Skip to main content
Log in

Image-Guided Targeted Mitral Valve Tethering with Chordal Encircling Snares as a Preclinical Model of Secondary Mitral Regurgitation

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Development of transcatheter mitral valve interventions has ushered a significant need for large animal models of secondary mitral regurgitation. Though currently used heart failure models that chronically develop secondary mitral regurgitation are viable, the severity is lower than patients, the incubation time is long, and mortality is high. We sought to develop a swine model of acute secondary mitral regurgitation that uses image-guided placement of snares around the mitral chordae. Twenty-seven adult swine (n = 27) were assigned to secondary mitral regurgitation induced by valve tethering with image-guided chordal encircling snares (group 1, n = 7, tether MR (tMR)); secondary mitral regurgitation by percutaneous posterolateral myocardial infarction causing ventricular dysfunction and regurgitation (group 2, n = 6, functional MR (fMR)); and control animals (group 3, n = 14). Regurgitant fraction in tMR was 42.1 ± 14.2%, in fMR was 22 ± 9.6%, and in controls was 5.3 ± 3.8%. Mitral tenting height was 9.6 ± 1.3 mm in tMR, 10.1 ± 1.5 mm in fMR, and 5.8 ± 1.2 mm in controls. Chordal encircling tethers reproducibly induce clinically relevant levels of secondary mitral regurgitation, providing a new animal model for use in translational research.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SMR:

Secondary mitral regurgitation

HF:

Heart failure

MV:

Mitral valve

LV:

Left atrium

PMPM:

Posteromedial papillary muscle

ALPM:

Anterolateral papillary muscle

EDV:

End-diastolic volume

ESV:

End-systolic volume

EF:

Ejection fraction

References

  1. Stone, G. W., Lindenfeld, J., Abraham, W. T., Kar, S., Lim, D. S., Mishell, J. M., Whisenant, B., Grayburn, P. A., Rinaldi, M., Kapadia, S. R., Rajagopal, V., Sarembock, I. J., Brieke, A., Marx, S. O., Cohen, D. J., Weissman, N. J., Mack, M. J., & Investigators, C. (2018). Transcatheter mitral-valve repair in patients with heart failure. New England Journal of Medicine, 379, 2307–2318.

    Article  Google Scholar 

  2. Espiritu, D., Onohara, D., Kalra, K., Sarin, E. L., & Padala, M. (2017). Transcatheter mitral valve repair therapies: Evolution, status and challenges. Annals of Biomedical Engineering, 45, 332–359.

    Article  Google Scholar 

  3. Shim, H., Harloff, M., Percy, E., Hirji, S., Shah, P. B., & Kaneko, T. (2020). Prediction for residual regurgitation after MitraClip for functional mitral regurgitation using leaflet coaptation index. Journal of Cardiac Surgery, 35, 3555–3559.

    Article  Google Scholar 

  4. Reichart, D., Kalbacher, D., Rubsamen, N., Tigges, E., Thomas, C., Schirmer, J., Reichenspurner, H., Blankenberg, S., Conradi, L., Schafer, U., & Lubos, E. (2020). The impact of residual mitral regurgitation after MitraClip therapy in functional mitral regurgitation. European Journal of Heart Failure, 22, 1840–1848.

    Article  Google Scholar 

  5. Padala, M., Sweet, M., Hooson, S., Thourani, V. H., & Yoganathan, A. P. (2014). Hemodynamic comparison of mitral valve repair: Techniques for a flail anterior leaflet. Journal of Heart Valve Disease, 23, 171–176.

    PubMed  Google Scholar 

  6. Padala, M., Gyoneva, L. I., Thourani, V. H., & Yoganathan, A. P. (2014). Impact of mitral valve geometry on hemodynamic efficacy of surgical repair in secondary mitral regurgitation. Journal of Heart Valve Disease, 23, 79–87.

    PubMed  Google Scholar 

  7. Padala, M., Cardinau, B., Gyoneva, L. I., Thourani, V. H., & Yoganathan, A. P. (2013). Comparison of artificial neochordae and native chordal transfer in the repair of a flail posterior mitral leaflet: An experimental study. Annals of Thoracic Surgery, 95, 629–633.

    Article  Google Scholar 

  8. Padala, M., Gyoneva, L., & Yoganathan, A. P. (2012). Effect of anterior strut chordal transection on the force distribution on the marginal chordae of the mitral valve. J Thorac Cardiovasc Surg, 144, 624-633.e2.

    Article  Google Scholar 

  9. Padala, M., Sacks, M. S., Liou, S. W., Balachandran, K., He, Z., & Yoganathan, A. P. (2010). Mechanics of the mitral valve strut chordae insertion region. J Biomech Eng, 132, 081004.

    Article  Google Scholar 

  10. Padala, M., Powell, S. N., Croft, L. R., Thourani, V. H., Yoganathan, A. P., & Adams, D. H. (2009). Mitral valve hemodynamics after repair of acute posterior leaflet prolapse: Quadrangular resection versus triangular resection versus neochordoplasty. Journal of Thoracic and Cardiovascular Surgery, 138, 309–315.

    Article  Google Scholar 

  11. Erek, E., Padala, M., Pekkan, K., Jimenez, J., Yalcinba, Y. K., Salihoglu, E., Sarioglu, T., & Yoganathan, A. P. (2009). Mitral web—A new concept for mitral valve repair: Improved engineering design and in-vitro studies. Journal of Heart Valve Disease, 18, 300–306.

    PubMed  Google Scholar 

  12. Padala, M., Vasilyev, N. V., Owen, J. W., Jr., Jimenez, J. H., Dasi, L. P., del Nido, P. J., & Yoganathan, A. P. (2008). Cleft closure and undersizing annuloplasty improve mitral repair in atrioventricular canal defects. Journal of Thoracic and Cardiovascular Surgery, 136, 1243–1249.

    Article  Google Scholar 

  13. Imbrie-Moore, A. M., Paullin, C. C., Paulsen, M. J., Grady, F., Wang, H., Hironaka, C. E., Farry, J. M., Lucian, H. J., & Woo, Y. J. (2020). A novel 3D-printed preferential posterior mitral annular dilation device delineates regurgitation onset threshold in an ex vivo heart simulator. Medical Engineering & Physics, 77, 10–18.

    Article  Google Scholar 

  14. Imbrie-Moore, A. M., Paulsen, M. J., Thakore, A. D., Wang, H., Hironaka, C. E., Lucian, H. J., Farry, J. M., Edwards, B. B., Bae, J. H., Cutkosky, M. R., & Woo, Y. J. (2019). Ex vivo biomechanical study of apical versus papillary neochord anchoring for mitral regurgitation. Annals of Thoracic Surgery, 108, 90–97.

    Article  Google Scholar 

  15. Fukamachi, K., Inoue, M., Doi, K., Schenk, S., Nemeh, H., Faber, C., Navia, J. L., & McCarthy, P. M. (2005). Reduction of mitral regurgitation using the Coapsys device: A novel ex vivo method using excised recipients’ hearts. ASAIO J, 51, 82–4.

    Article  Google Scholar 

  16. Croft, L. R., Jimenez, J. H., Gorman, R. C., Gorman, J. H., 3rd., & Yoganathan, A. P. (2007). Efficacy of the edge-to-edge repair in the setting of a dilated ventricle: An in vitro study. Annals of Thoracic Surgery, 84, 1578–1584.

    Article  Google Scholar 

  17. Bhattacharya, S., Pham, T., He, Z., & Sun, W. (2014). Tension to passively cinch the mitral annulus through coronary sinus access: An ex vivo study in ovine model. Journal of Biomechanics, 47, 1382–1388.

    Article  Google Scholar 

  18. Agra, E. J., Suresh, K. S., He, Q., Onohara, D., Guyton, R. A., & Padala, M. (2020). Left ventricular thinning and distension in pig hearts as a reproducible ex vivo model of functional mitral regurgitation. ASAIO Journal, 66, 1016–1024.

    Article  CAS  Google Scholar 

  19. Jaworek, M., Mangini, A., Maroncelli, E., Lucherini, F., Rosa, R., Salurso, E., Votta, E., Antona, C., Fiore, G. B., & Vismara, R. (2021). Ex vivo model of functional mitral regurgitation using deer hearts. Journal of Cardiovascular Translational Research, 14, 513–524.

    Article  Google Scholar 

  20. Pasrija, C., Quinn, R. W., Alkhatib, H., Tran, D., Bernstein, D., Rice, M., Kotloff, E., Morales, D., D’Ambra, M. N., Vesely, M. R., & Gammie, J. S. (2021). Development of a reproducible swine model of chronic ischemic mitral regurgitation: Lessons learned. Annals of Thoracic Surgery, 111, 117–125.

    Article  Google Scholar 

  21. Shi, W., McIver, B. V., Kalra, K., Sarin, E. L., Schmarkey, S., Duggan, M., Thourani, V. H., Guyton, R. A., & Padala, M. (2017). A swine model of percutaneous intracoronary ethanol induced acute myocardial infarction and ischemic mitral regurgitation. Journal of Cardiovascular Translational Research, 10, 391–400.

    Article  Google Scholar 

  22. Llaneras, M. R., Nance, M. L., Streicher, J. T., Lima, J. A., Savino, J. S., Bogen, D. K., Deac, R. F., Ratcliffe, M. B., & Edmunds, L. H., Jr. (1994). Large animal model of ischemic mitral regurgitation. Annals of Thoracic Surgery, 57, 432–439.

    Article  CAS  Google Scholar 

  23. Hamza, O., Kiss, A., Kramer, A. M., Tillmann, K. E., & Podesser, B. K. (2020). A novel percutaneous closed chest swine model of ischaemic mitral regurgitation guided by contrast echocardiography. EuroIntervention, 16, e518–e522.

    Article  Google Scholar 

  24. Timek, T. A., Dagum, P., Lai, D. T., Liang, D., Daughters, G. T., Ingels, N. B., Jr., & Miller, D. C. (2001). Pathogenesis of mitral regurgitation in tachycardia-induced cardiomyopathy. Circulation, 104, I47–I53.

    Article  CAS  Google Scholar 

  25. Levine, R. A., Hagege, A. A., Judge, D. P., Padala, M., Dal-Bianco, J. P., Aikawa, E., Beaudoin, J., Bischoff, J., Bouatia-Naji, N., Bruneval, P., Butcher, J. T., Carpentier, A., Chaput, M., Chester, A. H., Clusel, C., Delling, F. N., Dietz, H. C., Dina, C., Durst, R., … Leducq Mitral Transatlantic N. (2015). Yacoub MH Mitral valve disease—Morphology and mechanisms. Nat Rev Cardiol., 12, 689–710.

    Article  CAS  Google Scholar 

  26. Sarin, E. L., Shi, W., Duara, R., Melone, T. A., Kalra, K., Strong, A., Girish, A., McIver, B. V., Thourani, V. H., Guyton, R. A., & Padala, M. (2016). Swine (Sus scrofa) as a model of postinfarction mitral regurgitation and techniques to accommodate its effects during surgical repair. Comparative Medicine, 66, 290–299.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Crick, S. J., Sheppard, M. N., Ho, S. Y., Gebstein, L., & Anderson, R. H. (1998). Anatomy of the pig heart: Comparisons with normal human cardiac structure. Journal of Anatomy, 193(Pt 1), 105–119.

    Article  Google Scholar 

  28. Zoghbi, W. A., Adams, D., Bonow, R. O., Enriquez-Sarano, M., Foster, E., Grayburn, P. A., Hahn, R. T., Han, Y., Hung, J., Lang, R. M., Little, S. H., Shah, D. J., Shernan, S., Thavendiranathan, P., Thomas, J. D., & Weissman, N. J. (2017). Recommendations for noninvasive evaluation of native valvular regurgitation: A report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. Journal of the American Society of Echocardiography, 30, 303–371.

    Article  Google Scholar 

  29. Jaworek, M., Lucherini, F., Romagnoni, C., Gelpi, G., Contino, M., Romitelli, P., Antona, C., Fiore, G. B., & Vismara, R. (2017). Modelling of lesions associated with functional mitral regurgitation in an ex vivo platform. Annals of Biomedical Engineering, 45, 2324–2334.

    Article  Google Scholar 

  30. Cui, Y. C., Li, K., Tian, Y., Yuan, W. M., Peng, P., Yang, J. Z., Zhang, B. J., Zhang, H. D., Wu, A. L., & Tang, Y. (2014). A pig model of ischemic mitral regurgitation induced by mitral chordae tendinae rupture and implantation of an ameroid constrictor. PLoS One, 9, 111689.

    Article  Google Scholar 

  31. Matsuzaki, K., Morita, M., Hamamoto, H., Noma, M., Robb, J. D., Gillespie, M. J., Gorman, J. H., 3rd., & Gorman, R. C. (2010). Elimination of ischemic mitral regurgitation does not alter long-term left ventricular remodeling in the ovine model. Annals of Thoracic Surgery, 90, 788–794.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the veterinary staff that provided anesthesia support during the procedures.

Funding

This work was funded by grants from the National Institutes of Health HL135145, HL140325, and HL133667, and infrastructure support from the Carlyle Fraser Heart Center at Emory University Hospital Midtown to M. Padala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muralidhar Padala.

Ethics declarations

Ethics Approval

Human studies were not carried out by the authors for this article. All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Competing Interests

M. Padala received consulting fees from Heart Repair Technologies, Inc., and Boston Scientific, which did not have any role in this work, nor did they sponsor and review this submission. M. Padala is a founder of Nyra Medical Inc. and reports significant stock ownership in it, which did not have any role in this study. K. Suresh reports minority stock ownership in Nyra Medical. The other authors declare no competing interests.

Additional information

Communicated by Associate Editor Adrian Chester oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 127 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onohara, D., Suresh, K.S., Silverman, M. et al. Image-Guided Targeted Mitral Valve Tethering with Chordal Encircling Snares as a Preclinical Model of Secondary Mitral Regurgitation. J. of Cardiovasc. Trans. Res. 15, 653–665 (2022). https://doi.org/10.1007/s12265-021-10177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10177-x

Keywords

Navigation