Skip to main content
Log in

Cognitive Decline and Mood Alterations in the Mouse Model of Spinocerebellar Ataxia Type 2

  • RESEARCH
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 2 (SCA2) is a hereditary disorder, caused by an expansion of polyglutamine in the ataxin-2 protein. Although the mutant protein is expressed throughout all the cell and organ types, the cerebellum is primarily affected. The disease progression is mainly accompanied by a decline in motor functions. However, the disturbances in cognitive abilities and low mental state have also been reported in patients. Recent evidence suggests that the cerebellar functionality expands beyond the motor control. Thus, the cerebellum turned out to be involved into the language, verbal working, and spatial memory; executive functions such as working memory, planning, organizing, and strategy formation; and emotional processing. Here, we used the transgenic SCA2-58Q mice to evaluate their anxiety, cognitive functions, and mood alterations. The expression of the mutant ataxin-2 specifically in the cerebellar Purkinje cells (PCs) in SCA2-58Q mice allowed us to study the direct involvement of the cerebellum into the cognitive and affective control. We determined that SCA2-58Q mice exhibit anxiolytic behavior, decline in spatial memory, and a depressive-like state. Our results support the idea of cerebellar involvement in cognitive control and the handling of emotions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Materials availability—this study did not generate new unique reagents. Data are available upon request.

References

  1. Matilla-Duenas A, Sanchez I, Corral-Juan M, Davalos A, Alvarez R, Latorre P. Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum. 2009.

  2. Carlson KM, Andresen JM, Orr HT. Emerging pathogenic pathways in the spinocerebellar ataxias. Curr Opin Genet Dev. 2009;19(3):247–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Egorova PA, Bezprozvanny IB. Inositol 1,4,5-trisphosphate receptors and neurodegenerative disorders. FEBS J. 2018;285(19):3547–65.

    Article  CAS  PubMed  Google Scholar 

  4. Egorova PA, Bezprozvanny IB. Molecular mechanisms and therapeutics for spinocerebellar ataxia type 2. Neurotherapeutics. 2019;16(4):1050–73.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hekman KE, Gomez CM. The autosomal dominant spinocerebellar ataxias: emerging mechanistic themes suggest pervasive Purkinje cell vulnerability. J Neurol Neurosurg Psychiatry. 2015;86(5):554–61.

    Article  PubMed  Google Scholar 

  6. Pirker W, Back C, Gerschlager W, Laccone F, Alesch F. Chronic thalamic stimulation in a patient with spinocerebellar ataxia type 2. Mov Disord. 2003;18(2):222–5.

    Article  PubMed  Google Scholar 

  7. Wang Z. Experimental and clinical strategies for treating spinocerebellar ataxia type 3. Neuroscience. 2018;371:138–54.

    Article  CAS  PubMed  Google Scholar 

  8. Wagner JL, O’Connor DM, Donsante A, Boulis NM. Gene, stem cell, and alternative therapies for SCA 1. Front Mol Neurosci. 2016;9:67.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2019;688:62–75.

    Article  CAS  PubMed  Google Scholar 

  10. De Zeeuw CI, Lisberger SG, Raymond JL. Diversity and dynamism in the cerebellum. Nat Neurosci. 2021;24(2):160–7.

    Article  PubMed  Google Scholar 

  11. Jacobi H, Faber J, Timmann D, Klockgether T. Update cerebellum and cognition. J Neurol. 2021;268(10):3921–5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang. 2009;110(3):149–53.

    Article  PubMed  Google Scholar 

  13. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.

    Article  PubMed  Google Scholar 

  14. Stoodley CJ, Valera EM, Schmahmann JD. An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol. 2010;23(1–2):65–79.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Larry N, Yarkoni M, Lixenberg A, Joshua M. Cerebellar climbing fibers encode expected reward size. Elife. 2019;8.

  16. Heffley W, Hull C. Classical conditioning drives learned reward prediction signals in climbing fibers across the lateral cerebellum. Elife. 2019;8.

  17. Kostadinov D, Beau M, Blanco-Pozo M, Hausser M. Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat Neurosci. 2019;22(6):950–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K. Cerebellar modulation of the reward circuitry and social behavior. Science. 2019;363(6424).

  19. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.

    Article  PubMed  Google Scholar 

  20. D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin. 2015;7:631–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen YL, Tu PC, Lee YC, Chen YS, Li CT, Su TP. Resting-state fMRI mapping of cerebellar functional dysconnections involving multiple large-scale networks in patients with schizophrenia. Schizophr Res. 2013;149(1–3):26–34.

    Article  PubMed  Google Scholar 

  22. Liang MJ, Zhou Q, Yang KR, Yang XL, Fang J, Chen WL, Huang Z. Identify changes of brain regional homogeneity in bipolar disorder and unipolar depression using resting-state FMRI. PLoS One. 2013;8(12):e79999.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  23. Bledsoe JC, Semrud-Clikeman M, Pliszka SR. Neuroanatomical and neuropsychological correlates of the cerebellum in children with attention-deficit/hyperactivity disorder–combined type. J Am Acad Child Adolesc Psychiatry. 2011;50(6):593–601.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu L, Zeng LL, Li Y, Ma Q, Li B, Shen H, Hu D. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder. PLoS One. 2012;7(6):e39516.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Le Pira F, Zappala G, Saponara R, Domina E, Restivo D, Reggio E, Nicoletti A, Giuffrida S. Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables. J Neurol Sci. 2002;201(1–2):53–7.

    Article  PubMed  Google Scholar 

  26. Burk K, Globas C, Bosch S, Klockgether T, Zuhlke C, Daum I, Dichgans J. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol. 2003;250(2):207–11.

    Article  CAS  PubMed  Google Scholar 

  27. Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S, Soliveri P, Girotti F. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol. 2013;260(12):3134–43.

    Article  PubMed  Google Scholar 

  28. Gigante AF, Lelli G, Romano R, Pellicciari R, Di Candia A, Mancino PV, Pau M, Fiore P, Defazio G. The relationships between ataxia and cognition in spinocerebellar ataxia type 2. Cerebellum. 2020;19(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  29. Moriarty A, Cook A, Hunt H, Adams ME, Cipolotti L, Giunti P. A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1, 2, 3, 6, and 7. Orphanet J Rare Dis. 2016;11(1):82.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Paneque HM, Reynaldo AR, Velazquez PL, Santos FN, Miranda HE, Real PN, Garcia ER, Hechavarria PR. Type 2 spinocerebellar ataxia: an experience in psychological rehabilitation. Rev Neurol. 2001;33(11):1001–5.

    CAS  PubMed  Google Scholar 

  31. Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, Molinari M, Cercignani M, Bozzali M, Leggio M. Microstructural MRI basis of the cognitive functions in patients with spinocerebellar ataxia type 2. Neuroscience. 2017;366:44–53.

    Article  CAS  PubMed  Google Scholar 

  32. Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, Molinari M, Cercignani M, Bozzali M, Leggio M. Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2. J Neurol. 2018;265(3):597–606.

    Article  CAS  PubMed  Google Scholar 

  33. Huynh DP, Figueroa K, Hoang N, Pulst SM. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet. 2000;26(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  34. Egorova PA, Zakharova OA, Vlasova OL, Bezprozvanny IB. In vivo analysis of cerebellar Purkinje cell activity in SCA2 transgenic mouse model. J Neurophysiol. 2016;115(6):2840–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Egorova PA, Gavrilova AV, Bezprozvanny IB. In vivo analysis of the climbing fiber-Purkinje cell circuit in SCA2-58Q transgenic mouse model. Cerebellum. 2018;17(5):590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Egorova PA, Gavrilova AV, Bezprozvanny IB. In vivo analysis of the spontaneous firing of cerebellar Purkinje cells in awake transgenic mice that model spinocerebellar ataxia type 2. Cell Calcium. 2021;93:102319.

    Article  CAS  PubMed  Google Scholar 

  37. Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM, Eriksen BL, Strobaek D, Liang X, Egorova P, Vorontsova D, Christophersen P, Ronn LC, Bezprozvanny I. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol. 2012;19(10):1340–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kasumu AW, Liang X, Egorova P, Vorontsova D, Bezprozvanny I. Chronic suppression of inositol 1,4,5-triphosphate receptor-mediated calcium signaling in cerebellar purkinje cells alleviates pathological phenotype in spinocerebellar ataxia 2 mice. J Neurosci. 2012;32(37):12786–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bohne P, Mourabit DB, Josten M, Mark MD. Cognitive deficits in episodic ataxia type 2 mouse models. Hum Mol Genet. 2021;30(19):1811–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lopatina O, Yoshihara T, Nishimura T, Zhong J, Akther S, Fakhrul AA, Liang M, Higashida C, Sumi K, Furuhara K, Inahata Y, Huang JJ, Koizumi K, Yokoyama S, Tsuji T, Petugina Y, Sumarokov A, Salmina AB, Hashida K, Kitao Y, Hori O, Asano M, Kitamura Y, Kozaka T, Shiba K, Zhong F, Xie MJ, Sato M, Ishihara K, Higashida H. Anxiety- and depression-like behavior in mice lacking the CD157/BST1 gene, a risk factor for Parkinson’s disease. Front Behav Neurosci. 2014;8:133.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Crawley J, Goodwin FK. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav. 1980;13(2):167–70.

    Article  CAS  PubMed  Google Scholar 

  42. Lueptow LM. Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. J Vis Exp. 2017 ;(126).

  43. Asher M, Rosa JG, Cvetanovic M. Mood alterations in mouse models of Spinocerebellar Ataxia type 1. Sci Rep. 2021;11(1):713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huynh DP, Maalouf M, Silva AJ, Schweizer FE, Pulst SM. Dissociated fear and spatial learning in mice with deficiency of ataxin-2. PLoS One. 2009;4(7):e6235.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  45. Nakajima R, Takao K, Hattori S, Shoji H, Komiyama NH, Grant SGN, Miyakawa T. Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice. Neuropsychopharmacol Rep. 2019;39(3):223–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stezin A, Bhardwaj S, Hegde S, Jain S, Bharath RD, Saini J, Pal PK. Cognitive impairment and its neuroimaging correlates in spinocerebellar ataxia 2. Parkinsonism Relat Disord. 2021;85:78–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mastammanavar VS, Kamble N, Yadav R, Netravathi M, Jain S, Kumar K, Pal PK. Non-motor symptoms in patients with autosomal dominant spinocerebellar ataxia. Acta Neurol Scand. 2020;142(4):368–76.

    Article  PubMed  Google Scholar 

  48. Phillips JR, Hewedi DH, Eissa AM, Moustafa AA. The cerebellum and psychiatric disorders. Front Public Health. 2015;3:66.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, Blumenthal JD, James RS, Ebens CL, Walter JM, Zijdenbos A, Evans AC, Giedd JN, Rapoport JL. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA. 2002;288(14):1740–8.

    Article  PubMed  Google Scholar 

  50. Mackie S, Shaw P, Lenroot R, Pierson R, Greenstein DK, Nugent TF, Sharp WS, Giedd JN, Rapoport JL. Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. Am J Psychiatry. 2007;164(4):647–55.

    Article  PubMed  Google Scholar 

  51. Duan K, Jiang W, Rootes-Murdy K, Schoenmacker GH, Arias-Vasquez A, Buitelaar JK, Hoogman M, Oosterlaan J, Hoekstra PJ, Heslenfeld DJ, Hartman CA, Calhoun VD, Turner JA, Liu J. Gray matter networks associated with attention and working memory deficit in ADHD across adolescence and adulthood. Transl Psychiatry. 2021;11(1):184.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kraskovskaya NA, Erofeev AI, Grishina ED, et al. Development of hippocampus-associated cognitive dysfunction in Huntington’s disease mouse model. J Evol Biochem Phys. 2021;57:1449–60.

    Article  Google Scholar 

  53. Asher M, Rosa JG, Rainwater O, Duvick L, Bennyworth M, Lai RY, Kuo SH, Cvetanovic M. Cerebellar contribution to the cognitive alterations in SCA1: evidence from mouse models. Hum Mol Genet. 2020;29(1):117–31.

    Article  CAS  PubMed  Google Scholar 

  54. Valis M, Masopust J, Bazant J, Rihova Z, Kalnicka D, Urban A, Zumrova A, Hort J. Cognitive changes in spinocerebellar ataxia type 2. Neuro Endocrinol Lett. 2011;32(3):354–9.

    PubMed  Google Scholar 

  55. Hult LS, Nilsson N, Soylu R, Kirik D, Petersen A. Hypothalamic expression of mutant huntingtin contributes to the development of depressive-like behavior in the BAC transgenic mouse model of Huntington’s disease. Hum Mol Genet. 2013;22(17):3485–97.

    Article  Google Scholar 

  56. Minichino A, Bersani FS, Trabucchi G, Albano G, Primavera M, Delle CR, Biondi M. The role of cerebellum in unipolar and bipolar depression: a review of the main neurobiological findings. Riv Psichiatr. 2014;49(3):124–31.

    PubMed  Google Scholar 

  57. Mills NP, Delbello MP, Adler CM, Strakowski SM. MRI analysis of cerebellar vermal abnormalities in bipolar disorder. Am J Psychiatry. 2005;162(8):1530–2.

    Article  PubMed  Google Scholar 

  58. Peng J, Liu J, Nie B, Li Y, Shan B, Wang G, Li K. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel-based morphometry study. Eur J Radiol. 2011;80(2):395–9.

    Article  PubMed  Google Scholar 

  59. Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009;29(29):9148–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Laboratory of Molecular Neurodegeneration for advice and suggestions, to John E. Roberts III for technical assistance and encouragement, and to Anastasia V. Bolshakova for administrative assistance. IB is a holder of the Carl J. and Hortense M. Thomsen Chair in Alzheimer’s Disease Research.

Funding

This work was supported by the Russian Science Foundation Grant 22–75-10030 (PE) and by the National Institutes of Health grant R33NS101182 (IB). The financial support was divided in the following way: research work related to Figs. 1, 2, 3, 4, 5, 6, 7, 8, and 9 was supported by the Russian Science Foundation Grant 22–75-10030, and the publication fee was supported by the NIH grant.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: P.E and I.B. Data curation: K.M. and P.E. Funding acquisition: P.E. and I.B. Formal Analysis: K.M. and P.E. Investigation: K.M. and P.E Methodology: K.M. and P.E. Project administration: P.E. and I.B. Resources: P.E. and I.B. Software: K.M. and P.E. Supervision: I.B. Validation: K.M. and P.E. Visualization: K.M. and P.E. Writing—original draft: K.M.and P.E. Writing—review and editing: P.E. and I.B.

Corresponding authors

Correspondence to Ilya B. Bezprozvanny or Polina A. Egorova.

Ethics declarations

Ethics Approval

All experimental protocols were approved by the Bioethics Committee of the Peter the Great St. Petersburg Polytechnic University at St. Petersburg, Russia, and followed the principles of the European convention (Strasbourg, 1986) and the Declaration of International medical association about the humane treatment of animals (Helsinki, 1996). All methods were carried out in accordance with relevant guidelines and regulations. The study was carried out in compliance with the ARRIVE guidelines.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinina, K.S., Bezprozvanny, I.B. & Egorova, P.A. Cognitive Decline and Mood Alterations in the Mouse Model of Spinocerebellar Ataxia Type 2. Cerebellum 23, 145–161 (2024). https://doi.org/10.1007/s12311-023-01520-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-023-01520-w

Keywords

Navigation