Skip to main content
Log in

Adaptive iron-based magnetic nanomaterials of high performance for biomedical applications

  • Flagship Review
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With unique physicochemical properties and biological effects, magnetic nanomaterials (MNMs) play a crucial role in the biomedical field. In particular, magnetic iron oxide nanoparticles (MIONPs) are approved by the United States Food and Drug Administration (FDA) for clinical applications at present due to their low toxicity, biocompatibility, and biodegradability. Despite the unarguable effectiveness, massive space for improving such materials’ performance still needs to be filled. Recently, many efforts have been devoted to improving the preparation methods based on the materials’ biosafety. Besides, researchers have successfully regulated the performance of magnetic nanoparticles (MNPs) by changing their sizes, morphologies, compositions; or by aggregating as-synthesized MNPs in an orderly arrangement to meet various clinical requirements. The rise of cloud computing and artificial intelligence techniques provides novel ways for fast material characterization, automated data analysis, and mechanism demonstration. In this review, we summarized the studies that focused on the preparation routes and performance regulations of high-quality MNPs, and their special properties applied in biomedical detection, diagnosis, and treatment. At the same time, the future development of MNMs was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, L.; Wu, Y.; Wu, H. N.; Li, J. Z.; Xie, J.; Zang, F. C.; Ma, M.; Gu, N.; Zhang, Y. Magnetic targeting combined with active targeting of dual-ligand iron oxide nanoprobes to promote the penetration depth in tumors for effective magnetic resonance imaging and hyperthermia. Acta Biomater. 2019, 96, 491–504.

    Article  CAS  Google Scholar 

  2. Ahmed, H. U.; Kirkham, A.; Arya, M.; Illing, R.; Freeman, A.; Allen, C.; Emberton, M. Is it time to consider a role for MRI before prostate biopsy? Nat. Rev. Clin. Oncol. 2009, 6, 197–206.

    Article  Google Scholar 

  3. Wu, H. N.; Song, L. N.; Chen, L.; Huang, Y. X.; Wu, Y.; Zang, F. C.; An, Y. L.; Lyu, H.; Ma, M.; Chen, J. et al. Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy. Nanoscale 2017, 9, 16175–16182.

    Article  CAS  Google Scholar 

  4. Duan, L.; Yang, F.; He, W.; Song, L. N.; Qiu, F.; Xu, N.; Xu, L.; Zhang, Y.; Hua, Z. C.; Gu, N. A multi-gradient targeting drug delivery system based on RGD-L-TRAIL-labeled magnetic microbubbles for cancer theranostics. Adv. Funct. Mater. 2016, 26, 8313–8324.

    Article  CAS  Google Scholar 

  5. Xu, H. F.; Medina-Sánchez, M.; Magdanz, V.; Schwarz, L.; Hebenstreit, F.; Schmidt, O. G. Sperm-hybrid micromotor for targeted drug delivery. ACS Nano 2018, 12, 327–337.

    Article  CAS  Google Scholar 

  6. Fouriki, A.; Dobson, J. Nanomagnetic gene transfection for non-viral gene delivery in NIH 3T3 mouse embryonic fibroblasts. Materials 2013, 6, 255–264.

    Article  CAS  Google Scholar 

  7. Wei, H.; Wang, E. K. Fe3O4 Magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008, 80, 2250–2254.

    Article  CAS  Google Scholar 

  8. Zhuang, J.; Fan, K. L.; Gao, L. Z.; Lu, D.; Feng, J.; Yang, D. L.; Gu, N.; Zhang, Y.; Liang, M. M.; Yan, X. Y. Ex vivo detection of iron oxide magnetic nanoparticles in mice using their intrinsic peroxidasemimicking activity. Mol. Pharmaceutics 2012, 9, 1983–1989.

    Article  CAS  Google Scholar 

  9. Wu, Y. H.; Song, M. J.; Xin, Z.; Zhang, X. Q.; Zhang, Y.; Wang, C. Y.; Li, S. Y.; Gu, N. Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection. Nanotechnology 2011, 22, 225703.

    Article  Google Scholar 

  10. Wang, P.; Ma, S. Y.; Ning, G. F.; Chen, W.; Wang, B.; Ye, D. W.; Chen, B.; Yang, Y. Z.; Jiang, Q.; Gu, N. et al. Entry-prohibited effect of kHz pulsed magnetic field upon interaction between SPIO nanoparticles and mesenchymal stem cells. IEEE Trans. Biomed. Eng. 2020, 67, 1152–1158.

    Article  Google Scholar 

  11. Meng, J.; Xiao, B.; Zhang, Y.; Liu, J.; Xue, H. D.; Lei, J.; Kong, H.; Huang, Y. G.; Jin, Z. Y.; Gu, N. et al. Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci. Rep. 2013, 3, 2655.

    Article  Google Scholar 

  12. Xia, Y.; Chen, H. M.; Zhao, Y. T.; Zhang, F. M.; Li, X. D.; Wang, L.; Weir, M. D.; Ma, J. Q.; Reynolds, M. A.; Gu, N. et al. Novel magnetic calcium phosphate-stem cell construct with magnetic field enhances osteogenic differentiation and bone tissue engineering. Mater. Sci. Eng.: C 2019, 98, 30–41.

    Article  CAS  Google Scholar 

  13. Chen, H. M.; Sun, J. F.; Wang, Z. B.; Zhou, Y.; Lou, Z. C.; Chen, B.; Wang, P.; Guo, Z. R.; Tang, H.; Ma, J. Q.; et al. Magnetic cell-scaffold interface constructed by superparamagnetic IONP enhanced osteogenesis of adipose-derived stem cells. ACS Appl. Mater. Interfaces 2018, 10, 44279–44289.

    Article  CAS  Google Scholar 

  14. Liu, X. L.; Chen, S. Z.; Zhang, H.; Zhou, J.; Fan, H. M.; Liang, X. J. Magnetic nanomaterials for advanced regenerative medicine: The promise and challenges. Adv. Mater. 2019, 31, 1804922.

    Article  CAS  Google Scholar 

  15. Lu, Q. B.; Sun, J. F.; Yang, Q. Y.; Cai, W. W.; Xia, M. Q.; Wu, F. F.; Gu, N.; Zhang, Z. J. Magnetic brain stimulation using iron oxide nanoparticle-mediated selective treatment of the left prelimbic cortex as a novel strategy to rapidly improve depressive-like symptoms in mice. Zool. Res. 2020, 41, 381.

    Article  Google Scholar 

  16. Underwood, E. J. 2 — Iron. In Trace Elements in Human and Animal Nutrition (Fourth Edition). Underwood, E. J., Ed.; Academic Press: Pittsburgh, 1977; pp 13–55.

    Chapter  Google Scholar 

  17. Rosner, M. H.; Auerbach, M. Ferumoxytol for the treatment of iron deficiency. Exp. Rev. Hematol. 2011, 4, 399–406.

    Article  CAS  Google Scholar 

  18. Kumar, C. S. S. R.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Delv. Rev. 2011, 63, 789–808.

    Article  CAS  Google Scholar 

  19. Soo Choi, H.; Liu, W. H.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Itty Ipe, B.; Bawendi, M. G.; Frangioni, J. V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165–1170.

    Article  Google Scholar 

  20. Liu, G.; Gao, J. H.; Ai, H.; Chen, X. Y. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 2013, 9, 1533–1545.

    Article  CAS  Google Scholar 

  21. Zhang, S.; Chen, X. J.; Gu, C. R.; Zhang, Y.; Xu, J. D.; Bian, Z. P.; Yang, D.; Gu, N. The effect of iron oxide magnetic nanoparticles on smooth muscle cells. Nanoscale Res. Lett. 2009, 4, 70–77.

    Article  CAS  Google Scholar 

  22. He, S. Y.; Feng, Y. Z.; Gu, N.; Zhang, Y.; Lin, X. G. The effect of γ-F2O3 nanoparticles on Escherichia coli genome. Environ. Pollut. 2011, 159, 3468–3473.

    Article  CAS  Google Scholar 

  23. Ge, G. Y.; Wu, H. F.; Xiong, F.; Zhang, Y.; Guo, Z. R.; Bian, Z. P.; Xu, J. D.; Gu, C. R.; Gu, N.; Chen, X. J. et al. The cytotoxicity evaluation of magnetic iron oxide nanoparticles on human aortic endothelial cells. Nanoscale Res. Lett. 2013, 8, 215.

    Article  Google Scholar 

  24. Wu, L. H.; Mendoza-Garcia, A.; Li, Q.; Sun, S. H. Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 2016, 116, 10473–10512.

    Article  CAS  Google Scholar 

  25. Wang, Y. X. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35–40.

    Google Scholar 

  26. Chen, B.; Sun, J. F.; Fan, F. G.; Zhang, X. Z.; Qin, Z. G.; Wang, P.; Li, Y.; Zhang, X. Q.; Liu, F.; Liu, Y. L. et al. Ferumoxytol of ultrahigh magnetization produced by hydrocooling and magnetically internal heating co-precipitation. Nanoscale 2018, 10, 7369–7376.

    Article  CAS  Google Scholar 

  27. Zhu, X. Y.; Zhang, Z. H.; Mao, Y.; Li, Y.; Huang, X.; Gu, N. Applying deep learning in automatic and rapid measurement of lattice spacings in HRTEM images. Sci. China Mater. 2020, 63, 2365–2370.

    Article  Google Scholar 

  28. McKenna, K. P.; Hofer, F.; Gilks, D.; Lazarov, V. K.; Chen, C. L.; Wang, Z. C.; Ikuhara, Y. Atomic-scale structure and properties of highly stable antiphase boundary defects in Fe3O4. Nat. Commun. 2014, 5, 5740.

    Article  CAS  Google Scholar 

  29. Xiong, F.; Tian, J. L.; Hu, K.; Zheng, X. W.; Sun, J. F.; Yan, C. Y.; Yao, J.; Song, L. N.; Zhang, Y.; Gu, N. Superparamagnetic anisotropic nano-assemblies with longer blood circulation in vivo: A highly efficient drug delivery carrier for leukemia therapy. Nanoscale 2016, 8, 17085–17089.

    Article  CAS  Google Scholar 

  30. Sun, Y. X.; Yan, C. Y.; Xie, J.; Yan, D.; Hu, K.; Huang, S. X.; Liu, J. P.; Zhang, Y.; Gu, N.; Xiong, F. High-performance worm-like Mn-Zn ferrite theranostic nanoagents and the application on tumor theranostics. ACS Appl. Mater. Interfaces 2019, 11, 29536–29548.

    Article  CAS  Google Scholar 

  31. Ma, M.; Wu, Y.; Zhou, J.; Sun, Y. K.; Zhang, Y.; Gu, N. Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J. Magn. Magn. Mater. 2004, 268, 33–39.

    Article  CAS  Google Scholar 

  32. Xie, J.; Yan, C. Z.; Zhang, Y.; Gu, N. Shape evolution of “Multibranched” Mn-Zn ferrite nanostructures with high performance: A transformation of nanocrystals into nanoclusters. Chem. Mater. 2013, 25, 3702–3709.

    Article  CAS  Google Scholar 

  33. Xie, J.; Yan, C. Y.; Yan, Y.; Chen, L.; Song, L. N.; Zang, F. C.; An, Y. L.; Teng, G. J.; Gu, N.; Zhang, Y. Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: A comparison of passive and active targeting effects. Nanoscale 2016, 8, 16902–16915.

    Article  CAS  Google Scholar 

  34. Sun, J. F.; Fan, F. G.; Wang, P.; Ma, S. Y.; Song, L. N.; Gu, N. Orientation-dependent thermogenesis of assembled magnetic nanoparticles in the presence of an alternating magnetic field. Chemphyschem 2016, 17, 3377–3384.

    Article  CAS  Google Scholar 

  35. Hu, K.; Sun, J. F.; Guo, Z. B.; Wang, P.; Chen, Q.; Ma, M.; Gu, N. A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field. Adv. Mater. 2015, 27, 2507–2514.

    Article  CAS  Google Scholar 

  36. Yang, F.; Gu, A. Y.; Chen, Z. P.; Gu, N.; Ji, M. Multiple emulsion microbubbles for ultrasound imaging. Mater. Lett. 2008, 62, 121–124.

    Article  CAS  Google Scholar 

  37. Ge, J. P.; Hu, Y. X.; Yin, Y. D. Highly tunable Superparamagnetic colloidal photonic crystals. Angew. Chem., Int. Ed. 2007, 46, 7428–7431.

    Article  CAS  Google Scholar 

  38. Xiong, F.; Chen, Y. J.; Chen, J. X.; Yang, B. Y.; Zhang, Y.; Gao, H. L.; Hua, Z. C.; Gu, N. Rubik-like magnetic nanoassemblies as an efficient drug multifunctional carrier for cancer theranostics. J. Controlled Release 2013, 172, 993–1001.

    Article  CAS  Google Scholar 

  39. Tang, S. J.; Hu, K.; Sun, J. F.; Li, Y.; Guo, Z. B.; Liu, M.; Liu, Q.; Zhang, F. M.; Gu, N. High quality multicellular tumor spheroid induction platform based on anisotropic magnetic hydrogel. ACS Appl. Mater. Interfaces 2017, 9, 10446–10452.

    Article  CAS  Google Scholar 

  40. Yang, F.; Li, L.; Li, Y. X.; Chen, Z. P.; Wu, J. R.; Gu, N. Super-paramagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents. Phys. Med. Biol. 2008, 53, 6129–6141.

    Article  Google Scholar 

  41. Yang, F.; Li, Y. X.; Chen, Z. P.; Zhang, Y.; Wu, J. R.; Gu, N. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials 2009, 30, 3882–3890.

    Article  CAS  Google Scholar 

  42. Li, Z.; Tan, B. E.; Allix, M.; Cooper, A. I.; Rosseinsky, M. J. Direct Coprecipitation route to Monodisperse dual-functionalized magnetic iron oxide Nanocrystals without size selection. Small 2008, 4, 231–239.

    Article  CAS  Google Scholar 

  43. Sun, Y. K.; Ma, M.; Zhang, Y.; Gu, N. Synthesis of nanometer-size maghemite particles from magnetite. Colloids Surf. A: Physicochem. Eng. Aspects 2004, 245, 15–19.

    Article  CAS  Google Scholar 

  44. Chen, Z. P.; Xu, A. Q.; Zhang, Y.; Gu, N. Preparation of NiO and CoO nanoparticles using M2+-oleate (M=Ni, Co) as precursor. Curr. Appl. Phys. 2010, 10, 967–970.

    Article  Google Scholar 

  45. Song, M. J.; Zhang, Y.; Hu, S. L.; Song, L.; Dong, J. L.; Chen, Z. P.; Gu, N. Influence of morphology and surface exchange reaction on magnetic properties of monodisperse magnetite nanoparticles. Colloids Surf. A: Physicochem. Eng. Aspects 2012, 408, 114–121.

    Article  CAS  Google Scholar 

  46. Seitz, T.; Thoma, R.; Schoch, G. A.; Stihle, M.; Benz, J.; D’Arcy, B.; Wiget, A.; Ruf, A.; Hennig, M.; Sterner, R. Enhancing the stability and solubility of the glucocorticoid receptor ligand-binding domain by high-throughput library screening. J. Mol. Biol. 2010, 403, 562–577.

    Article  CAS  Google Scholar 

  47. Masthoff, I. C.; Kraken, M.; Menzel, D.; Litterst, F. J.; Garnweitner, G. Study of the growth of hydrophilic iron oxide nanoparticles obtained via the non-aqueous sol-gel method. J. Sol-Gel Sci. Technol. 2016, 77, 553–564.

    Article  CAS  Google Scholar 

  48. Wan, J. Q.; Cai, W.; Meng, X. X.; Liu, E. Z. Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem. Commun. 2007, 5004–5006.

    Google Scholar 

  49. Ali, R.; Khan, M. A.; Mahmood, A.; Chughtai, A. H.; Sultan, A.; Shahid, M.; Ishaq, M.; Warsi, M. F. Structural, magnetic and dielectric behavior of Mg1−xCaxNiyFe2−yO4 nano-ferrites synthesized by the micro-emulsion method. Ceram. Int. 2014, 40, 3841–3846.

    Article  CAS  Google Scholar 

  50. Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 2007, 46, 1222–1244.

    Article  CAS  Google Scholar 

  51. Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981, 17, 1247–1248.

    Article  Google Scholar 

  52. Bee, A.; Massart, R.; Neveu, S. Synthesis of very fine maghemite particles. J. Magn. Magn. Mater. 1995, 149, 6–9.

    Article  CAS  Google Scholar 

  53. Abou Hassan, A.; Sandre, O.; Cabuil, V.; Tabeling, P. Synthesis of iron oxide nanoparticles in a microfluidic device: Preliminary results in a coaxial flow millichannel. Chem. Commun. 2008, 1783–1785.

    Google Scholar 

  54. Kumar, K.; Nightingale, A. M.; Krishnadasan, S. H.; Kamaly, N.; Wylenzinska-Arridge, M.; Zeissler, K.; Branford, W. R.; Ware, E.; deMello, A. J.; deMello, J. C. Direct synthesis of dextran-coated superparamagnetic iron oxide nanoparticles in a capillary-based droplet reactor. J. Mater. Chem. 2012, 22, 4704–4708.

    Article  CAS  Google Scholar 

  55. Chen, B.; Li, Y.; Zhang, X. Q.; Liu, F.; Liu, Y. L.; Ji, M.; Xiong, F.; Gu, N. An efficient synthesis of ferumoxytol induced by alternating-current magnetic field. Mater. Lett. 2016, 170, 93–96.

    Article  CAS  Google Scholar 

  56. Li, Y.; Hu, K.; Chen, B.; Liang, Y. J.; Fan, F. G.; Sun, J. F.; Zhang, Y.; Gu, N. Fe3O4@PSC nanoparticle clusters with enhanced magnetic properties prepared by alternating-current magnetic field assisted co-precipitation. Colloids Surf. A: Physicochem. Eng. Aspects 2017, 520, 348–354.

    Article  CAS  Google Scholar 

  57. Qin, Z. G.; Chen, B.; Huang, X.; Mao, Y.; Li, Y.; Yang, F.; Gu, N. Magnetic internal heating-induced high performance Prussian blue nanoparticle preparation and excellent catalytic activity. Dalton Trans. 2019, 48, 17169–17173.

    Article  CAS  Google Scholar 

  58. Liang, Y. J.; Zhang, Y.; Guo, Z. R.; Xie, J.; Bai, T. T.; Zou, J. M.; Gu, N. Ultrafast preparation of Monodisperse Fe3O4 nanoparticles by microwave-assisted thermal decomposition. Chem.—Eur. J. 2016, 22, 11807–11815.

    Article  CAS  Google Scholar 

  59. Liang, Y. J.; Fan, F. G.; Ma, M.; Sun, J. F.; Chen, J.; Zhang, Y.; Gu, N. Size-dependent electromagnetic properties and the related simulations of Fe3O4 nanoparticles made by microwave-assisted thermal decomposition. Colloids Surf. A: Physicochem. Eng. Aspects 2017, 530, 191–199.

    Article  CAS  Google Scholar 

  60. Erdemir, D.; Lee, A. Y.; Myerson, A. S. Nucleation of crystals from solution: Classical and two-step models. Acc. Chem. Res. 2009, 42, 621–629.

    Article  CAS  Google Scholar 

  61. Wang, F. D.; Richards, V. N.; Shields, S. P.; Buhro, W. E. Kinetics and mechanisms of aggregative Nanocrystal growth. Chem. Mater. 2014, 26, 5–21.

    Article  Google Scholar 

  62. Sun, J. F.; Xu, R.; Zhang, Y.; Ma, M.; Gu, N. Magnetic nanoparticles separation based on nanostructures. J. Magn. Magn. Mater. 2007, 312, 354–358.

    Article  CAS  Google Scholar 

  63. Sun, J. F.; He, M. M.; Liu, X.; Gu, N. Optimizing colloidal dispersity of magnetic nanoparticles based on magnetic separation with magnetic nanowires array. Appl. Phys. A 2015, 118, 569–577.

    Article  CAS  Google Scholar 

  64. Jordan, A.; Maier-Hauff, K. Magnetic nanoparticles for intracranial thermotherapy. J. Nanosci. Nanotechnol. 2007, 7, 4604–4606.

    Article  CAS  Google Scholar 

  65. de Haan, K.; Ballard, Z. S.; Rivenson, Y.; Wu, Y. C.; Ozcan, A. Resolution enhancement in scanning electron microscopy using deep learning. Sci. Rep. 2019, 9, 12050.

    Article  Google Scholar 

  66. Qiao, C.; Li, D.; Guo, Y. T.; Liu, C.; Jiang, T.; Dai, Q. H.; Li, D. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat. Methods 2021, 18, 194–202.

    Article  CAS  Google Scholar 

  67. Odziomek, K.; Ushizima, D.; Oberbek, P.; Kurzydłowski, K. J.; Puzyn, T.; Haranczyk, M. Scanning electron microscopy image representativeness: Morphological data on nanoparticles. J. Microsc. 2017, 265, 34–50.

    Article  CAS  Google Scholar 

  68. Sun, B. C.; Barnard, A. S. Texture based image classification for nanoparticle surface characterisation and machine learning. J. Phys.: Mater. 2018, 1, 016001.

    Google Scholar 

  69. Han, B. N.; Lin, Y. X.; Yang, Y. F.; Mao, N. N.; Li, W. Y.; Wang, H. Z.; Yasuda, K.; Wang, X. R.; Fatemi, V.; Zhou, L.; et al. Deep-learning-enabled fast optical identification and characterization of 2D materials. Adv. Mater. 2020, 32, 2000953.

    Article  CAS  Google Scholar 

  70. Güven, G.; Oktay, A. B. Nanoparticle detection from TEM images with deep learning. In Proceedings of the 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2018; pp 1–4.

  71. Roberts, G.; Haile, S. Y.; Sainju, R.; Edwards, D. J.; Hutchinson, B.; Zhu, Y. Y. Deep learning for semantic segmentation of defects in advanced STEM images of steels. Sci. Rep. 2019, 9, 12744.

    Article  Google Scholar 

  72. Lee, B.; Yoon, S.; Lee, J. W.; Kim, Y.; Chang, J.; Yun, J.; Ro, J. C.; Lee, J. S.; Lee, J. H. Statistical characterization of the morphologies of nanoparticles through machine learning based electron microscopy image analysis. ACS Nano 2020, 14, 17125–17133.

    Article  CAS  Google Scholar 

  73. Ahn, T.; Kim, J. H.; Yang, H. M.; Lee, J. W.; Kim, J. D. Formation pathways of magnetite nanoparticles by Coprecipitation method. J. Phys. Chem. C 2012, 116, 6069–6076.

    Article  CAS  Google Scholar 

  74. Liu, H. Y.; Sun, J. F.; Wang, H. Y.; Wang, P.; Song, L. N.; Li, Y.; Chen, B.; Zhang, Y.; Gu, N. Quantitative evaluation of the total magnetic moments of colloidal magnetic nanoparticles: A kinetics-based method. ChemPhysChem 2015, 16, 1598–1602.

    Article  CAS  Google Scholar 

  75. Wang, H. Y.; Ge, Y. Q.; Sun, J. F.; Wang, H.; Gu, N. Magnetic sensor based on image processing for dynamically tracking magnetic moment of single magnetic mesenchymal stem cell. Biosens. Bioelectron. 2020, 169, 112593.

    Article  CAS  Google Scholar 

  76. Alexandrov, V.; Rosso, K. M. Ab initio modeling of Fe(II) adsorption and interfacial electron transfer at goethite (α-FeOOH) surfaces. Phys. Chem. Chem. Phys. 2015, 17, 14518–14531.

    Article  CAS  Google Scholar 

  77. Kerisit, S.; Zarzycki, P.; Rosso, K. M. Computational molecular simulation of the oxidative adsorption of ferrous iron at the hematite (001)-water interface. J. Phys. Chem. C 2015, 119, 9242–9252.

    Article  CAS  Google Scholar 

  78. Jones, F.; Rohl, A. L.; Farrow, J. B.; van Bronswijk, W. Molecular modeling of water adsorption on hematite. Phys. Chem. Chem. Phys. 2000, 2, 3209–3216.

    Article  CAS  Google Scholar 

  79. Zhang, H. Z.; Waychunas, G. A.; Banfield, J. F. Molecular dynamics simulation study of the early stages of nucleation of iron Oxyhydroxide nanoparticles in aqueous solutions. J. Phys. Chem. B 2015, 119, 10630–10642.

    Article  CAS  Google Scholar 

  80. Kawska, A.; Duchstein, P.; Hochrein, O.; Zahn, D. Atomistic mechanisms of ZnO Aggregation from Ethanolic solution: Ion association, proton transfer, and self-organization. Nano Lett. 2008, 8, 2336–2340.

    Article  CAS  Google Scholar 

  81. Debus, C.; Wu, B. H.; Kollmann, T.; Duchstein, P.; Siglreitmeier, M.; Herrera, S.; Benke, D.; Kisailus, D.; Schwahn, D.; Pipich, V. et al. Bioinspired multifunctional layered magnetic hybrid materials. Bioinsp., Biomim. Nanobiomater. 2019, 8, 28–46.

    Google Scholar 

  82. Siglreitmeier, M.; Wu, B. H.; Kollmann, T.; Neubauer, M.; Nagy, G.; Schwahn, D.; Pipich, V.; Faivre, D.; Zahn, D.; Fery, A. et al. Multifunctional layered magnetic composites. Beilstein J. Nanotechnol. 2015, 6, 134–148.

    Article  Google Scholar 

  83. Baumgartner, J.; Dey, A.; Bomans, P. H. H.; Le Coadou, C.; Fratzl, P.; Sommerdijk, N. A. J. M.; Faivre, D. Nucleation and growth of magnetite from solution. Nat. Mater. 2013, 12, 310–314.

    Article  CAS  Google Scholar 

  84. Zhang, J.; Lei, Y. K.; Zhang, Z.; Chang, J. H.; Li, M. D.; Han, X.; Yang, L. J.; Yang, Y. I.; Gao, Y. Q. A perspective on deep learning for molecular modeling and simulations. J. Phys. Chem. A 2020, 124, 6745–6763.

    Article  CAS  Google Scholar 

  85. Zhang, L. F.; Han, J. Q.; Wang, H.; Car, R.; E, W. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 2018, 120, 143001.

    Article  CAS  Google Scholar 

  86. Yan, T.; Sun, B. C.; Barnard, A. S. Predicting archetypal nanoparticle shapes using a combination of thermodynamic theory and machine learning. Nanoscale 2018, 10, 21818–21826.

    Article  CAS  Google Scholar 

  87. Zhang, J. W.; Chen, J. F.; Hu, P. J.; Wang, H. F. Identifying the composition and atomic distribution of Pt-Au bimetallic nanoparticle with machine learning and genetic algorithm. Chin. Chem. Lett. 2020, 31, 890–896.

    Article  CAS  Google Scholar 

  88. Sun, B. C.; Fernandez, M.; Barnard, A. S. Machine learning for silver nanoparticle electron transfer property prediction. J. Chem. Inf. Model. 2017, 57, 2413–2423.

    Article  CAS  Google Scholar 

  89. Jang, J. T.; Nah, H.; Lee, J. H.; Moon, S. H.; Kim, M. G.; Cheon, J. Critical enhancements of MRI Contrast and Hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem., Int. Ed. 2009, 48, 1234–1238.

    Article  CAS  Google Scholar 

  90. Wang, C. Y.; Hong, J. M.; Chen, G.; Zhang, Y.; Gu, N. Facile method to synthesize oleic acid-capped magnetite nanoparticles. Chin. Chem. Lett. 2010, 21, 179–182.

    Article  CAS  Google Scholar 

  91. Chen, L.; Xie, J.; Wu, H. A.; Li, J. Z.; Wang, Z. M.; Song, L. N.; Zang, F. C.; Ma, M.; Gu, N.; Zhang, Y. Precise study on size-dependent properties of magnetic iron oxide nanoparticles for in vivo magnetic resonance imaging. J. Nanomater. 2018, 2018, 3743164.

    Article  Google Scholar 

  92. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  CAS  Google Scholar 

  93. Jia, Z. Y.; Song, L. N.; Zang, F. C.; Song, J. C.; Zhang, W.; Yan, C. Z.; Xie, J.; Ma, Z. L.; Ma, M.; Teng, G. J. et al. Active-target T1-weighted MR imaging of tiny hepatic tumor via RGD modified ultra-small Fe3O4 nanoprobes. Theranostics 2016, 6, 1780–1791.

    Article  CAS  Google Scholar 

  94. Bai, C.; Jia, Z. Y.; Song, L. N.; Zhang, W.; Chen, Y.; Zang, F. C.; Ma, M.; Gu, N.; Zhang, Y. Time-dependent T1–T2 switchable magnetic resonance imaging realized by c(RGDyK) modified Ultrasmall Fe3O4 Nanoprobes. Adv Funct. Mater 2018, 28, 1802281.

    Article  Google Scholar 

  95. Bai, C.; Hu, P. C.; Liu, N. L.; Feng, G. D.; Liu, D.; Chen, Y.; Ma, M.; Gu, N.; Zhang, Y. Synthesis of Ultrasmall Fe3O4 nanoparticles as T1T2 dual-modal magnetic resonance imaging contrast agents in rabbit hepatic tumors. ACS Appl. Nano Mater. 2020, 3, 3585–3595.

    Article  CAS  Google Scholar 

  96. Chen, B.; Guo, Z. H.; Guo, C. X.; Mao, Y.; Qin, Z. G.; Ye, D. W.; Zang, F. C.; Lou, Z. C.; Zhang, Z. H.; Li, M. Y. et al. Moderate cooling coprecipitation for extremely small iron oxide as a pH dependent T1-MRI contrast agent. Nanoscale 2020, 12, 5521–5532.

    Article  CAS  Google Scholar 

  97. Zhang, W.; Dong, J. L.; Wu, Y.; Cao, P.; Song, L.; Ma, M.; Gu, N.; Zhang, Y. Shape-dependent enzyme-like activity of Co3O4 nanoparticles and their conjugation with his-tagged EGFR single-domain antibody. Colloids Surf. B: Biointerf. 2017, 154, 55–62.

    Article  CAS  Google Scholar 

  98. Ma, M.; Zhang, Y.; Guo, Z. R.; Gu, N. Facile synthesis of ultrathin magnetic iron oxide nanoplates by Schikorr reaction. Nanoscale Res. Lett. 2013, 8, 16.

    Article  Google Scholar 

  99. Zhou, Z. J.; Wang, L. R.; Chi, X. Q.; Bao, J. F.; Yang, L. J.; Zhao, W. X.; Chen, Z.; Wang, X. M.; Chen, X. Y.; Gao, J. H. Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging. ACS Nano 2013, 7, 3287–3296.

    Article  CAS  Google Scholar 

  100. Park, J. Y.; Baek, M. J.; Choi, E. S.; Woo, S.; Kim, J. H.; Kim, T. J.; Jung, J. C.; Chae, K. S.; Chang, Y.; Lee, G. H. Paramagnetic Ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: Account for large longitudinal Relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 2009, 3, 3663–3669.

    Article  CAS  Google Scholar 

  101. Shin, T. H.; Choi, J. S.; Yun, S.; Kim, I. S.; Song, H. T.; Kim, Y.; Park, K. I.; Cheon, J. T1 and T2 dual-mode MRI contrast agent for enhancing accuracy by engineered Nanomaterials. ACS Nano 2014, 8, 3393–3401.

    Article  CAS  Google Scholar 

  102. Walz, F. The Verwey transition—a topical review. J. Phys.: Condens. Matter 2002, 14, R285–R340.

    CAS  Google Scholar 

  103. Xie, J.; Zhang, Y.; Yan, C. Y.; Song, L. N.; Wen, S.; Zang, F. C.; Chen, G.; Ding, Q.; Yan, C. Z.; Gu, N. High-performance PEGylated Mn-Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials 2014, 35, 9126–9136.

    Article  CAS  Google Scholar 

  104. Lee, J. H.; Huh, Y. M.; Jun, Y. W.; Seo, J. W.; Jang, J. T.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S.; et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2007, 13, 95–99.

    Article  CAS  Google Scholar 

  105. Song, L. N.; Yan, C. Z.; Zhang, W.; Wu, H. A.; Jia, Z. Y.; Ma, M.; Xie, J.; Gu, N.; Zhang, Y. Influence of reaction solvent on Crystallinity and magnetic properties of MnFe2O4 nanoparticles synthesized by thermal decomposition. J. Nanomater. 2016, 2016, 4878935.

    Article  Google Scholar 

  106. Ge, Y. Q.; Zhang, Y.; Xia, J. G.; Ma, M.; He, S. Y.; Nie, F.; Gu, N. Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro. Colloids Surf. B: Biointerf. 2009, 73, 294–301.

    Article  CAS  Google Scholar 

  107. Xiong, F.; Yan, C. Y.; Tian, J. L.; Geng, K. K.; Zhu, Z. Y.; Song, L. N.; Zhang, Y.; Mulvale, M.; Gu, N. 2, 3-Dimercaptosuccinic acid-modified iron oxide clusters for magnetic resonance imaging. J. Pharmaceut. Sci. 2014, 103, 4030–4037.

    Article  CAS  Google Scholar 

  108. Zheng, X. W.; Chen, Y. J.; Wang, Z. M.; Song, L. N.; Zhang, Y.; Gu, N.; Xiong, F. Preparation and in vitro cellular uptake assessment of multifunctional Rubik-like magnetic Nano-assemblies. J. Nanosci. Nanotechnol. 2019, 19, 3301–3309.

    Article  CAS  Google Scholar 

  109. Butter, K.; Bomans, P. H. H.; Frederik, P. M.; Vroege, G. J.; Philipse, A. P. Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nat. Mater. 2003, 2, 88–91.

    Article  CAS  Google Scholar 

  110. Gao, M. R.; Zhang, S. R.; Jiang, J.; Zheng, Y. R.; Tao, D. Q.; Yu, S. H. One-pot synthesis of hierarchical magnetite nanochain assemblies with complex building units and their application for water treatment. J. Mater. Chem. 2011, 21, 16888–16892.

    Article  CAS  Google Scholar 

  111. Hu, M. J.; Lu, Y.; Zhang, S.; Guo, S. R.; Lin, B.; Zhang, M.; Yu, S. H. High yield synthesis of bracelet-like hydrophilic Ni-Co magnetic alloy flux-closure Nanorings. J. Am. Chem. Soc. 2008, 130, 11606–11607.

    Article  CAS  Google Scholar 

  112. Wang, H.; Chen, Q. W.; Sun, Y. B.; Wang, M. S.; Sun, L. X.; Yan, W. S. Synthesis of necklace-like magnetic Nanorings. Langmuir 2010, 26, 5957–5962.

    Article  CAS  Google Scholar 

  113. Yang, F.; Zhang, X. X.; Song, L. N.; Cui, H. T.; Myers, J. N.; Bai, T. T.; Zhou, Y.; Chen, Z.; Gu, N. Controlled drug release and hydrolysis mechanism of polymer-magnetic nanoparticle composite. ACS Appl. Mater. Interfaces 2015, 7, 9410–9419.

    Article  CAS  Google Scholar 

  114. Lu, Y.; Zhao, Y.; Yu, L.; Dong, L.; Shi, C.; Hu, M. J.; Xu, Y. J.; Wen, L. P.; Yu, S. H. Hydrophilic Co@Au Yolk/Shell Nanospheres: Synthesis, assembly, and application to gene delivery. Adv. Mater. 2010, 22, 1407–1411.

    Article  CAS  Google Scholar 

  115. Sheparovych, R.; Sahoo, Y.; Motornov, M.; Wang, S. M.; Luo, H.; Prasad, P. N.; Sokolov, I.; Minko, S. Polyelectrolyte stabilized nanowires from Fe3O4 nanoparticles via magnetic field induced self-assembly. Chem. Mater. 2006, 18, 591–593.

    Article  CAS  Google Scholar 

  116. Fan, F. G.; Sun, J. F.; Chen, B.; Li, Y.; Hu, K.; Wang, P.; Ma, M.; Gu, N. Rotating magnetic field-controlled fabrication of magnetic hydrogel with spatially disk-like microstructures. Sci. China Mater. 2018, 61, 1112–1122.

    Article  CAS  Google Scholar 

  117. Sun, J. F.; Zhang, Y.; Chen, Z. P.; Zhou, J.; Gu, N. Fibrous aggregation of magnetite nanoparticles induced by a time-varied magnetic field. Angew. Chem., Int. Ed. 2007, 46, 4767–4770.

    Article  CAS  Google Scholar 

  118. Zhang, W. X.; Sun, J. F.; Bai, T. T.; Wang, C. Y.; Zhuang, K. H.; Zhang, Y.; Gu, N. Quasi-one-dimensional assembly of magnetic nanoparticles induced by a 50 Hz alternating magnetic field. ChemPhysChem 2010, 11, 1867–1870.

    CAS  Google Scholar 

  119. Sun, J. F.; Su, Y. X.; Wang, C. Y.; Gu, N. The investigation of frequency response for the magnetic nanoparticulate assembly induced by time-varied magnetic field. Nanoscale Res. Lett. 2011, 6, 453.

    Article  Google Scholar 

  120. Guo, Z. B.; Hu, K.; Sun, J. F.; Zhang, T. Z.; Zhang, Q. Y.; Song, L. N.; Zhang, X. Z.; Gu, N. Fabrication of hydrogel with cell adhesive Micropatterns for mimicking the oriented tumor-associated extracellular matrix. ACS Appl. Mater. Interfaces 2014, 6, 10963–10968.

    Article  CAS  Google Scholar 

  121. Hu, K.; Zhou, N. Z.; Li, Y.; Ma, S. Y.; Guo, Z. B.; Cao, M.; Zhang, Q. Y.; Sun, J. F.; Zhang, T. Z.; Gu, N. Sliced magnetic polyacrylamide hydrogel with cell-adhesive microarray interface: A novel multi-cellular spheroid culturing platform. ACS Appl. Mater. Interfaces 2016, 8, 15113–15119.

    Article  CAS  Google Scholar 

  122. Sun, J. F.; Mao, Y. Q.; Guo, Z. R.; Zhang, Y.; Gu, N. Time-varied magnetic-field induced monolayer formation and re-aggregation of Au nanoparticles during solvent evaporation. J. Nanosci. Nanotechnol. 2009, 9, 1156–1159.

    Article  CAS  Google Scholar 

  123. Sun, J. F.; Dong, J.; Sun, D. K.; Guo, Z. R.; Gu, N. Magnetically mediated Vortexlike assembly of gold Nanoshells. Langmuir 2012, 28, 6520–6526.

    Article  CAS  Google Scholar 

  124. Perica, K.; Tu, A.; Richter, A.; Bieler, J. G.; Edidin, M.; Schneck, J. P. Magnetic field-induced T Cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 2014, 8, 2252–2260.

    Article  CAS  Google Scholar 

  125. Guo, C.; Kaufman, L. J. Flow and magnetic field induced collagen alignment. Biomaterials 2007, 28, 1105–1114.

    Article  CAS  Google Scholar 

  126. Sun, J. F.; Zhou, H. Y.; Jin, Y. L.; Wang, M.; Li, Y. F.; Gu, N. Magnetically enhanced Dielectrophoretic assembly of horseradish peroxidase molecules: Chaining and molecular monolayers. ChemPhysChem 2008, 9, 1847–1850.

    Article  CAS  Google Scholar 

  127. Sun, J. F.; Sun, F.; Xu, B. B.; Gu, N. The quasi-one-dimensional assembly of horseradish peroxidase molecules in presence of the alternating magnetic field. Colloids Surf. A: Physicochem. Eng. Aspects 2010, 360, 94–98.

    Article  CAS  Google Scholar 

  128. Lu, Y.; Dong, L.; Zhang, L. C.; Su, Y. D.; Yu, S. H. Biogenic and biomimetic magnetic nanosized assemblies. Nano Today 2012, 7, 297–315.

    Article  CAS  Google Scholar 

  129. Kinge, S.; Crego-Calama, M.; Reinhoudt, D. N. Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem 2008, 9, 20–42.

    Article  CAS  Google Scholar 

  130. Fan, F. G.; Liu, J.; Sun, J. F.; Ma, S. Y.; Wang, P.; Gu, N. Magnetic energy-based understanding the mechanism of magnetothermal anisotropy for macroscopically continuous film of assembled Fe3O4 nanoparticles. AIP Adv. 2017, 7, 085109.

    Article  Google Scholar 

  131. Wang, P.; Sun, J. F.; Lou, Z. C.; Fan, F. G.; Hu, K.; Sun, Y.; Gu, N. Assembly-induced thermogenesis of gold nanoparticles in the presence of alternating magnetic field for controllable drug release of hydrogel. Adv. Mater. 2016, 28, 10801–10808.

    Article  CAS  Google Scholar 

  132. Guo, R.; Jiao, T. F.; Li, R. F.; Chen, Y.; Guo, W. C.; Zhang, L. X.; Zhou, J. X.; Zhang, Q. R.; Peng, Q. M. Sandwiched Fe3O4/Carboxylate Graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal. ACS Sustainable Chem. Eng. 2018, 6, 1279–1288.

    Article  CAS  Google Scholar 

  133. Liu, X.; Zhang, J.; Tang, S. J.; Sun, J. F.; Lou, Z. C.; Yang, Y.; Wang, P.; Li, Y.; Gu, N. Growth enhancing effect of LBL-assembled magnetic nanoparticles on primary bone marrow cells. Sci. China Mater. 2016, 59, 901–910.

    Article  CAS  Google Scholar 

  134. Zierold, R.; Wu, Z. Y.; Biskupek, J.; Kaiser, U.; Bachmann, J.; Krill III, C. E.; Nielsch, K. Magnetic, multilayered nanotubes of low aspect ratios for liquid suspensions. Adv. Funct. Mater. 2011, 21, 226–232.

    Article  CAS  Google Scholar 

  135. Wang, C. G.; Irudayaraj, J. Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small 2010, 6, 283–289.

    Article  CAS  Google Scholar 

  136. Park, J. H.; von Maltzahn, G.; Zhang, L. L.; Schwartz, M. P.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Magnetic iron oxide Nanoworms for tumor targeting and imaging. Adv. Mater. 2008, 20, 1630–1635.

    Article  CAS  Google Scholar 

  137. Kobayashi, M.; Seki, M.; Tabata, H.; Watanabe, Y.; Yamashita, I. Fabrication of aligned magnetic nanoparticles using Tobamoviruses. Nano Lett. 2010, 10, 773–776.

    Article  CAS  Google Scholar 

  138. Hu, P.; Yu, L. J.; Zuo, A. H.; Guo, C. Y.; Yuan, F. L. Fabrication of Monodisperse magnetite hollow spheres. J. Phys. Chem. C 2009, 113, 900–906.

    Article  CAS  Google Scholar 

  139. Guan, N. N.; Wang, Y. T.; Sun, D. J.; Xu, J. A simple one-pot synthesis of single-crystalline magnetite hollow spheres from a single iron precursor. Nanotechnology 2009, 20, 105603.

    Article  Google Scholar 

  140. Liu, Z.; Lammers, T.; Ehling, J.; Fokong, S.; Bornemann, J.; Kiessling, F.; Gätjens, J. Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials 2011, 32, 6155–6163.

    Article  CAS  Google Scholar 

  141. Wang, N.; Cao, X.; Kong, D. S.; Chen, W. M.; Guo, L.; Chen, C. P. Nickel chains assembled by hollow microspheres and their magnetic properties. J. Phys. Chem. C 2008, 112, 6613–6619.

    Article  CAS  Google Scholar 

  142. Yang, F.; Chen, P.; He, W.; Gu, N.; Zhang, X. Z.; Fang, K.; Zhang, Y.; Sun, J. F.; Tong, J. Y. Bubble Microreactors triggered by an alternating magnetic field as diagnostic and therapeutic delivery devices. Small 2010, 6, 1300–1305.

    Article  CAS  Google Scholar 

  143. He, W.; Yang, F.; Wu, Y. H.; Wen, S.; Chen, P.; Zhang, Y.; Gu, N. Microbubbles with surface coated by superparamagnetic iron oxide nanoparticles. Mater. Lett. 2012, 68, 64–67.

    Article  CAS  Google Scholar 

  144. Duan, L.; Yang, F.; Song, L. N.; Fang, K.; Tian, J. L.; Liang, Y. J.; Li, M. X.; Xu, N.; Chen, Z. D.; Zhang, Y. et al. Controlled assembly of magnetic nanoparticles on microbubbles for multimodal imaging. Soft Matter 2015, 11, 5492–5500.

    Article  CAS  Google Scholar 

  145. Fang, K.; Song, L. N.; Gu, Z. X.; Yang, F.; Zhang, Y.; Gu, N. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids Surf. B: Biointerf. 2015, 136, 712–720.

    Article  CAS  Google Scholar 

  146. Yang, F.; Li, Y. X.; Chen, Z. P.; Gu, N. The preparation and application of microbubble contrast agent combining ultrasound imaging and magnetic resonance imaging. Chin. Sci. Bull. 2009, 54, 2934–2939.

    Article  CAS  Google Scholar 

  147. Yang, F.; Li, M. X.; Liu, Y.; Wang, T. T.; Feng, Z. Q.; Cui, H. T.; Gu, N. Glucose and magnetic-responsive approach toward in situ nitric oxide bubbles controlled generation for hyperglycemia theranostics. J. Controlled Release 2016, 228, 87–95.

    Article  CAS  Google Scholar 

  148. Soetanto, K.; Watarai, H. Development of magnetic Microbubbles for Drug Delivery System (DDS). Jpn. J. Appl. Phys. 2000, 39, 3230–3232.

    Article  CAS  Google Scholar 

  149. Poehlmann, M.; Grishenkov, D.; Kothapalli, S. V. V. N.; Härmark, J.; Hebert, H.; Philipp, A.; Hoeller, R.; Seuss, M.; Kuttner, C.; Margheritelli, S. et al. On the interplay of shell structure with low- and high-frequency mechanics of multifunctional magnetic microbubbles. Soft Matter 2014, 10, 214–226.

    Article  CAS  Google Scholar 

  150. Hou, M.; Chen, C. X.; Tang, D. L.; Luo, S. H.; Yang, F.; Gu, N. Magnetic microbubble-mediated ultrasound-MRI registration based on robust optical flow model. Biomed. Eng. Online 2015, 14 Suppl 1, S14.

    Article  Google Scholar 

  151. Li, M. X.; Li, J.; Chen, J. P.; Liu, Y.; Cheng, X.; Yang, F.; Gu, N. Platelet membrane biomimetic magnetic Nanocarriers for targeted delivery and in situ generation of nitric oxide in early ischemic stroke. ACS Nano 2020, 14, 2024–2035.

    Article  CAS  Google Scholar 

  152. Liu, Y.; Yang, F.; Yuan, C. X.; Li, M. X.; Wang, T. T.; Chen, B.; Jin, J.; Zhao, P.; Tong, J. Y.; Luo, S. H. et al. Magnetic Nanoliposomes as in situ Microbubble bombers for multimodality image-guided cancer Theranostics. ACS Nano 2017, 11, 1509–1519.

    Article  CAS  Google Scholar 

  153. Zhou, Y.; Gu, N.; Yang, F. In situ microbubble-assisted, ultrasound-controlled release of superparamagnetic iron oxide nanoparticles from gastro-retentive tablets. Int. J. Pharm. 2020, 586, 119615.

    Article  CAS  Google Scholar 

  154. Yang, F.; Li, M. X.; Cui, H. T.; Wang, T. T.; Chen, Z. W.; Song, L. N.; Gu, Z. X.; Zhang, Y.; Gu, N. Altering the response of intracellular reactive oxygen to magnetic nanoparticles using ultrasound and microbubbles. Sci. China Mater. 2015, 58, 467–480.

    Article  CAS  Google Scholar 

  155. Yang, F.; Zhang, M.; He, W.; Chen, P.; Cai, X. W.; Yang, L.; Gu, N.; Wu, J. R. Controlled release of Fe3O4 nanoparticles in encapsulated Microbubbles to tumor cells via Sonoporation and associated cellular Bioeffects. Small 2011, 7, 902–910.

    Article  CAS  Google Scholar 

  156. Li, J.; Feng, Z. Q.; Gu, N.; Yang, F. Superparamagnetic iron oxide nanoparticles assembled magnetic nanobubbles and their application for neural stem cells labeling. J. Mater. Sci. Technol. 2021, 63, 124–132.

    Article  Google Scholar 

  157. Kircher, M. F.; Willmann, J. K. Molecular body imaginG: MR imaging, CT, and US. Part I. Principles. Radiology 2012, 263, 633–643.

    Article  Google Scholar 

  158. Chen, Y. J.; Tao, J.; Xiong, F.; Zhu, J. B.; Gu, N.; Zhang, Y. H.; Ding, Y.; Ge, L. Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Dev. Ind. Pharm. 2010, 36, 1235–1244.

    Article  CAS  Google Scholar 

  159. Chen, Y. J.; Chen, Y. J.; Tao, J.; Tao, J.; Xiong, F.; Zhu, J. B.; Gu, N.; Geng, K. K.; Geng, K. K. Characterization and in vitro cellular uptake of PEG coated iron oxide nanoparticles as MRI contrast agent. Die Pharm. — An Int. J. Pharm. Sci. 2010, 65, 481–486.

    CAS  Google Scholar 

  160. Wang, J. D.; Xie, J.; Zhou, X. J.; Cheng, Z.; Gu, N.; Teng, G. J.; Hu, Q. J.; Zhu, F. P.; Chang, S. H.; Zhang, F.; et al. Ferritin enhances SPIO tracking of C6 rat glioma cells by MRI. Mol. Imaging Biol. 2011, 13, 87–93.

    Article  Google Scholar 

  161. Song, L. N.; Zang, F. C.; Song, M. J.; Chen, G.; Zhang, Y.; Gu, N. Effective PEGylation of Fe3O4 Nanomicelles for in vivo MR imaging. J. Nanosci. Nanotechnol. 2015, 15, 4111–4118.

    Article  CAS  Google Scholar 

  162. Lee, N.; Choi, Y.; Lee, Y.; Park, M.; Moon, W. K.; Choi, S. H.; Hyeon, T. Water-dispersible Ferrimagnetic iron oxide Nanocubes with extremely High r2 Relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett. 2012, 12, 3127–3131.

    Article  CAS  Google Scholar 

  163. Brooks, R. A.; Moiny, F.; Gillis, P. On T2-shortening by weakly magnetized particles: The chemical exchange model. Magn. Reson. Med. 2001, 45, 1014–1020.

    Article  CAS  Google Scholar 

  164. Lee, S. H.; Kim, B. H.; Na, H. B.; Hyeon, T. Paramagnetic inorganic nanoparticles as T1 MRI contrast agents. WIREs Nanomed. Nanobiotechnol. 2014, 6, 196–209.

    Article  CAS  Google Scholar 

  165. Kim, B. H.; Lee, N.; Kim, H.; An, K.; Park, Y. I.; Choi, Y.; Shin, K.; Lee, Y.; Kwon, S. G.; Na, H. B. et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 2011, 133, 12624–12631.

    Article  CAS  Google Scholar 

  166. Wang, Z. Y.; Liu, J.; Li, T. R.; Liu, J.; Wang, B. D. Controlled synthesis of MnFe2O4 nanoparticles and Gd complex-based nanocomposites as tunable and enhanced T1/T2-weighted MRI contrast agents. J. Mater. Chem. B 2014, 2, 4748–4753.

    Article  CAS  Google Scholar 

  167. Penfield, J. G.; Reilly, R. F. Jr. What nephrologists need to know about gadolinium. Nat. Clin. Pract. Nephrol. 2007, 3, 654–668.

    Article  Google Scholar 

  168. Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 2006, 35, 512–523.

    Article  CAS  Google Scholar 

  169. Chen, L.; Zang, F. C.; Wu, H. A.; Li, J. Z.; Xie, J.; Ma, M.; Gu, N.; Zhang, Y. Using PEGylated magnetic nanoparticles to describe the EPR effect in tumor for predicting therapeutic efficacy of micelle drugs. Nanoscale 2018, 10, 1788–1797.

    Article  CAS  Google Scholar 

  170. Xia, Y.; Sun, J. F.; Zhao, L.; Zhang, F. M.; Liang, X. J.; Guo, Y.; Weir, M. D.; Reynolds, M. A.; Gu, N.; Xu, H. H. K. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 2018, 183, 151–170.

    Article  CAS  Google Scholar 

  171. Tian, J.; Yan, C. Y.; Liu, K. L.; Tao, J.; Guo, Z. C.; Liu, J. P.; Zhang, Y.; Xiong, F.; Gu, N. Paclitaxel-loaded magnetic nanoparticles: Synthesis, characterization, and application in targeting. J. Pharmaceut. Sci. 2017, 106, 2115–2122.

    Article  CAS  Google Scholar 

  172. Lee, I. S.; Lee, N.; Park, J.; Kim, B. H.; Yi, Y. W.; Kim, T.; Kim, T. K.; Lee, I. H.; Paik, S. R.; Hyeon, T. Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of Histidine-tagged proteins. J. Am. Chem. Soc. 2006, 128, 10658–10659.

    Article  CAS  Google Scholar 

  173. Kim, J.; Tran, V. T.; Oh, S.; Kim, C. S.; Hong, J. C.; Kim, S.; Joo, Y. S.; Mun, S.; Kim, M. H.; Jung, J. W. et al. Scalable Solvothermal synthesis of Superparamagnetic Fe3O4 Nanoclusters for Bioseparation and Theragnostic probes. ACS Appl. Mater. Interfaces 2018, 10, 41935–41946.

    Article  CAS  Google Scholar 

  174. Lim, J.; Dobson, J. Improved transfection of HUVEC and MEF cells using DNA complexes with magnetic nanoparticles in an oscillating field. J. Genet. 2012, 91, 223–227.

    Article  Google Scholar 

  175. Gersting, S. W.; Schillinger, U.; Lausier, J.; Nicklaus, P.; Rudolph, C.; Plank, C.; Reinhardt, D.; Rosenecker, J. Gene delivery to respiratory epithelial cells by magnetofection. J. Gene Med. 2004, 6, 913–922.

    Article  CAS  Google Scholar 

  176. Krötz, F.; Sohn, H. Y.; Gloe, T.; Plank, C.; Pohl, U. Magnetofection potentiates gene delivery to cultured endothelial cells. J. Vasc. Res. 2003, 40, 425–434.

    Article  Google Scholar 

  177. Liang, Y. J.; Wang, H. Y.; Yu, H.; Feng, G. D.; Liu, F.; Ma, M.; Zhang, Y.; Gu, N. Magnetic navigation helps PLGA drug loaded magnetic microspheres achieve precise chemoembolization and hyperthermia. Colloids Surf. A: Physicochem. Eng. Aspects 2020, 588, 124364.

    Article  CAS  Google Scholar 

  178. Liu, Y.; Li, J.; Chen, H. M.; Cai, Y.; Sheng, T. Y.; Wang, P.; Li, Z. Y.; Yang, F.; Gu, N. Magnet-activatable nanoliposomes as intracellular bubble microreactors to enhance drug delivery efficacy and burst cancer cells. Nanoscale 2019, 11, 18854–18865.

    Article  CAS  Google Scholar 

  179. Dames, P.; Gleich, B.; Flemmer, A.; Hajek, K.; Seidl, N.; Wiekhorst, F.; Eberbeck, D.; Bittmann, I.; Bergemann, C.; Weyh, T. et al. Targeted delivery of magnetic aerosol droplets to the lung. Nat. Nanotechnol. 2007, 2, 495–499.

    Article  Google Scholar 

  180. Cai, Q. D.; Mai, X. L.; Miao, W. L.; Zhou, X.; Zhang, Y.; Liu, X.; Lu, W.; Zhang, J. Q.; Gu, N.; Sun, J. F. Specific, Non-invasive, and magnetically directed targeting of magnetic erythrocytes in blood vessels of Mice. IEEE Trans. Biomed. Eng. 2020, 67, 2276–2285.

    Google Scholar 

  181. Liang, Y. J.; Yu, H.; Feng, G. D.; Zhuang, L. L.; Xi, W.; Ma, M.; Chen, J.; Gu, N.; Zhang, Y. High-performance Poly(lactic-co-glycolic acid)-Magnetic microspheres prepared by rotating membrane emulsification for Transcatheter arterial embolization and magnetic ablation in VX2 Liver Tumors. ACS Appl. Mater. Interfaces 2017, 9, 43478–43489.

    Article  CAS  Google Scholar 

  182. Wang, G. H.; Xu, D. R.; Chai, Q.; Tan, X. L.; Zhang, Y.; Gu, N.; Tang, J. T. Magnetic fluid hyperthermia inhibits the growth of breast carcinoma and downregulates vascular endothelial growth factor expression. Oncol. Lett. 2014, 7, 1370–1374.

    Article  CAS  Google Scholar 

  183. Benyettou, F.; Das, G.; Nair, A. R.; Prakasam, T.; Shinde, D. B.; Sharma, S. K.; Whelan, J.; Lalatonne, Y.; Traboulsi, H.; Pasricha, R. et al. Covalent organic framework embedded with magnetic nanoparticles for MRI and chemo-thermotherapy. J. Am. Chem. Soc. 2020, 142, 18782–18794.

    Article  CAS  Google Scholar 

  184. Song, Y. H.; Li, D. D.; Lu, Y.; Jiang, K.; Yang, Y.; Xu, Y. J.; Dong, L.; Yan, X.; Ling, D. S.; Yang, X. Z. et al. Ferrimagnetic mPEG-b-PHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia-chemotherapy. Natl. Sci. Rev. 2020, 7, 723–736.

    Article  CAS  Google Scholar 

  185. Ma, M.; Zhang, Y.; Gu, N. Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: Phantom and numerical studies. J. Therm. Biol. 2018, 76, 89–94.

    Article  Google Scholar 

  186. Polo-Corrales, L.; Rinaldi, C. Monitoring iron oxide nanoparticle surface temperature in an alternating magnetic field using thermoresponsive fluorescent polymers. J. Appl. Phys. 2012, 111, 07B334.

    Article  Google Scholar 

  187. Xu, R. Z.; Zhang, Y.; Ma, M.; Xia, J. G.; Liu, J. W.; Guo, Q. Z.; Gu, N. Measurement of specific absorption rate and thermal simulation for arterial embolization hyperthermia in the Maghemite-gelled model. IEEE Trans. Magnet. 2007, 43, 1078–1085.

    Article  Google Scholar 

  188. Xu, R. Z.; Yu, H.; Zhang, Y.; Ma, M.; Chen, Z. P.; Wang, C. L.; Teng, G. J.; Ma, J.; Sun, X. C.; Gu, N. Three-dimensional model for determining inhomogeneous thermal dosage in a liver tumor during arterial embolization hyperthermia incorporating magnetic nanoparticles. IEEE Trans. Magnet. 2009, 45, 3085–3091.

    Article  CAS  Google Scholar 

  189. Ma, M.; Zhang, Y.; Shen, X. L.; Xie, J.; Li, Y.; Gu, N. Targeted inductive heating of nanomagnets by a combination of alternating current (AC) and static magnetic fields. Nano Res. 2015, 8, 600–610.

    Article  CAS  Google Scholar 

  190. Qian, K. Y.; Song, Y. H.; Yan, X.; Dong, L.; Xue, J. Z.; Xu, Y. J.; Wang, B.; Cao, B. Q.; Hou, Q. B.; Peng, W. et al. Injectable ferrimagnetic silk fibroin hydrogel for magnetic hyperthermia ablation of deep tumor. Biomaterials 2020, 259, 120299.

    Article  CAS  Google Scholar 

  191. Zhang, X. Q.; Gong, S. W.; Zhang, Y.; Yang, T.; Wang, C. Y.; Gu, N. Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J. Mater Chem. 2010, 20, 5110–5116.

    Article  CAS  Google Scholar 

  192. Chen, Z. W.; Yin, J. J.; Zhou, Y. T.; Zhang, Y.; Song, L. N.; Song, M. J.; Hu, S. L.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001–4012.

    Article  CAS  Google Scholar 

  193. Dowding, J. M.; Dosani, T.; Kumar, A.; Seal, S.; Self, W. T. Cerium oxide nanoparticles scavenge nitric oxide radical (·NO). Chem. Commun. 2012, 48, 4896–4898.

    Article  CAS  Google Scholar 

  194. Dong, J. L.; Song, L. N.; Yin, J. J.; He, W. W.; Wu, Y. H.; Gu, N.; Zhang, Y. Co3O4 Nanoparticles with multi-enzyme activities and their application in Immunohistochemical assay. ACS Appl. Mater. Interfaces 2014, 6, 1959–1970.

    Article  CAS  Google Scholar 

  195. Zhang, W.; Zhang, Y.; Chen, Y. H.; Li, S. Y.; Gu, N.; Hu, S. L.; Sun, Y.; Chen, X.; Li, Q. Prussian blue modified ferritin as peroxidase Mimetics and its applications in biological detection. J. Nanosci. Nanotechnol. 2013, 13, 60–67.

    Article  CAS  Google Scholar 

  196. Zhang, W.; Hu, S. L.; Yin, J. J.; He, W. W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as Multienzyme Mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865.

    Article  CAS  Google Scholar 

  197. Zhang, W.; Wu, Y.; Dong, H. J.; Yin, J. J.; Zhang, H.; Wu, H. A.; Song, L. N.; Chong, Y.; Li, Z. X.; Gu, N. et al. Sparks fly between ascorbic acid and iron-based nanozymes: A study on Prussian blue nanoparticles. Colloids Surf. B: Biointerf. 2018, 163, 379–384.

    Article  CAS  Google Scholar 

  198. Peng, F. F.; Zhang, Y.; Gu, N. Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles. Chin. Chem. Lett. 2008, 19, 730–733.

    Article  CAS  Google Scholar 

  199. Ma, M.; Xie, J.; Zhang, Y.; Chen, Z. P.; Gu, N. Fe3O4@Pt nanoparticles with enhanced peroxidase-like catalytic activity. Mater. Lett. 2013, 105, 36–39.

    Article  CAS  Google Scholar 

  200. Song, L. N.; Huang, C.; Zhang, W.; Ma, M.; Chen, Z. W.; Gu, N.; Zhang, Y. Graphene oxide-based Fe2O3 hybrid enzyme mimetic with enhanced peroxidase and catalase-like activities. Colloids Surf. A: Physicochem. Eng. Aspects 2016, 506, 747–755.

    Article  CAS  Google Scholar 

  201. Fan, K. L.; Wang, H.; Xi, J. Q.; Liu, Q.; Meng, X. Q.; Duan, D. M.; Gao, L. Z.; Yan, X. Y. Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem. Commun. 2017, 53, 424–427.

    Article  CAS  Google Scholar 

  202. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  CAS  Google Scholar 

  203. Yang, F.; Hu, S. L.; Zhang, Y.; Cai, X. W.; Huang, Y.; Wang, F.; Wen, S.; Teng, G. J.; Gu, N. A hydrogen peroxide-responsive O2 Nanogenerator for ultrasound and magnetic-resonance dual modality imaging. Adv. Mater. 2012, 24, 5205–5211.

    Article  CAS  Google Scholar 

  204. Wu, H. A.; Liu, L.; Song, L. N.; Ma, M.; Gu, N.; Zhang, Y. Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species. ACS Nano 2019, 13, 14013–14023.

    Article  CAS  Google Scholar 

  205. Sun, Y. X.; Shi, F. F.; Niu, Y. J.; Zhang, Y.; Xiong, F. Fe3O4@OA@Poloxamer nanoparticles lower triglyceride in hepatocytes through liposuction effect and nano-enzyme effect. Colloids Surf. B: Biointerf. 2019, 184, 110528.

    Article  CAS  Google Scholar 

  206. Vernekar, A. A.; Sinha, D.; Srivastava, S.; Paramasivam, P. U.; D’Silva, P.; Mugesh, G. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat. Commun. 2014, 5, 5301.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2017YFA0104302) and the National Natural Science Foundation of China (Nos. 51832001, 61821002, and 31800843). We would like to express our gratitude to Zhuxiao Gu, Xiaoyang Zhu, Yu Mao, Baocai Ma, Yuan An, Bo Chen, and Zhiguo Qin for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, N., Zhang, Z. & Li, Y. Adaptive iron-based magnetic nanomaterials of high performance for biomedical applications. Nano Res. 15, 1–17 (2022). https://doi.org/10.1007/s12274-021-3546-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3546-1

Keywords

Navigation