Skip to main content

Advertisement

Log in

Evaluation of a Rabbit Model of Vascular Stent Healing: Application of Optical Coherence Tomography

  • Methods Paper
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

A Correction to this article was published on 05 July 2023

This article has been updated

Abstract

Percutaneous coronary intervention (PCI) is a management strategy for symptomatic obstructive coronary artery disease (CAD). Despite advancements, in-stent restenosis (ISR) still imparts a 1–2% annual rate of repeat revascularization—a focus of ongoing translational research. Optical coherence tomography (OCT) provides high resolution virtual histology of stents. Our study evaluates the use of OCT for virtual histological assessment of stent healing in a rabbit aorta model, enabling complete assessment of intraluminal healing throughout the stent. ISR varies based on intra-stent location, stent length, and stent type in a rabbit model—important considerations for translational experimental design. Atherosclerosis leads to more prominent ISR proliferation independent of stent-related factors. The rabbit stent model mirrors clinical observations, while OCT-based virtual histology demonstrates utility for pre-clinical stent assessment. Pre-clinical models should incorporate clinical and stent factors as feasible to maximize translation to clinical practice.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Simard T, Hibbert B, Ramirez FD, Froeschl M, Chen YX, O’Brien ER. The evolution of coronary stents: a brief review. Can J Cardiol. 2014;30:35–45.

    Article  PubMed  Google Scholar 

  2. Madhavan MV, Kirtane AJ, Redfors B, Généreux P, Ben-Yehuda O, Palmerini T, Benedetto U, Biondi-Zoccai G, Smits PC, Von Birgelen C, Mehran R, McAndrew T, Serruys PW, Leon MB, Pocock SJ, Stone GW. Stent-related adverse events >1 year after percutaneous coronary intervention. J Am Coll Card. 2020;75:590–604.

    Article  CAS  Google Scholar 

  3. Giustino G, Colombo A, Camaj A, Yasumura K, Mehran R, Stone GW, Kini A, Sharma SK. Coronary in-stent restenosis: JACC State-of-the-Art Review. J Am Coll Card. 2022;80:348–72.

    Article  Google Scholar 

  4. Simard T, Jung RG, Di Santo P, Harnett DT, Abdel-Razek O, Ramirez FD, Motazedian P, Parlow S, Labinaz A, Moreland R, Marbach J, Poulin A, Levi A, Majeed K, Boland P, Couture E, Sarathy K, Promislow S, Russo JJ, Chong AY, So D, Froeschl M, Dick A, Labinaz M, Le May M, Holmes DR Jr, Hibbert B. Modifiable risk factors and residual risk following coronary revascularization: insights from a regionalized dedicated follow-up clinic. Mayo Clin Proc: Innovations, quality outcomes. 2021;5:1138–52.

    PubMed  PubMed Central  Google Scholar 

  5. Araki M, Park SJ, Dauerman HL, Uemura S, Kim JS, Di Mario C, Johnson TW, Guagliumi G, Kastrati A, Joner M, Holm NR, Alfonso F, Wijns W, Adriaenssens T, Nef H, Rioufol G, Amabile N, Souteyrand G, Meneveau N, Gerbaud E, Opolski MP, Gonzalo N, Tearney GJ, Bouma B, Aguirre AD, Mintz GS, Stone GW, Bourantas CV, Räber L, Gili S, Mizuno K, Kimura S, Shinke T, Hong MK, Jang Y, Cho JM, Yan BP, Porto I, Niccoli G, Montone RA, Thondapu V, Papafaklis MI, Michalis LK, Reynolds H, Saw J, Libby P, Weisz G, Iannaccone M, Gori T, Toutouzas K, Yonetsu T, Minami Y, Takano M, Raffel OC, Kurihara O, Soeda T, Sugiyama T, Kim HO, Lee T, Higuma T, Nakajima A, Yamamoto E, Bryniarski KL, Di Vito L, Vergallo R, Fracassi F, Russo M, Seegers LM, McNulty I, Park S, Feldman M, Escaned J, Prati F, Arbustini E, Pinto FJ, Waksman R, Garcia-Garcia HM, Maehara A, Ali Z, Finn AV, Virmani R, Kini AS, Daemen J, Kume T, Hibi K, Tanaka A, Akasaka T, Kubo T, Yasuda S, Croce K, Granada JF, Lerman A, Prasad A, Regar E, Saito Y, Sankardas MA, Subban V, Weissman NJ, Chen Y, Yu B, Nicholls SJ, Barlis P, West NEJ, Arbab-Zadeh A, Ye JC, Dijkstra J, Lee H, Narula J, Crea F, Nakamura S, Kakuta T, Fujimoto J, Fuster V, Jang IK. Optical coherence tomography in coronary atherosclerosis assessment and intervention. Nat Rev Cardiol. 2022;19:684–703.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mehran R, Dangas G, Abizaid AS, Mintz GS, Lansky AJ, Satler LF, Pichard AD, Kent KM, Stone GW, Leon MB. Angiographic patterns of in-stent restenosis. Circulation. 1999;100:1872–8.

    Article  CAS  PubMed  Google Scholar 

  7. Pourdjabbar A, Hibbert B, Simard T, Ma X. Pathogenesis of neointima formation following vascular injury. Cardiovasc Hematological Disord-Drug Targets. 2011;11:30–9.

    Article  CAS  Google Scholar 

  8. Darmoch F, Alraies MC, Al-Khadra Y, Moussa Pacha H, Pinto DS, Osborn EA. Intravascular ultrasound imaging-guided versus coronary angiography-guided percutaneous coronary intervention: a systematic review and meta-analysis. J Am Heart Assoc. 2020;9:e013678.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sattar Y, Abdul Razzack A, Kompella R, Alhajri N, Arshad J, Ullah W, Zghouzi M, Mir T, Power D, Qureshi WT, Aljaroudi W, Elgendy IY, Mamas MA, Alraies MC. Outcomes of intravascular ultrasound versus optical coherence tomography guided percutaneous coronary angiography: a meta regression-based analysis. Catheter Cardiovasc Interv. 2022;99:E1-e11.

    Article  PubMed  Google Scholar 

  10. Gillmore T, Jung RG, Moreland R, Di Santo P, Stotts C, Makwana D, Abdel-Razek O, Ahmed Z, Chung K, Parlow S, Simard T, Froeschl M, Labinaz M, Hibbert B. Impact of intracoronary assessments on revascularization decisions: a contemporary evaluation. Catheter Cardiovasc Interv. 2022;100:955–63.

    Article  PubMed  Google Scholar 

  11. Shlofmitz E, Iantorno M, Waksman R. Restenosis of drug-eluting stents. Circulation: Card Interv. 2019;12:e007023.

    CAS  Google Scholar 

  12. Simard T, Motazedian P, Majeed K, Sarathy K, Jung RG, Feder J, Ramirez FD, Di Santo P, Marbach J, Dhaliwal S, Short S, Labinaz A, Schultz C, Russo JJ, So D, Chong A-Y, Le May M, Hibbert B. Contrast-free optical coherence tomography:systematic evaluation of non-contrast media for intravascular assessment. PLoS One. 2020;15:e0237588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jung RG, Duchez AC, Simard T, Dhaliwal S, Gillmore T, Di Santo P, Labinaz A, Ramirez FD, Rasheed A, Robichaud S, Ouimet M, Short S, Clifford C, Xiao F, Lordkipanidzé M, Burger D, Gadde S, Rayner KJ, Hibbert B. Plasminogen activator inhibitor-1-positive platelet-derived extracellular vesicles predicts MACE and the proinflammatory SMC phenotype. JACC Basic Tran Sci. 2022;7:985–97.

    Google Scholar 

  14. Simard T, Jung R, Labinaz A, Faraz MA, Ramirez FD, Di Santo P, Pitcher I, Motazedian P, Gaudet C, Rochman R, Marbach J, Boland P, Sarathy K, Alghofaili S, Russo JJ, Couture E, Beanlands RS and Hibbert B. Adenosine as a marker and mediator of cardiovascular homeostasis: a translational perspective. Cardiovasc Hematol Disord Drug Targets. 2018.

  15. Simard T, Jung R, Labinaz A, Faraz MA, Ramirez FD, Santo PD, Perry-Nguyen D, Pitcher I, Motazedian P, Gaudet C, Rochman R, Marbach J, Boland P, Sarathy K, Alghofaili S, Russo JJ, Couture E, Promislow S, Beanlands RS, Hibbert B. Evaluation of plasma adenosine as a marker of cardiovascular risk: analytical and biological considerations. J Am Heart Assoc. 2019;8:e012228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Simard T, Jung RG, Di Santo P, Ramirez FD, Labinaz A, Gaudet C, Motazedian P, Parlow S, Joseph J, Moreland R, Marbach J, Boland P, Promislow S, Russo JJ, Chong AY, So D, Froeschl M, Le May M, Hibbert B. Performance of plasma adenosine as a biomarker for predicting cardiovascular risk. Clin Tran Sci. 2021;14:354–61.

    Article  CAS  Google Scholar 

  17. Simard T, Motazedian P, Dhaliwal S, Di Santo P, Jung RG, Ramirez FD, Labinaz A, Short S, Parlow S, Joseph J, Rasheed A, Rockley M, Marbach J, Domecq MC, Russo JJ, Chong AY, Beanlands RS, Hibbert B. Revisiting the evidence for dipyridamole in reducing restenosis: a systematic review and meta-analysis. J Cardiovasc Pharmacol. 2021;77:450–7.

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki Y, Yeung AC, Ikeno F. The pre-clinical animal model in the translational research of interventional cardiology. JACC Cardiovasc Interv. 2009;2:373–83.

    Article  PubMed  Google Scholar 

  19. Byrom MJ, Bannon PG, White GH, Ng MKC. Animal models for the assessment of novel vascular conduits. J Vasc Surg. 2010;52:176–95.

    Article  PubMed  Google Scholar 

  20. Schwartz RS, Chronos NA, Virmani R. Preclinical restenosis models and drug-eluting stents: still important, still much to learn. J Am Coll Cardiol. 2004;44:1373–85.

    CAS  PubMed  Google Scholar 

  21. Prati F, Zimarino M, Stabile E, Pizzicannella G, Fouad T, Rabozzi R, Filippini A, Pizzicannella J, Cera M, De Caterina R. Does optical coherence tomography identify arterial healing after stenting? An in vivo comparison with histology, in a rabbit carotid model. Heart. 2008;94:217–21.

    Article  CAS  PubMed  Google Scholar 

  22. Fan J, Kitajima S, Watanabe T, Xu J, Zhang J, Liu E, Chen YE. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine. Pharmacol Ther. 2015;146:104–19.

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Wan R, Mo Y, Zhang Q, Sherwood LC, Chien S. Creating a long-term diabetic rabbit model. Exp Diabetes Res. 2010;2010:289614.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ma X, Hibbert B, Dhaliwal B, Seibert T, Chen YX, Zhao X, O’Brien ER. Delayed re-endothelialization with rapamycin-coated stents is rescued by the addition of a glycogen synthase kinase-3beta inhibitor. Cardiovasc Res. 2010;86:338–45.

    Article  CAS  PubMed  Google Scholar 

  25. Ma X, Hibbert B, McNulty M, Hu T, Zhao X, Ramirez FD, Simard T, de Belleroche JS, O’Brien ER. Heat shock protein 27 attenuates neointima formation and accelerates reendothelialization after arterial injury and stent implantation: importance of vascular endothelial growth factor up-regulation. Faseb J. 2014;28:594–602.

    Article  CAS  PubMed  Google Scholar 

  26. Hara T, Ughi GJ, McCarthy JR, Erdem SS, Mauskapf A, Lyon SC, Fard AM, Edelman ER, Tearney GJ, Jaffer FA. Intravascular fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomography in vivo. Eur Heart J. 2017;38:447–55.

    CAS  PubMed  Google Scholar 

  27. Fulcher J, Patel S, Nicholls SJ, Bao S and Celermajer D. Optical coherence tomography for serial in vivo imaging of aortic plaque in the rabbit: a preliminary experience. Open Heart. 2015;2.

  28. Pate GE, Lee M, Humphries K, Cohen E, Lowe R, Fox RS, Teskey R, Buller CE. Characterizing the spectrum of in-stent restenosis: implications for contemporary treatment. Can J Cardiol. 2006;22:1223–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee JM, Lee J, Jeong H, Choe WS, Seo WW, Lim WH, Kim YC, Hur J, Lee SE, Yang HM, Cho HJ, Kim HS. Development of a rabbit model for a preclinical comparison of coronary stent types in-vivo. Korean Circ J. 2013;43:713–22.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang I-K, Schlendorf KH, Kauffman CR, Shishkov M, Kang D-H, Halpern EF, Tearney GJ. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–5.

    Article  PubMed  Google Scholar 

  31. Prati F, Di Mario C, Moussa I, Reimers B, Mallus MT, Parma A, Lioy E, Colombo A. In-stent neointimal proliferation correlates with the amount of residual plaque burden outside the stent. Circulation. 1999;99:1011–4.

    Article  CAS  PubMed  Google Scholar 

  32. Räber L, Onuma Y, Brugaletta S, Garcia-Garcia HM, Backx B, Iñiguez A, Okkels Jensen L, Cequier-Fillat À, Pilgrim T, Christiansen EH, Hofma SH, Suttorp M, Serruys PW, Sabaté M, Windecker S. Arterial healing following primary PCI using the Absorb everolimus-eluting bioresorbable vascular scaffold (Absorb BVS) versus the durable polymer everolimus-eluting metallic stent (XIENCE) in patients with acute ST-elevation myocardial infarction: rationale and design of the randomised TROFI II study. EuroInt. 2016;12:482–9.

    Article  Google Scholar 

  33. Sabaté M, Windecker S, Iñiguez A, Okkels-Jensen L, Cequier A, Brugaletta S, Hofma SH, Räber L, Christiansen EH, Suttorp M, Pilgrim T, Anne van Es G, Sotomi Y, García-García HM, Onuma Y, Serruys PW. Everolimus-eluting bioresorbable stent vs. durable polymer everolimus-eluting metallic stent in patients with ST-segment elevation myocardial infarction: results of the randomized ABSORB ST-segment elevation myocardial infarction-TROFI II trial. Eur Heart J. 2016;37:229–40.

    Article  PubMed  Google Scholar 

  34. Antonsen L, Thayssen P, Maehara A, Hansen HS, Junker A, Veien KT, Hansen KN, Hougaard M, Mintz GS, Jensen LO. Optical coherence tomography guided percutaneous coronary intervention with nobori stent implantation in patients with non-st-segment-elevation myocardial infarction (OCTACS) trial: difference in strut coverage and dynamic malapposition patterns at 6 months. Circ Cardiovasc Interv. 2015;8:e002446.

    Article  PubMed  Google Scholar 

  35. Briguori C, Sarais C, Pagnotta P, Liistro F, Montorfano M, Chieffo A, Sgura F, Corvaja N, Albiero R, Stankovic G, Toutoutzas C, Bonizzoni E, Di Mario C, Colombo A. In-stent restenosis in small coronary arteries: impact of strut thickness. J Am Coll Cardiol. 2002;40:403–9.

    Article  PubMed  Google Scholar 

  36. Kastrati A, Mehilli J, Dirschinger J, Dotzer F, Schühlen H, Neumann FJ, Fleckenstein M, Pfafferott C, Seyfarth M, Schömig A. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation. 2001;103:2816–21.

    Article  CAS  PubMed  Google Scholar 

  37. Jinnouchi H, Torii S, Sakamoto A, Kolodgie FD, Virmani R, Finn AV. Fully bioresorbable vascular scaffolds: lessons learned and future directions. Nat Rev Cardiol. 2019;16:286–304.

    Article  CAS  PubMed  Google Scholar 

  38. Ramirez FD, Motazedian P, Jung RG, Di Santo P, MacDonald Z, Simard T, Clancy AA, Russo JJ, Welch V, Wells GA, Hibbert B. Sex bias is increasingly prevalent in preclinical cardiovascular research: implications for translational medicine and health equity for women: a systematic assessment of leading cardiovascular journals over a 10-year period. Circulation. 2017;135:625–6.

    Article  PubMed  Google Scholar 

  39. Jung RG, Parlow S, Simard T, Chen C, Ghataura H, Kishore A, Perera A, Moreland R, Hughes I, Tavella R, Hibbert B, Beltrame J and Singh K. Clinical features, sex differences and outcomes of myocardial infarction with nonobstructive coronary arteries: a registry analysis. Coron Artery Dis. 2020.

  40. Simard T, Alqahtani F, Hibbert B, Mamas MA, El‐Hajj S, Harris AH, Hohmann SF and Alkhouli M. Sex‐specific in‐hospital outcomes of transcatheter aortic valve replacement with third generation transcatheter heart valves. Catheter Cardiovasc Interv. 2021.

  41. Ramirez FD, Motazedian P, Jung RG, Di Santo P, MacDonald ZD, Moreland R, Simard T, Clancy AA, Russo JJ, Welch VA, Wells GA, Hibbert B. Methodological rigor in preclinical cardiovascular studies: targets to enhance reproducibility and promote research translation. Circ Res. 2017;120:1916–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Motazedian P, Coutinho T, Ramirez FD. Female representation in clinical studies informing atrial fibrillation guidelines: have we built a house of cards? Can J Cardiol. 2022;38:709–11.

    Article  PubMed  Google Scholar 

  43. Mohadjer A, Brown G, Shah SR, Nallapati C, Waheed N, Bavry AA, Park K. Sex-Based Differences in Coronary and Structural Percutaneous Interventions. Cardiol Ther. 2020;9:257–73.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jinnouchi H, Kuramitsu S, Shinozaki T, Tomoi Y, Hiromasa T, Kobayashi Y, Domei T, Soga Y, Hyodo M, Shirai S, Ando K. Difference of tissue characteristics between early and late restenosis after second-generation drug-eluting stents implantation - an optical coherence tomography study. Circ J. 2017;81:450–7.

    Article  PubMed  Google Scholar 

  45. Ma J, Liu X, Qiao L, Meng L, Xu X, Xue F, Cheng C, Han Z, Lu Y, Zhang W, Bu P, Zhang M, An G, Lu H, Ni M, Zhang C, Zhang Y. Association between stent implantation and progression of nontarget lesions in a rabbit model of atherosclerosis. Circ Cardiovasc Interv. 2021;14:e010764.

    Article  CAS  PubMed  Google Scholar 

  46. Paramasivam G, Devasia T, Jayaram A, Rao MSUKA, Vijayvergiya R, Nayak K. In-stent restenosis of drug-eluting stents in patients with diabetes mellitus: clinical presentation, angiographic features, and outcomes. Anatol J Cardiol. 2020;23:28–34.

    CAS  PubMed  Google Scholar 

  47. Case BC, Yerasi C, Forrestal BJ, Shlofmitz E, Garcia-Garcia HM, Mintz GS, Waksman R. Intravascular ultrasound guidance in the evaluation and treatment of left main coronary artery disease. Int J Cardiol. 2021;325:168–75.

    Article  PubMed  Google Scholar 

  48. Fedewa R, Puri R, Fleischman E, Lee J, Prabhu D, Wilson DL, Vince DG, Fleischman A. Artificial intelligence in intracoronary imaging. Curr Cardiol Rep. 2020;22:46.

    Article  PubMed  Google Scholar 

  49. Cha J-J, Son TD, Ha J, Kim J-S, Hong S-J, Ahn C-M, Kim B-K, Ko Y-G, Choi D, Hong M-K, Jang Y. Optical coherence tomography-based machine learning for predicting fractional flow reserve in intermediate coronary stenosis: a feasibility study. Sci Rep. 2020;10:20421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fujimura T, Matsumura M, Witzenbichler B, Metzger DC, Rinaldi MJ, Duffy PL, Weisz G, Stuckey TD, Ali ZA, Zhou Z, Mintz GS, Stone GW, Maehara A. Stent expansion indexes to predict clinical outcomes: an IVUS substudy from ADAPT-DES. JACC Cardiovasc Interv. 2021;14:1639–50.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the UOHIAMO AFP Innovations Funding Competition for Innovative Clinical Projects and CFI (Canadian Foundation for Innovation). The Vered-Beanlands Endowed Fellowship (TS). The Canadian Institutes of Health Research (Vanier Research Graduate Scholarship (RGJ) and Banting Postdoctoral Fellowship (FDR)), the Royal College of Physicians and Surgeons of Canada (Detweiler Travelling Fellowship (FDR)) .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Hibbert.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human Subjects/Informed Consent

No human studies were carried out by the authors for this article.

Animal Studies

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Additional information

Associate Editor Judith C. Sluimer oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Clinical Relevance

• Percutaneous coronary intervention remains limited by a 1–2% annual rate of repeat revascularization—a focus of ongoing clinical and pre-clinical research.

• We demonstrate a pre-clinical rabbit model enabling pragmatic evaluation of stent healing with virtual histology via optical coherence tomography.

The original version of this article was revised: The graphical abstract originally published for this article contained an inaccuracy and has been replaced.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.07 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simard, T., Jung, R., Di Santo, P. et al. Evaluation of a Rabbit Model of Vascular Stent Healing: Application of Optical Coherence Tomography. J. of Cardiovasc. Trans. Res. 16, 1194–1204 (2023). https://doi.org/10.1007/s12265-023-10399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10399-1

Keywords

Navigation