Skip to main content
Log in

Denoising parameter dependence of coronary artery depictability in compressed sensing magnetic resonance angiography

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Using numerical indices and visual evaluation, we evaluated the dependence of coronary-artery depictability on the denoising parameter in compressed sensing magnetic resonance angiography (CS-MRA). This study was conducted to clarify the acceleration factor (AF) and denoising factor (DF) dependence of CS-MRA image quality. Vascular phantoms and clinical images were acquired using three-dimensional CS-MRA on a clinical 1.5 T system. For the phantom measurements, we compared the full width at half maximum (FWHM), sharpness, and contrast ratio of the vascular profile curves for various AFs and DFs. In the clinical cases, the FWHM, sharpness, contrast ratio, signal-to-noise ratio, noise level values, and visual evaluation results were compared for various DFs. Phantom image analyses demonstrated that the respective measurements of the FWHM, sharpness, and contrast ratios did not significantly change with an increase in AF. The FWHM and sharpness measurements slightly changed with the DF level. However, the contrast ratio tended to increase with an increase in the DF level. In the clinical cases, the FWHM and sharpness showed no significant differences, even when the DF level was changed. However, the contrast ratio tended to decrease as the DF level increased. When the DF levels of the clinical cases increased, the background signals of the myocardium, fat, and noise levels decreased. We investigated the dependence of the coronary-artery depictability on AF and DF using CS-MRA. Analysis of the coronary-artery profile curves indicated that a better image quality was achieved with a stronger DF on coronary CS-MRA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

CS-MRI:

Compressed sensing magnetic resonance imaging

CS-MRA:

Compressed sensing magnetic resonance angiography

PI-MRA:

Parallel imaging magnetic resonance angiography

SENSE:

Sensitivity encoding

AF:

Acceleration factor

DF:

Denoising factor

bSSFP:

Balanced steady-state free precession

FWHM:

Full width at half maximum

SNR:

Signal-to-noise ratio

RCA:

Right coronary artery

LAD:

Left anterior ascending

LCX:

Left circumflex

References

  1. Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med. 2003;50:1223–8. https://doi.org/10.1002/mrm.10653.

    Article  PubMed  Google Scholar 

  2. Matthias S, Robert GW. Coronary magnetic resonance angiography. J Magn Reson Imaging. 2007;26:219–34. https://doi.org/10.1002/jmri.20949.

    Article  Google Scholar 

  3. Haacke EM, Wielopolski PA, Tkach JA, Modic MT. Steady-state free precession imaging in the presence of motion: application for improved visualization of the cerebrospinal fluid. Radiol. 1990;175:545–52. https://doi.org/10.1148/radiology.175.2.2326480.

    Article  CAS  Google Scholar 

  4. Ohmoto-Sekine Y, Takahashi J, Ishihara M, Yoshida T, Isono S, Kuhara S, et al. Assessment of reproducibility in whole-heart magnetic resonance coronary angiography. In: Proceedings of the twentieth meeting of the international society for magnetic resonance in medicine. International Society for Magnetic Resonance in Medicine, Berkeley, 2014;2510.

  5. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–62.

    Article  CAS  PubMed  Google Scholar 

  6. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47:1202–10. https://doi.org/10.1002/mrm.10171.

    Article  PubMed  Google Scholar 

  7. Kato S, Kitagawa K, Ishida N, Ishida M, Nagata M, Ichikawa Y, et al. Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. J Am Coll Cardiol. 2010;56(12):983–91. https://doi.org/10.1016/j.jacc.2010.01.071.

    Article  PubMed  Google Scholar 

  8. Chang S, Cham MD, Hu S, Wang Y. 3-T navigator parallel-imaging coronary MR angiography: targeted-volume versus whole-heart acquisition. AJR Am J Roentgenol. 2008;191(1):38–42. https://doi.org/10.2214/AJR.07.2503.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jahnke C, Paetsch I, Schnackenburg B, Bornstedt A, Gebker R, et al. Coronary MR angiography with steady-state free precession: individually adapted breath-hold technique versus free-breathing technique. Radiology. 2004;232(3):669–76. https://doi.org/10.1148/radiol.2323031225.

    Article  PubMed  Google Scholar 

  10. Bhagat YA, Emery DJ, Naik S, Yeo T, Beaulieu C. Comparison of generalized autocalibrating partially parallel acquisitions and modified sensitivity encoding for diffusion tensor imaging. AJNR Am J Neuroradiol. 2007;28:293–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu K, Dougherty RF, Wu H, Middione MJ, Takahashi AM, Zhang T, et al. Hybrid-Space SENSE Reconstruction for Simultaneous Multi-Slice MRI. IEEE Trans Med Imaging. 2016;35:1824–36. https://doi.org/10.1109/TMI.2016.2531635.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Talagala SL, Sarlls JE, Liu S, Inati SJ. Improvement of temporal signal-to-noise ratio of GRAPPA accelerated echo planar imaging using a FLASH based calibration scan. Magn Reson Med. 2016;75(6):2362–71. https://doi.org/10.1002/mrm.25846.

    Article  PubMed  Google Scholar 

  13. Donoho DL. Compressed sensing. IEEE Trans Inform Theory. 2006;52(4):1289–306. https://doi.org/10.1109/TIT.2006.871582.

    Article  MathSciNet  Google Scholar 

  14. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–95. https://doi.org/10.1002/mrm.21391.

    Article  PubMed  Google Scholar 

  15. Hollingsworth KG. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction. Phys Med Biol. 2015;60(21):297–322. https://doi.org/10.1088/0031-9155/60/21/R297.

    Article  Google Scholar 

  16. Vranic JE, Cross NM, Wang Y, Hippe DS, de Weerdt E, Mossa-Basha M. Compressed sensing-sensitivity encoding (CS-SENSE) accelerated brain imaging: reduced scan time without reduced image quality. AJNR Am J Neuroradiol. 2019;40(1):92–8. https://doi.org/10.3174/ajnr.A5905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kato Y, Ambale-Venkatesh B, Kassai Y, Kasuboski L, Schuijf J, Kapoor K, et al. Non-contrast coronary magnetic resonance angiography: current frontiers and future horizons. MAGMA. 2020;33:591–612. https://doi.org/10.1007/s10334-020-00834-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakamura M, Kido T, Kido T, Watanabe K, Schmidt M, Forman C, et al. Non-contrast compressed sensing whole-heart coronary magnetic resonance angiography at 3T: a comparison with conventional imaging. Eur J Radiol. 2018;104:43–8. https://doi.org/10.1016/j.ejrad.2018.04.025.

    Article  PubMed  Google Scholar 

  19. Bustin A, Ginami G, Cruz G, Correia T, Ismail TF, Rashid I, et al. Five-minute whole-heart coronary MRA with sub-millimeter isotropic resolution, 100% respiratory scan efficiency, and 3D-PROST reconstruction. Magn Reson Med. 2019;81(1):102–15. https://doi.org/10.1002/mrm.27354.

    Article  PubMed  Google Scholar 

  20. McVeigh ER, Henkelman RM, Bronskill MJ. Noise and filtration in magnetic resonance imaging. Med Phys. 1985;12:586–91. https://doi.org/10.1118/1.595679.

    Article  CAS  PubMed  Google Scholar 

  21. Takahashi J, Machida Y, Aoba M, Nawa Y, Kamoshida R, Fukuzawa K, et al. Noise power spectrum in compressed sensing magnetic resonance imaging. Radiol Phys Technol. 2021;14:93–9. https://doi.org/10.1007/s12194-021-00608-4.

    Article  PubMed  Google Scholar 

  22. Shea SM, Kroeker RM, Deshpande V, Laub G, Zheng J, Finn JP, et al. Coronary artery imaging: 3D segmented k-space data acquisition with multiple breath-holds and real-time slab following. J Magn Reson Imaging. 2001;13(2):301–7. https://doi.org/10.1002/1522-2586(200102)13:2%3c301::aid-jmri1043%3e3.0.co;2-8.

    Article  CAS  PubMed  Google Scholar 

  23. Sartoretti T, Reischauer C, Sartoretti E, Binkert C, Najafi A, Sartoretti-Schefer S. Common artefacts encountered on images acquired with combined compressed sensing and SENSE. Insights Imaging. 2018;9(6):1107–15. https://doi.org/10.1007/s13244-018-0668-4.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Geerts-Ossevoort L, de Weerdt E, Duijndam A, van Ijperen G, PeetersH, Doneva M, Nijenhuis M, Huang A. (2018) Compressed SENSE.Speed done right. Every time. Philips® healthcare, Netherlands. https://philipsproductcontent.blob.core.windows.net/assets/20180109/619119731f2a42c4acd4a863008a46c7.pdf. Accessed 16 May 2018.

  25. Barth M, Moser E. Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI. Cell Mol Biol. 1997;43(5):783–91.

    CAS  PubMed  Google Scholar 

  26. Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med. 2005;54(3):507–12. https://doi.org/10.1002/mrm.20605.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Ryona Abe and Mr. Norihito Miura for their assistance with this study. This work was partially supported by JSPS KAKENHI (Grant 18K07703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Takahashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants followed the ethical standards of the Institutional Review Board (IRB) of our hospital. As a retrospective study, the IRB was obtained without patients’ informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, J., Machida, Y., Fukuzawa, K. et al. Denoising parameter dependence of coronary artery depictability in compressed sensing magnetic resonance angiography. Radiol Phys Technol (2024). https://doi.org/10.1007/s12194-024-00787-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12194-024-00787-w

Keywords

Navigation