nucl Cardiol 2014;21:5-88. https://doi.org/10.1007/s12350-014-9862-z

  26. Walkden M, Bryant J, Abbas A, Harden S, Shambrook J, Peebles C. Turning up the adenosine turns off the spleen. J Cardiovasc Magn Reson 2015. https://doi.org/10.1186/1532-429X-17-S1-T1.

    Article  PubMed Central  Google Scholar 

  27. Mustafa SJ, Morrison RR, Teng B, Pelleg A. Adenosine receptors and the heart: Role in regulation of coronary blood flow and cardiac electrophysiology. Handb Exp Pharmacol 2009. https://doi.org/10.1007/978-3-540-89615-9_6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fozard JR, Milavec-Krizman M. Contraction of the rat isolated spleen mediated by adenosine A1 receptor activation. Br J Pharmacol 1993;109:1059‐63. https://doi.org/10.1111/j.1476-5381.1993.tb13729.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuijpers D, van Dijk R, van Assen M, et al. Disagreement between splenic switch-off and myocardial T1-mapping after caffeine intake. Int J Cardiovasc Imaging 2018;34:625‐32. https://doi.org/10.1007/s10554-017-1274-0.

    Article  PubMed  Google Scholar 

Download references

Disclosures

Dr Al-mallah receives research support from Siemense unrelated to this work. All other authors declare no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouaz H. Al-Mallah MD MSc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

The authors have also provided an audio summary of the article, which is available to download as ESM, or to listen to via the JNC/ASNC Podcast.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, J.M., Ahmed, A.I., Han, Y. et al. Splenic switch-off in regadenoson 82Rb-PET myocardial perfusion imaging: assessment of clinical utility. J. Nucl. Cardiol. 30, 1484–1496 (2023). https://doi.org/10.1007/s12350-022-03158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-022-03158-3

Keywords

Navigation