Skip to main content

Advertisement

Log in

A Novel Quantitative Electrocardiography Strategy Reveals the Electroinhibitory Effect of Tamoxifen on the Mouse Heart

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Tamoxifen, a selective estrogen receptor modulator, was initially used to treat cancer in women and more recently to induce conditional gene editing in rodent hearts. However, little is known about the baseline biological effects of tamoxifen on the myocardium. In order to clarify the short-term effects of tamoxifen on cardiac electrophysiology of myocardium, we applied a single-chest-lead quantitative method and analyzed the short-term electrocardiographic phenotypes induced by tamoxifen in the heart of adult female mice. We found that tamoxifen prolonged the PP interval and caused a decreased heartbeat, and further induced atrioventricular block by gradually prolonging the PR interval. Further correlation analysis suggested that tamoxifen had a synergistic and dose-independent inhibition on the time course of the PP interval and PR interval. This prolongation of the critical time course may represent a tamoxifen-specific ECG excitatory-inhibitory mechanism, leading to a reduction in the number of supraventricular action potentials and thus bradycardia. Segmental reconstructions showed that tamoxifen induced a decrease in the conduction velocity of action potentials throughout the atria and parts of the ventricles, resulting in a flattening of the P wave and R wave. In addition, we detected the previously reported prolongation of the QT interval, which may be due to a prolonged duration of the ventricular repolarizing T wave rather than the depolarizing QRS complex. Our study highlights that tamoxifen can produce patterning alternations in the cardiac conduction system, including the formation of inhibitory electrical signals with reduced conduction velocity, implying its involvement in the regulation of myocardial ion transport and the mediation of arrhythmias.

Graphical abstract

A Novel Quantitative Electrocardiography Strategy Reveals the Electroinhibitory Effect of Tamoxifen on the Mouse Heart(Figure 9). A working model of tamoxifen producing acute electrical disturbances in the myocardium. SN, sinus node; AVN, atrioventricular node; RA, right atrium; LA, left atrium; RV, right ventricle; LV, left ventricle

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, et al. Heart disease and stroke statistics—2022 update, a report from the American Heart Association. Circulation. 2022;145(8):e153–639. https://doi.org/10.1161/CIR.0000000000001052.

    Article  PubMed  Google Scholar 

  2. Liu N, Ye X, Yao B, Zhao M, et al. Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioact Mater. 2020;6(5):1388–401. https://doi.org/10.1016/j.bioactmat.2020.10.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mehdizadeh M, Aguilar M, Thorin E, Ferbeyre G, et al. The role of cellular senescence in cardiac disease, basic biology and clinical relevance. Nat Rev Cardiol. 2022;19(4):250–64. https://doi.org/10.1038/s41569-021-00624-2.

    Article  PubMed  Google Scholar 

  4. Kusayama T, Wong J, Liu X, He W, et al. Simultaneous noninvasive recording of electrocardiogram and skin sympathetic nerve activity (neuECG). Nat Protoc. 2020;15(5):1853–77. https://doi.org/10.1038/s41596-020-0316-6.

    Article  CAS  PubMed  Google Scholar 

  5. Burnicka-Turek O, Broman MT, Steimle JD, Boukens BJ, et al. Transcriptional patterning of the ventricular cardiac conduction system. Circ Res. 2020;127(3):e94–106. https://doi.org/10.1161/CIRCRESAHA.118.314460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miranda DF, Lobo AS, Walsh B, Sandoval Y, et al. New insights into the use of the 12-lead electrocardiogram for diagnosing acute myocardial infarction in the emergency department. Can J Cardiol. 2018;34(2):132–45. https://doi.org/10.1016/j.cjca.2017.11.011.

    Article  PubMed  Google Scholar 

  7. Alexandre J, Moslehi JJ, Bersell KR, Funck-Brentano C, et al. Anticancer drug-induced cardiac rhythm disorders: current knowledge and basic underlying mechanisms. Pharmacol Ther. 2018;189(1):89–103. https://doi.org/10.1016/j.pharmthera.2018.04.009.

    Article  CAS  PubMed  Google Scholar 

  8. Shiau AK, Barstad D, Loria PM, Cheng L, et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. 1998;95(7):927–37. https://doi.org/10.1016/s0092-8674(00)81717-1.

    Article  CAS  PubMed  Google Scholar 

  9. Francis PA, Pagani O, Fleming GF, Walley BA, et al. Tailoring adjuvant endocrine therapy for premenopausal breast cancer. N Engl J Med. 2018;379(2):122–37. https://doi.org/10.1056/NEJMoa1803164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Danielian PS, Muccino D, Rowitch DH, Michael SK, et al. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol. 1998;8(24):1323–6. https://doi.org/10.1016/s0960-9822(07)00562-3.

    Article  CAS  PubMed  Google Scholar 

  11. Murphy E. Estrogen signaling and cardiovascular disease. Cir Res. 2011;109(6):687–96. https://doi.org/10.1161/CIRCRESAHA.110.236687.

    Article  CAS  Google Scholar 

  12. Iorga A, Cunningham CM, Moazeni S, Ruffenach G, et al. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ. 2017;8(1):1–16. https://doi.org/10.1186/s13293-017-0152-8.

    Article  CAS  Google Scholar 

  13. Ahmad I. Tamoxifen a pioneering drug, An update on the therapeutic potential of tamoxifen derivatives. Eur J Med Chem. 2018;143(1):515–31. https://doi.org/10.1016/j.ejmech.2017.11.056.

    Article  CAS  PubMed  Google Scholar 

  14. Novick AM, Scott AT, Epperson CN, Schneck CD. Neuropsychiatric effects of tamoxifen, challenges and opportunities. Front Neuroendocrinol. 2020;59(1):100869–79. https://doi.org/10.1016/j.yfrne.2020.100869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ilchuk LA, Stavskaya NI, Varlamova EA, Khamidullina AI, et al. Limitations of tamoxifen application for in vivo genome editing using Cre/ERT2 system. Int J Mol Sci. 2022;23(22):14077–93. https://doi.org/10.3390/ijms232214077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Slovacek L, Ansorgova V, Macingova Z, Haman L, et al. Tamoxifen-induced QT interval prolongation. J Clin Pharm Ther. 2008;33(4):453–5. https://doi.org/10.1111/j.1365-2710.2008.00928.x.

    Article  CAS  PubMed  Google Scholar 

  17. Grouthier V, Lebrun-Vignes B, Glazer AM, Touraine P, et al. Increased long QT and torsade de pointes reporting on tamoxifen compared with aromatase inhibitors. Heart. 2018;104(22):1859–63. https://doi.org/10.1136/heartjnl-2017-312934.

    Article  CAS  PubMed  Google Scholar 

  18. Levin MD, Bianconi S, Smith A, Cawley NX, et al. X-linked creatine transporter deficiency results in prolonged QTc and increased sudden death risk in humans and disease model. Genet Med. 2021;23(10):1864–72. https://doi.org/10.1038/s41436-021-01224-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salem JE, Nguyen LS, Moslehi JJ, Ederhy S, et al. Anticancer drug-induced life-threatening ventricular arrhythmias, a World Health Organization pharmacovigilance study. Eur Heart J. 2021;42(38):3915–28. https://doi.org/10.1093/eurheartj/ehab362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kagiyama N, Piccirilli M, Yanamala N, Shrestha S, et al. Machine learning assessment of left ventricular diastolic function based on electrocardiographic features. J Am Coll Cardiol. 2020;76(8):930–41. https://doi.org/10.1016/j.jacc.2020.06.061.

    Article  PubMed  Google Scholar 

  21. Bachtiger P, Petri CF, Scott FE, Park SR, et al. Point-of-care screening for heart failure with reduced ejection fraction using artificial intelligence during ECG-enabled stethoscope examination in London; UK, a prospective; observational; multicentre study. Lancet Digit Health. 2022;4(2):e117–25. https://doi.org/10.1016/S2589-7500(21)00256-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Whitfield J, Littlewood T, Soucek L. Tamoxifen administration to mice. Cold Spring Harb Protoc. 2015;2015(3):269–71. https://doi.org/10.1101/pdb.prot077966.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brown AO, Mann B, Gao G, Hankins JS, et al. Streptococcus pneumoniae translocates into the myocardium and forms unique microlesions that disrupt cardiac function. PLoS Pathog. 2014;10(9):e1004383–97. https://doi.org/10.1371/journal.ppat.1004383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao Y, Rafatian N, Feric NT, Cox BJ, et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell. 2019;176(4):913–27. https://doi.org/10.1016/j.cell.2018.11.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sula A, Hollingworth D, Ng LCT, Larmore M, et al. A tamoxifen receptor within a voltage-gated sodium channel. Mol Cell. 2021;81(6):1160–9. https://doi.org/10.1016/j.molcel.2020.12.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McCollum MM, Larmore M, Ishihara S, Ng LCT, et al. Targeting the tamoxifen receptor within sodium channels to block osteoarthritic pain. Cell Rep. 2022;40(8):111248–74. https://doi.org/10.1016/j.celrep.2022.111248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Raghunath S, Cerna UAE, Jing L, vanMaanen DP, et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat Med. 2020;26(6):886–91. https://doi.org/10.1038/s41591-020-0870-z.

    Article  CAS  PubMed  Google Scholar 

  28. Kagiyama N, Piccirilli M, Yanamala N, Shrestha S, et al. Machine learning assessment of left ventricular diastolic function based on electrocardiographic features. J Am Coll Cardiol. 2020;76(8):930–41. https://doi.org/10.1016/j.jacc.2020.06.061.

    Article  PubMed  Google Scholar 

  29. Hablitz LM, Vinitsky HS, Sun Q, Stæger FF, et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv. 2019;5(2):eaav5447–55. https://doi.org/10.1126/sciadv.aav5447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsushima T, Patel TR, Sahadevan J. Unusual cause of cardiac arrest. J AMA Intern Med. 2021;181(4):542–3. https://doi.org/10.1001/jamainternmed.2020.8370.

    Article  Google Scholar 

  31. Tang CW, Scheinman MM, Van Hare GF, Epstein LM, et al. Use of P wave configuration during atrial tachycardia to predict site of origin. J Am Coll Cardiol. 1995;26(5):1315–24. https://doi.org/10.1016/0735-1097(95)00307-X.

    Article  CAS  PubMed  Google Scholar 

  32. Lou Q, Hansen BJ, Fedorenko O, Csepe TA, et al. Upregulation of adenosine A1 receptors facilitates sinoatrial node dysfunction in chronic canine heart failure by exacerbating nodal conduction abnormalities revealed by novel dual-sided intramural optical mapping. Circulation. 2014;130(4):315–24. https://doi.org/10.1161/CIRCULATIONAHA.113.007086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liang D, Xue J, Geng L, Zhou L, et al. Cellular and molecular landscape of mammalian sinoatrial node revealed by single-cell RNA sequencing. Nat Commun. 2021;12(1):287–302. https://doi.org/10.1038/s41467-020-20448-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schlotter F, Halu A, Goto S, Blaser MC, et al. Spatiotemporal multi-omics mapping generates a molecular atlas of the aortic valve and reveals networks driving disease. Circulation. 2018;138(4):377–93. https://doi.org/10.1161/CIRCULATIONAHA.117.032291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kwon J, Jo YY, Lee SY, Kim KH. Artificial intelligence using electrocardiography, strengths and pitfalls. Eur Heart J. 2021;42(30):2896–8. https://doi.org/10.1093/eurheartj/ehab090.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Varró A, Tomek J, Nagy N, Virág L, et al. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev. 2021;101(3):1083–176. https://doi.org/10.1152/physrev.00024.2019.

    Article  CAS  PubMed  Google Scholar 

  37. Al S, Hollingworth D, Ng LCT, Larmore M, et al. A tamoxifen receptor within a voltage-gated sodium channel. Mol Cell. 2021;81(6):1160–9.e5. https://doi.org/10.1016/j.molcel.2020.12.048.

    Article  CAS  Google Scholar 

  38. McCollum MM, Larmore M, Ishihara S, Ng LCT, et al. Targeting the tamoxifen receptor within sodium channels to block osteoarthritic pain. Cell Rep. 2022;40(8):111248. https://doi.org/10.1016/j.celrep.2022.111248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the other managers, staff, and participants in the authors’ institutions who have supported this study.

Funding

This research was funded by the National Key Research and Development Program of China (2018YFA0108700), the National Natural Science Foundation of China (81974019, 82100275, 82070484), the Guangdong Provincial Special Support Program for Prominent Talents(2021JC06Y656), the Science and Technology Planning Project of Guangdong Province (2020B1111170011, 2022B1212010010), the Guangdong Special Funds for Science and Technology Innovation Strategy, China (Stability support for scientific research institutions affiliated to Guangdong Province (GDCI 2021)), the Guangzhou Science and Technology Plan Project (202201000006), and the Special Project of Dengfeng Program of Guangdong Provincial People’s Hospital (DFJH201812; KJ012019119; KJ012019423).

Author information

Authors and Affiliations

Authors

Contributions

P. Z., N. L., H. L., and D. C. designed and monitored the experiments. M. X., N. L., and G. L. (Gang Liu) performed and analyzed experiments. Y. W., W. Z., D. Y., J. W., S. X., and S. W. analyzed and interpreted experiments. M. X., S. Z., G. L. (Gang Liu), Y. W., N. L., and P. Z. wrote the manuscript. N. L., M. X., L. G., G. L. (Ge Li), D. C., H. L., and P. Z. edited the manuscript.

Corresponding authors

Correspondence to Dehua Chang, Hao Lai, Nanbo Liu or Ping Zhu.

Ethics declarations

Conflicts of Interest

The authors declare no competing interests.

Additional information

Associate Editor Nicola Smart oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Zhu, S., Liu, G. et al. A Novel Quantitative Electrocardiography Strategy Reveals the Electroinhibitory Effect of Tamoxifen on the Mouse Heart. J. of Cardiovasc. Trans. Res. 16, 1232–1248 (2023). https://doi.org/10.1007/s12265-023-10395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10395-5

Keywords

Navigation