Skip to main content
Log in

Is thymus and activation-regulated chemokine a forgotten diagnostic and minimal residual disease marker in classical Hodgkin lymphoma?

A chronological narrative literature review

  • review
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

Summary

Objective

The objective of this paper is to elucidate the role of thymus and activation-regulated chemokine (TARC) as a marker of treatment response in classical Hodgkin lymphoma (cHL).

Background

Most patients diagnosed with cHL can be cured today but about 20–30% still experience refractoriness/relapse. Positron emission tomography (PET) has been shown to not be the optimal tool, since 15–20% of patients relapse despite negative PET. There is an unmet need for new markers to predict response to treatment as early as possible and for surveillance of patients after completion of treatment to allow prompt intervention in case of signs of evolving relapse.

Methods

Literature regarding the role of thymus and activation-regulated chemokine (TARC) in cHL was searched and 13 studies between 2005 and 2020 with a total of 1433 patients were identified and reviewed.

Conclusion

Reviewed studies suggest that TARC is one of the most promising markers, which can be used to improve treatment outcome in cHL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lang N, Crump M. PET-adapted approaches to primary therapy for advanced Hodgkin lymphoma. Ther Adv Hematol. 2020; https://doi.org/10.1177/2040620720914490.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Voltin CA, Mettler J, Grosse J, Dietlein M, Baues C, Schmitz C, et al. FDG-PET imaging for Hodgkin and diffuse large B‑cell lymphoma – an updated overview. Cancers (Basel). 2020;12(3):601. https://doi.org/10.3390/cancers12030601.

    Article  CAS  Google Scholar 

  3. Imai T, Yoshida T, Baba M, Nishimura M, Kakizaki M, Yoshie O. Molecular cloning of a novel T cell-directed CC chemokine expressed in thymus by signal sequence trap using Epstein-Barr virus vector. J Biol Chem. 1996;271(35):21514–21. https://doi.org/10.1074/jbc.271.35.21514.

    Article  CAS  PubMed  Google Scholar 

  4. Zijtregtop EAM, van der Strate I, Beishuizen A, Zwaan CM, Scheijde-Vermeulen MA, Brandsma AM, et al. Biology and clinical applicability of plasma thymus and activation-regulated chemokine (TARC) in classical Hodgkin lymphoma. Cancers (Basel). 2021;13(4):884. https://doi.org/10.3390/cancers13040884.

    Article  CAS  Google Scholar 

  5. Imai T, Baba M, Nishimura M, Kakizaki M, Takagi S, Yoshie O. The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. J Biol Chem. 1997;272(23):15036–42. https://doi.org/10.1074/jbc.272.23.15036.

    Article  CAS  PubMed  Google Scholar 

  6. van den Berg A, Visser L, Poppema S. High expression of the CC chemokine TARC in Reed-Sternberg cells. A possible explanation for the characteristic T‑cell infiltratein Hodgkin’s lymphoma. Am J Pathol. 1999;154(6):1685–91. https://doi.org/10.1016/S0002-9440(10)65424-7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Niens M, Visser L, Nolte IM, van der Steege G, Diepstra A, Cordano P, et al. Serum chemokine levels in Hodgkin lymphoma patients: highly increased levels of CCL17 and CCL22. Br J Haematol. 2008;140(5):527–36. https://doi.org/10.1111/j.1365-2141.2007.06964.x.

    Article  CAS  PubMed  Google Scholar 

  8. Weniger MA, Küppers R. Molecular biology of Hodgkin lymphoma. Leukemia. 2021;35(4):968–81. https://doi.org/10.1038/s41375-021-01204-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marshall NA, Christie LE, Munro LR, Culligan DJ, Johnston PW, Barker RN, et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood. 2004;103(5):1755–62. https://doi.org/10.1182/blood-2003-07-2594.

    Article  CAS  PubMed  Google Scholar 

  10. Thijs J, Krastev T, Weidinger S, Buckens CF, de Bruin-Weller M, Bruijnzeel-Koomen C, et al. Biomarkers for atopic dermatitis: a systematic review and meta-analysis. Curr Opin Allergy Clin Immunol. 2015;15(5):453–60. https://doi.org/10.1097/ACI.0000000000000198.

    Article  CAS  PubMed  Google Scholar 

  11. Dulmage B, Geskin L, Guitart J, Akilov OE. The biomarker landscape in mycosis fungoides and Sézary syndrome. Exp Dermatol. 2017;26(8):668–76. https://doi.org/10.1111/exd.13261.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vermeer MH, Dukers DF, ten Berge RL, Bloemena E, Wu L, Vos W, et al. Differential expression of thymus and activation regulated chemokine and its receptor CCR4 in nodal and cutaneous anaplastic large-cell lymphomas and Hodgkin’s disease. Mod Pathol. 2002;15(8):838–44. https://doi.org/10.1097/01.MP.0000021006.53593.B0.

    Article  CAS  PubMed  Google Scholar 

  13. Weihrauch MR, Manzke O, Beyer M, Haverkamp H, Diehl V, Bohlen H, et al. Elevated serum levels of CC thymus and activation-related chemokine (TARC) in primary Hodgkin’s disease: potential for a prognostic factor. Cancer Res. 2005;65(13):5516–9. https://doi.org/10.1158/0008-5472.CAN-05-0100.

    Article  CAS  PubMed  Google Scholar 

  14. Plattel WJ, van den Berg A, Visser L, van der Graaf AM, Pruim J, Vos H, et al. Plasma thymus and activation-regulated chemokine as an early response marker in classical Hodgkin’s lymphoma. Haematologica. 2012;97(3):410–5. https://doi.org/10.3324/haematol.2011.053199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sauer M, Plütschow A, Jachimowicz RD, Kleefisch D, Reiners KS, Ponader S, et al. Baseline serum TARC levels predict therapy outcome in patients with Hodgkin lymphoma. Am J Hematol. 2013;88(2):113–5. https://doi.org/10.1002/ajh.23361.

    Article  CAS  PubMed  Google Scholar 

  16. Jones K, Vari F, Keane C, Crooks P, Nourse JP, Seymour LA, et al. Serum CD163 and TARC as disease response biomarkers in classical Hodgkin lymphoma. Clin Cancer Res. 2013;19(3):731–42. https://doi.org/10.1158/1078-0432.CCR-12-2693.

    Article  CAS  PubMed  Google Scholar 

  17. Harrison SJ, Hsu AK, Neeson P, Younes A, Sureda A, Engert A, et al. Early thymus and activation-regulated chemokine (TARC) reduction and response following panobinostat treatment in patients with relapsed/refractory Hodgkin lymphoma following autologous stem cell transplant. Leuk Lymphoma. 2014;55(5):1053–60. https://doi.org/10.3109/10428194.2013.820287.

    Article  CAS  PubMed  Google Scholar 

  18. Farina L, Rezzonico F, Spina F, Dodero A, Mazzocchi A, Crippa F, et al. Serum thymus and activation-regulated chemokine level monitoring may predict disease relapse detected by PET scan after reduced-intensity allogeneic stem cell transplantation in patients with Hodgkin lymphoma. Biol Blood Marrow Transplant. 2014;20(12):1982–8. https://doi.org/10.1016/j.bbmt.2014.08.016.

    Article  CAS  PubMed  Google Scholar 

  19. Cuccaro A, Annunziata S, Cupelli E, Martini M, Calcagni ML, Rufini V, et al. CD68+ cell count, early evaluation with PET and plasma TARC levels predict response in Hodgkin lymphoma. Cancer Med. 2016;5(3):398–406. https://doi.org/10.1002/cam4.585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Plattel WJ, Alsada ZN, van Imhoff GW, Diepstra A, van den Berg A, Visser L. Biomarkers for evaluation of treatment response in classical Hodgkin lymphoma: comparison of sGalectin‑1, sCD163 and sCD30 with TARC. Br J Haematol. 2016;175(5):868–75. https://doi.org/10.1111/bjh.14317.

    Article  CAS  PubMed  Google Scholar 

  21. Guidetti A, Mazzocchi A, Miceli R, Paterno’ E, Taverna F, Spina F, et al. Early reduction of serum TARC levels may predict for success of ABVD as frontline treatment in patients with Hodgkin lymphoma. Leuk Res. 2017;62:91–7. https://doi.org/10.1016/j.leukres.2017.09.018.

    Article  CAS  PubMed  Google Scholar 

  22. Moskowitz AJ, Schöder H, Gavane S, Thoren KL, Fleisher M, Yahalom J, et al. Prognostic significance of baseline metabolic tumor volume in relapsed and refractory Hodgkin lymphoma. Blood. 2017;130(20):2196–203. https://doi.org/10.1182/blood-2017-06-788877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hsi ED, Li H, Nixon AB, Schöder H, Bartlett NL, LeBlanc M, et al. Serum levels of TARC, MDC, IL-10, and soluble CD163 in Hodgkin lymphoma: a SWOG S0816 correlative study. Blood. 2019;133(16):1762–5. https://doi.org/10.1182/blood-2018-08-870915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Plattel WJ, Visser L, Diepstra A, Glaudemans AWJM, Nijland M, van Meerten T, et al. Interim thymus and activation regulated chemokine versus interim 18 F-fluorodeoxyglucose positron-emission tomography in classical Hodgkin lymphoma response evaluation. Br J Haematol. 2020;190(1):40–4. https://doi.org/10.1111/bjh.16514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Viviani S, Mazzocchi A, Pavoni C, Taverna F, Rossi A, Patti C, et al. Early serum TARC reduction predicts prognosis in advanced-stage Hodgkin lymphoma patients treated with a PET-adapted strategy. Hematol Oncol. 2020;38(4):501–8. https://doi.org/10.1002/hon.2775.

    Article  CAS  PubMed  Google Scholar 

  26. Adams HJ, Nievelstein RA, Kwee TC. Prognostic value of interim FDG-PET in Hodgkin lymphoma: systematic review and meta-analysis. Br J Haematol. 2015;170(3):356–66. https://doi.org/10.1111/bjh.13441.

    Article  PubMed  Google Scholar 

  27. Gallamini A, Barrington SF, Biggi A, Chauvie S, Kostakoglu L, Gregianin M, et al. The predictive role of interim positron emission tomography for Hodgkin lymphoma treatment outcome is confirmed using the interpretation criteria of the Deauville five-point scale. Haematologica. 2014;99(6):1107–13. https://doi.org/10.3324/haematol.2013.103218.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zijtregtop EAM, Meyer-Wentrup F, Wong W‑C, et al. Plasma thymus and activation-regulated chemokine (TARC) as diagnostic marker in pediatric Hodgkin lymphoma. eJHaem. 2020;1:152–60. https://doi.org/10.1002/jha2.41.

    Article  Google Scholar 

  29. Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62. https://doi.org/10.1084/jem.20031074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Buglio D, Georgakis GV, Hanabuchi S, Arima K, Khaskhely NM, Liu YJ, et al. Vorinostat inhibits STAT6-mediated TH2 cytokine and TARC production and induces cell death in Hodgkin lymphoma cell lines. Blood. 2008;112(4):1424–33. https://doi.org/10.1182/blood-2008-01-133769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yonekura K, Kusumoto S, Choi I, Nakano N, Ito A, Suehiro Y, et al. Mogamulizumab for adult T‑cell leukemia-lymphoma: a multicenter prospective observational study. Blood Adv. 2020;4(20):5133–45. https://doi.org/10.1182/bloodadvances.2020003053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael Khair MD.

Ethics declarations

Conflict of interest

W. Khair declares that he has no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khair, W. Is thymus and activation-regulated chemokine a forgotten diagnostic and minimal residual disease marker in classical Hodgkin lymphoma?. memo 14, 406–411 (2021). https://doi.org/10.1007/s12254-021-00753-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-021-00753-x

Keywords

Navigation