Skip to main content
Log in

The Trouble with Trabeculation: How Genetics Can Help to Unravel a Complex and Controversial Phenotype

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Excessive trabeculation of the cardiac left ventricular wall is a complex phenotypic substrate associated with various physiological and pathological processes. There has been considerable conjecture as to whether hypertrabeculation contributes to disease and whether left ventricular non-compaction (LVNC) cardiomyopathy is a distinct pathology. Building on recent insights into the genetic basis of LVNC cardiomyopathy, in particular three meta-analysis studies exploring genotype–phenotype associations using different methodologies, this review examines how genetic research can advance our understanding of trabeculation. Three groups of genes implicated in LVNC are described—those associated with other cardiomyopathies, other cardiac/syndromic conditions and putatively with isolated LVNC cardiomyopathy—demonstrating how these findings can inform the underlying pathologies in LVNC patients and aid differential diagnosis and management in clinical practice despite the limited utility suggested for LVNC genetic testing in recent guidelines. The outstanding questions and future research priorities for exploring the genetics of hypertrabeculation are discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARVC:

Arrhythmogenic right ventricular cardiomyopathy

CHD:

Congenital heart disease

CMR:

Cardiac magnetic resonance

CPVT:

Catecholaminergic polymorphic ventricular tachycardia

DCM:

Dilated cardiomyopathy

EA:

Ebstein anomaly

FH:

Family history

GWAS:

Genome-wide association study

HCM:

Hypertrophic cardiomyopathy

HTx:

Heart transplantation

LOD:

Logarithm of odds

LOEUF:

Loss-of-function observed/expected upper-bound fraction

LQTS:

Long QT syndrome

LV:

Left ventricular

LVNC:

Left ventricular non-compaction

MESA:

Multi-Ethnic Study of Atherosclerosis

NC/C:

Non-compact to compact myocardium ratio

RVAS:

Rare variant association study

SCD:

Sudden cardiac death

WPW:

Wolff-Parkinson-White

References

  1. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Council on Epidemiology and Prevention. Contemporary Definitions and Classification of the Cardiomyopathies: an American Heart Association Scientific Statement From the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807–16. https://doi.org/10.1161/CIRCULATIONAHA.106.174287.

    Article  PubMed  Google Scholar 

  2. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, … Keren A. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2008;29(2): 270–6. https://doi.org/10.1093/eurheartj/ehm342.

  3. Ross SB, Jones K, Blanch B, Puranik R, McGeechan K, Barratt A, Semsarian C. A systematic review and meta-analysis of the prevalence of left ventricular non-compaction in adults. Eur Heart J. 2020;41(14):1428–36. https://doi.org/10.1093/eurheartj/ehz317.

    Article  PubMed  Google Scholar 

  4. Gati S, Papadakis M, Papamichael ND, Zaidi A, Sheikh N, Reed M, … Sharma S. Reversible de novo left ventricular trabeculations in pregnant women: implications for the diagnosis of left ventricular noncompaction in low-risk populations. Circulation 2014;130(6):475–83. https://doi.org/10.1161/CIRCULATIONAHA.114.008554.

  5. Gati S, Chandra N, Bennett RL, Reed M, Kervio G, Panoulas VF, … Sharma S. Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? Heart (British Cardiac Society) 2013;99(6):401–8. https://doi.org/10.1136/heartjnl-2012-303418.

  6. Petersen SE, Jensen B, Aung N, Friedrich MG, McMahon CJ, Mohiddin SA, … Bluemke DA. Excessive trabeculation of the left ventricle: JACC: Cardiovascular Imaging Expert Panel Paper. JACC. Cardiovasc Imaging 2023;16(3):408–425. https://doi.org/10.1016/j.jcmg.2022.12.026.

  7. Zemrak F, Ahlman MA, Captur G, Mohiddin SA, Kawel-Boehm N, Prince MR, … Petersen SE. The relationship of left ventricular trabeculation to ventricular function and structure over a 9.5-year follow-up: the MESA study. J Am Coll Cardiol 2014;64(19):1971–80. https://doi.org/10.1016/j.jacc.2014.08.035.

  8. Amzulescu M-S, Rousseau MF, Ahn SA, Boileau L, de Meester de Ravenstein C, Vancraeynest D, … Gerber BL. Prognostic impact of hypertrabeculation and noncompaction phenotype in dilated cardiomyopathy: a CMR study. JACC. Cardiovasc Imaging 2015;8(8):934–46. https://doi.org/10.1016/j.jcmg.2015.04.015.

  9. Ross SB, Semsarian C. Clinical and genetic complexities of left ventricular noncompaction: preventing overdiagnosis in a disease we do not understand. JAMA Cardiol. 2018;3(11):1033–4. https://doi.org/10.1001/jamacardio.2018.2465.

    Article  PubMed  Google Scholar 

  10. van Waning JI, Caliskan K, Hoedemaekers YM, van Spaendonck-Zwarts KY, Baas AF, Boekholdt SM, … Majoor-Krakauer D. Genetics, clinical features, and long-term outcome of noncompaction cardiomyopathy. J Am Coll Cardiol 2018;71(7):711–722. https://doi.org/10.1016/j.jacc.2017.12.019.

  11. van Waning JI, Moesker J, Heijsman D, Boersma E, Majoor-Krakauer D. Systematic review of genotype-phenotype correlations in noncompaction cardiomyopathy. J Am Heart Assoc. 2019;8(23):e012993. https://doi.org/10.1161/JAHA.119.012993.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mazzarotto F, Hawley MH, Beltrami M, Beekman L, de Marvao A, McGurk KA, … Walsh R. Systematic large-scale assessment of the genetic architecture of left ventricular noncompaction reveals diverse etiologies. Genet Med 2021;23(5):856–864. https://doi.org/10.1038/s41436-020-01049-x.

  13. Rojanasopondist P, Nesheiwat L, Piombo S, Porter GA, Ren M, Phoon CKL. Genetic basis of left ventricular noncompaction. Circ Genom Precis Med. 2022;15(3):e003517. https://doi.org/10.1161/CIRCGEN.121.003517.

    Article  CAS  PubMed  Google Scholar 

  14. Owens AT, Day SM. Reappraising genes for dilated cardiomyopathy: stepping back to move forward. Circulation. 2021;144(1):20–2. https://doi.org/10.1161/CIRCULATIONAHA.121.054961.

    Article  PubMed  Google Scholar 

  15. Klaassen S, Probst S, Oechslin E, Gerull B, Krings G, Schuler P, … Thierfelder L. Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 2008;117(22):2893–901. https://doi.org/10.1161/CIRCULATIONAHA.107.746164.

  16. Richard P, Ader F, Roux M, Donal E, Eicher J-C, Aoutil N, … Charron P. Targeted panel sequencing in adult patients with left ventricular non-compaction reveals a large genetic heterogeneity. Clin Genet 2019;95(3):356–367. https://doi.org/10.1111/cge.13484.

  17. Miszalski-Jamka K, Jefferies JL, Mazur W, Głowacki J, Hu J, Lazar M, … Bainbridge MN. Novel genetic triggers and genotype-phenotype correlations in patients with left ventricular noncompaction. Circ Cardiovasc Genet 2017;10(4). https://doi.org/10.1161/CIRCGENETICS.117.001763.

  18. Ahlberg G, Refsgaard L, Lundegaard PR, Andreasen L, Ranthe MF, Linscheid N, … Olesen MS. Rare truncating variants in the sarcomeric protein titin associate with familial and early-onset atrial fibrillation. Nat Commun 2018;9(1):4316. https://doi.org/10.1038/s41467-018-06618-y.

  19. van Waning JI, Caliskan K, Michels M, Schinkel AFL, Hirsch A, Dalinghaus M, … Majoor-Krakauer D. Cardiac phenotypes, genetics, and risks in familial noncompaction cardiomyopathy. J Am Coll Cardiol 2019;73(13):1601–1611. https://doi.org/10.1016/j.jacc.2018.12.085.

  20. Arad M, Penas-Lado M, Monserrat L, Maron BJ, Sherrid M, Ho CY, … Seidman CE. Gene mutations in apical hypertrophic cardiomyopathy. Circulation 2005;112(18):2805–11. https://doi.org/10.1161/CIRCULATIONAHA.105.547448.

  21. Olson TM, Doan TP, Kishimoto NY, Whitby FG, Ackerman MJ, Fananapazir L. Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2000;32(9):1687–94. https://doi.org/10.1006/jmcc.2000.1204.

    Article  CAS  PubMed  Google Scholar 

  22. Walsh R, Mazzarotto F, Whiffin N, Buchan R, Midwinter W, Wilk A, … Ware JS. Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases: the case of hypertrophic cardiomyopathy. Genome Med 2019;11(1):5. https://doi.org/10.1186/s13073-019-0616-z.

  23. Lehman SJ, Meller A, Solieva SO, Lotthammer JM, Greenberg L, Langer SJ, … Leinwand L. Divergent molecular phenotypes in point mutations at the same residue in beta-myosin heavy chain lead to distinct cardiomyopathies. bioRxiv : the preprint server for biology. 2023;https://doi.org/10.1101/2023.07.03.547580.

  24. Ohno S, Omura M, Kawamura M, Kimura H, Itoh H, Makiyama T, … Horie M. Exon 3 deletion of RYR2 encoding cardiac ryanodine receptor is associated with left ventricular non-compaction. Europace 2014;16(11):1646–54. https://doi.org/10.1093/europace/eut382.

  25. Milano A, Vermeer AMC, Lodder EM, Barc J, Verkerk AO, Postma AV, … Bezzina CR. HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol 2014;64(8), 745–56. https://doi.org/10.1016/j.jacc.2014.05.045.

  26. Schweizer PA, Schröter J, Greiner S, Haas J, Yampolsky P, Mereles D, … Thomas D. The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. J Am Coll Cardiol 2014;64(8):757–67. https://doi.org/10.1016/j.jacc.2014.06.1155.

  27. Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J, McGuire KJ, … Watkins H. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med 2017;19(2):192–203. https://doi.org/10.1038/gim.2016.90.

  28. Mazzarotto F, Tayal U, Buchan RJ, Midwinter W, Wilk A, Whiffin N, … Walsh R. Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation 2020;141(5):387–398. https://doi.org/10.1161/CIRCULATIONAHA.119.037661.

  29. Arndt A-K, Schafer S, Drenckhahn J-D, Sabeh MK, Plovie ER, Caliebe A, … Klaassen S. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy. Am J Hum Genet 2013;93(1), 67–77. https://doi.org/10.1016/j.ajhg.2013.05.015.

  30. de Leeuw N, Houge G. Loss of PRDM16 is unlikely to cause cardiomyopathy in 1p36 deletion syndrome. Am J Hum Genet. 2014;94(1):153–4. https://doi.org/10.1016/j.ajhg.2013.11.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arndt A-K, Macrae CA, Klaassen S. Reponse to De Leeuw and Houge. Am J Hum Genet. 2014;94(1):154–5. https://doi.org/10.1016/j.ajhg.2013.11.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kramer RJ, Fatahian AN, Chan A, Mortenson J, Osher J, Sun B, … Landstrom AP. PRDM16 deletion is associated with sex-dependent cardiomyopathy and cardiac mortality: a translational, multi-institutional cohort study. Circ Genomic Precis Med 2023;e003912. https://doi.org/10.1161/CIRCGEN.122.003912.

  33. Ingles J, Goldstein J, Thaxton C, Caleshu C, Corty EW, Crowley SB, … Funke B. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genomic Precis Med 2019;12(2):e002460. https://doi.org/10.1161/CIRCGEN.119.002460.

  34. Walsh R, Offerhaus JA, Tadros R, Bezzina CR. Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies. Nat Rev Cardiol. 2022;19(3):151–67. https://doi.org/10.1038/s41569-021-00608-2.

    Article  PubMed  Google Scholar 

  35. Jordan E, Peterson L, Ai T, Asatryan B, Bronicki L, Brown E, … Hershberger RE. Evidence-based assessment of genes in dilated cardiomyopathy. Circulation 2021;144(1):7–19. https://doi.org/10.1161/CIRCULATIONAHA.120.053033.

  36. Kodo K, Ong S-G, Jahanbani F, Termglinchan V, Hirono K, InanlooRahatloo K, … Wu JC. iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol 2016;18(10):1031–42. https://doi.org/10.1038/ncb3411.

  37. Vasilescu C, Ojala TH, Brilhante V, Ojanen S, Hinterding HM, Palin E, … Suomalainen A. Genetic basis of severe childhood-onset cardiomyopathies. J Am Coll Cardiol 2018;72(19), 2324–2338. https://doi.org/10.1016/j.jacc.2018.08.2171.

  38. Myasnikov R, Brodehl A, Meshkov A, Kulikova O, Kiseleva A, Pohl GM, … Drapkina O. The double mutation DSG2-p.S363X and TBX20-p.D278X is associated with left ventricular non-compaction cardiomyopathy: case report. Int J Mol Sci 2021;22(13). https://doi.org/10.3390/ijms22136775.

  39. Zuo M-Y, Shen J, Sun L. A novel de novo TBX20 variant in a 6-year-old Chinese girl with left ventricular noncompaction: a case report. Transl Pediatr 2022;11(2):311–317. https://doi.org/10.21037/tp-21-460.

  40. Chang Y, Wacker J, Ingles J, Macciocca I, King I. Australian Genomics Cardiovascular Disorders Flagship, … Bagnall RD. TBX20 loss-of-function variants in families with left ventricular non-compaction cardiomyopathy. J Med Genet 2023;https://doi.org/10.1136/jmg-2023-109455.

  41. Luxán G, Casanova JC, Martínez-Poveda B, Prados B, D’Amato G, MacGrogan D, … de la Pompa JL. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med 2013;19(2):193–201. https://doi.org/10.1038/nm.3046.

  42. Koopmann TT, Jamshidi Y, Naghibi-Sistani M, van der Klift HM, Birjandi H, Al-Hassnan Z, … Maroofian R. Biallelic loss of LDB3 leads to a lethal pediatric dilated cardiomyopathy. Eur J Hum Genet: EJHG 2023;31(1), 97–104. https://doi.org/10.1038/s41431-022-01204-9.

  43. Wilde AAM, Semsarian C, Márquez MF, Shamloo AS, Ackerman MJ, Ashley EA, … Developed in partnership with and endorsed by the European Heart Rhythm Association (EHRA), a branch of the European Society of Cardiology (ESC), the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), and the L. A. H. R. S. (LAHRS). European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology 2022;24(8):1307–1367. https://doi.org/10.1093/europace/euac030.

  44. Meyer HV, Dawes TJW, Serrani M, Bai W, Tokarczuk P, Cai J, … O’Regan DP. Genetic and functional insights into the fractal structure of the heart. Nature 2020;584(7822):589–594. https://doi.org/10.1038/s41586-020-2635-8.

  45. Tu P, Sun H, Zhang X, Ran Q, He Y, Ran S. Diverse cardiac phenotypes among different carriers of the same MYH7 splicing variant allele (c.732+1G>A) from a family. BMC Med Genom 2022;15(1):36. https://doi.org/10.1186/s12920-022-01186-z.

  46. Jansen M, de Brouwer R, Hassanzada F, Schoemaker AE, Schmidt AF, Kooijman-Reumerman MD, … Baas AF. Penetrance and prognosis of myh7 variant-associated cardiomyopathies: results from a Dutch multicenter cohort study. JACC Heart Failure 2023;https://doi.org/10.1016/j.jchf.2023.07.007.

  47. Myasnikov RP, Kulikova OV, Meshkov AN, Bukaeva AA, Kiseleva AV, Ershova AI, … Drapkina OM. A splice variant of the MYH7 gene is causative in a family with isolated left ventricular noncompaction cardiomyopathy. Genes 2022;13(10). https://doi.org/10.3390/genes13101750.

  48. Meshkov AN, Myasnikov RP, Kiseleva AV, Kulikova OV, Sotnikova EA, Kudryavtseva MM, … Drapkina OM. Genetic landscape in Russian patients with familial left ventricular noncompaction. Front Cardiovasc Med 2023;10:1205787. https://doi.org/10.3389/fcvm.2023.1205787.

  49. Hirono K, Hata Y, Ozawa SW, Toda T, Momoi N, Fukuda Y, … for LVNC study collaborators. A burden of sarcomere gene variants in fetal-onset patients with left ventricular noncompaction. Int J Cardiol 2021;328, 122–129. https://doi.org/10.1016/j.ijcard.2020.12.013.

  50. Mehaney DA, Haghighi A, Embaby AK, Zeyada RA, Darwish RK, Elfeel NS, … Seliem ZS. Molecular analysis of dilated and left ventricular noncompaction cardiomyopathies in Egyptian children. Cardiol Young 2022;32(2), 295–300. https://doi.org/10.1017/S1047951121002055.

  51. Piekutowska-Abramczuk D, Paszkowska A, Ciara E, Frączak K, Mirecka-Rola A, Wicher D, … Ziółkowska L. Genetic profile of left ventricular noncompaction cardiomyopathy in children-a single reference center experience. Genes 2022;13(8). https://doi.org/10.3390/genes13081334.

  52. Liu S, Xie Y, Zhang H, Feng Z, Huang J, Huang J, … Wei Y. Multiple genetic variants in adolescent patients with left ventricular noncompaction cardiomyopathy. Int J Cardiol 2020;302, 117–123. https://doi.org/10.1016/j.ijcard.2019.12.001.

  53. Zhou D, Li S, Sirajuddin A, Wu W, Huang J, Sun X, … Lu M. CMR Characteristics, gene variants and long-term outcome in patients with left ventricular non-compaction cardiomyopathy. Insights Imaging 2021;12(1), 184. https://doi.org/10.1186/s13244-021-01130-2.

  54. Schultze-Berndt A, Kühnisch J, Herbst C, Seidel F, Al-Wakeel-Marquard N, Dartsch J, … Klaassen S. Reduced Systolic function and not genetic variants determine outcome in pediatric and adult left ventricular noncompaction cardiomyopathy. Front Pediatr 2021;9:722926. https://doi.org/10.3389/fped.2021.722926.

  55. Zhang F-H, An J-D, Feng S, Zhang X-J, Zhao X-L. [Clinical manifestations and gene mutation analysis of children with noncompaction of the ventricular myocardium: an analysis of 6 cases]. Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics 2021;23(1):84–90. https://doi.org/10.7499/j.issn.1008-8830.2007157.

  56. Singer ES, Ross SB, Skinner JR, Weintraub RG, Ingles J, Semsarian C, Bagnall RD. Characterization of clinically relevant copy-number variants from exomes of patients with inherited heart disease and unexplained sudden cardiac death. Gen Med: official journal of the American College of Medical Genetics. 2021;23(1):86–93. https://doi.org/10.1038/s41436-020-00970-5.

    Article  CAS  Google Scholar 

  57. Lindholm ME, Jimenez-Morales D, Zhu H, Seo K, Amar D, Zhao C, … Wheeler MT. Mono- and biallelic protein-truncating variants in alpha-actinin 2 cause cardiomyopathy through distinct mechanisms. Circulation. Genom Precis Med 2021;14(6):e003419. https://doi.org/10.1161/CIRCGEN.121.003419.

  58. Delplancq G, Tarris G, Vitobello A, Nambot S, Sorlin A, Philippe C, … Kuentz P. Cardiomyopathy due to PRDM16 mutation: first description of a fetal presentation, with possible modifier genes. Am J Med Genet. Part C, Seminars in medical genetics 2020;https://doi.org/10.1002/ajmg.c.31766.

  59. Ross SB, Singer ES, Driscoll E, Nowak N, Yeates L, Puranik R, … Semsarian C. Genetic architecture of left ventricular noncompaction in adults. Hum Genome Var 2020;7:33. https://doi.org/10.1038/s41439-020-00120-y.

  60. Hirono K, Hata Y, Miyao N, Okabe M, Takarada S, Nakaoka H, … Lvnc Study Collaborators. Left ventricular noncompaction and congenital heart disease increases the risk of congestive heart failure. J Clin Med 2020;9(3). https://doi.org/10.3390/jcm9030785.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roddy Walsh.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

Associate Editor Paul J. R. Barton oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, R. The Trouble with Trabeculation: How Genetics Can Help to Unravel a Complex and Controversial Phenotype. J. of Cardiovasc. Trans. Res. 16, 1310–1324 (2023). https://doi.org/10.1007/s12265-023-10459-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10459-6

Keywords

Navigation