Skip to main content
Log in

Possible mechanisms and simulation modeling of FLASH radiotherapy

  • Review Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

FLASH radiotherapy (FLASH-RT) has great potential to improve patient outcomes. It delivers radiation doses at an ultra-high dose rate (UHDR: ≥ 40 Gy/s) in a single instant or a few pulses. Much higher irradiation doses can be administered to tumors with FLASH-RT than with conventional dose rate (0.01−0.40 Gy/s) radiotherapy. UHDR irradiation can suppress toxicity in normal tissues while sustaining antitumor efficiency, which is referred to as the FLASH effect. However, the mechanisms underlying the effects of the FLASH remain unclear. To clarify these mechanisms, the development of simulation models that can contribute to treatment planning for FLASH-RT is still underway. Previous studies indicated that transient oxygen depletion or augmented reactions between secondary reactive species produced by irradiation may be involved in this process. To discuss the possible mechanisms of the FLASH effect and its clinical potential, we summarized the physicochemical, chemical, and biological perspectives as well as the development of simulation modeling for FLASH-RT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BED:

Biologically effective dose

CONV:

Conventional

DSB:

Double-strand break

GSH:

Glutathione

IRT:

Independent reaction time

LET:

Linear energy transfer

LPO:

Lipid peroxidation

LQ:

Linear-quadratic

MD:

Molecular dynamics

OER:

Oxygen enhancement ratio

ROS:

Reactive oxygen species

SBS:

Step-by-step

SSB:

Single-strand break

TOD:

Transient oxygen depletion

UHDR:

Ultra-high dose rate

References

  1. Kirby-Smith JS, Dolphin GW. Chromosome breakage at high radiation dose-rates. Nature. 1958;182:270–1.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Dewey DL, Boag JW. Modification of the oxygen effect when bacteria are given large pulses of radiation. Nature. 1959;183:1450–1.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Berry RJ, Hall EJ, Forster DW, Storr TH, Goodman MJ. Survival of mammalian cells exposed to X rays at ultra-high dose-rates. Br J Radiol. 1969;42:102–7.

    Article  CAS  PubMed  Google Scholar 

  4. Wilson JD, Hammond EM, Higgins GS, Petersson K. Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool’s gold? Front Oncol. 2020;9:1563.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wilson P, Jones B, Yokoi T, Hill M, Vojnovic B. Revisiting the ultra-high dose rate effect: Implications for charged particle radiotherapy using protons and light ions. Br J Radiol. 2012;85:e933–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Favaudon V, Caplier L, Monceau V, Pouzoulet F, Sayarath M, Fouillade C, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014;6:245ra93.

    Article  PubMed  Google Scholar 

  7. Vozenin MC, Fornel PD, Petersson K, Favaudon V, Jaccard M, Germond JF, et al. The advantage of flash radiotherapy confirmed in mini-pig and cat-cancer patients. Clin Cancer Res. 2019;25:35–42.

    Article  PubMed  Google Scholar 

  8. Levy K, Natarajan S, Wang J, Chow S, Eggold JT, Loo PE, et al. Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Sci Rep. 2020;10:21600.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Montay-Gruel P, Acharya MM, Petersson K, Alikhani L, Yakkala C, Allen BD, et al. Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. Proc Natl Acad Sci USA. 2019;166:10943–51.

    Article  Google Scholar 

  10. Montay-Gruel P, Acharya MM, Jorge PC, Petit B, Petridis IG, Fuchs P, et al. Hypofractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clin Cancer Res. 2021;27:775–84.

    Article  PubMed  Google Scholar 

  11. Friedl AA, Prise KM, Butterworth KT, Montay-Gruel P, Favaudon V. Radiobiology of the FLASH effect. Med Phys. 2022;49:1993–2013.

    Article  PubMed  Google Scholar 

  12. Favaudon V, Labarbe R, Limori CL. Model studies of the role of oxygen in the FLASH effect. Med Phys. 2022;49:2068–81.

    Article  CAS  PubMed  Google Scholar 

  13. Lin B, Huang D, Gao F, Yang Y, Wu D, Zhang Y, et al. Mechanisms of FLASH effect. Front Oncol. 2022;12: 995612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bogaerts E, Macaeva E, Isebaert S, Haustermans K. Molecular mechanisms behind the ultra-high dose rate “FLASH” effect. Int J Mol Sci. 2022;12: 995612.

    Google Scholar 

  15. Kacem H, Psoroulas S, Boivin G, Folkerts M, Grilj V, Lomax T, et al. Comparing radiolytic production of H2O2 and development of Zebrafish embryos after ultra high dose rate exposure with electron and transmission proton beams. Radiother Oncol. 2022;175:197–202.

    Article  CAS  PubMed  Google Scholar 

  16. Zlobinskaya O, Siebenwirth C, Greubel C, Hable V, Hertenberger R, Humble N, et al. The effects of ultra-high dose rate proton irradiation on growth delay in the treatment of human tumor xenografts in nude mice. Radiat Res. 2014;181:177–83.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Kim MM, Verginadis II, Goia D, Haertter A, Shoniyozov K, Zou W, et al. Comparison of FLASH proton entrance and the spread-out Bragg peak dose regions in the sparing of mouse intestinal crypts and in a pancreatic tumor model. Cancers. 2021;13:4244.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rama N, Saha T, Shukla S, Goda C, Milewski D, Mascia AE, et al. Improved tumor control through T-cell infiltration modulated by ultra-high dose rate proton FLASH using a clinical pencil beam scanning proton system. Int J Radiat Oncol Biol Phys. 2019;105:S164–5.

    Article  Google Scholar 

  19. Shukla S, Saha T, Rama N, Acharya A, Le T, Bian F, et al. Ultra-high dose-rate proton FLASH improves tumor control. Radiother Oncol. 2023;186: 109741.

    Article  CAS  PubMed  Google Scholar 

  20. Tinganelli W, Weber U, Purspitasari A, Simoniello P, Abdollahi A, Oppermann J, et al. FLASH with carbon ions: Tumor control, normal tissue sparing, and distal metastasis in a mouse osteosarcoma model. Radiother Oncol. 2022;175:185–90.

    Article  CAS  PubMed  Google Scholar 

  21. Vozenin M-C, Hendry JH, Limoli CL. Biological benefits of ultra-high dose rate FLASH radiotherapy: sleeping beauty awoken. Clin Oncol. 2019;31:407–15.

    Article  Google Scholar 

  22. Limoli CL, Vozenin M-C. Reinventing radiobiology in the light of FLASH radiotherapy. Annu Rev Cancer Biol. 2023;7:1–23.

    Article  Google Scholar 

  23. Bourhis J, Montay-Gruel P, Jorge PG, Bailat C, Petit B, Ollivier J, et al. Clinical translation of FLASH radiotherapy: Why and how? Radiother Oncol. 2019;139:11–7.

    Article  PubMed  Google Scholar 

  24. Mascia AE, Daugherty EC, Zhang Y, Lee E, Xiao Z, Sertorio M, et al. Proton FLASH radiotherapy for the treatment of symptomatic bone metastases: The FAST-01 nonrandomized trial. JAMA Oncol. 2023;9:62–9.

    Article  PubMed  Google Scholar 

  25. Gaide O, Herrera F, Sozzi WJ, Jorge PG, Kinj R, Bailat C, et al. Comparison of ultra-high versus conventional dose rate radiotherapy in a patient with cutaneous lymphoma. Radiother Oncol. 2022;174:87–91.

    Article  PubMed  Google Scholar 

  26. Bley CR, Wolf F, Jorge PG, Grilj V, Petridis I, Petit B, et al. Dose and volume limiting late toxicity of FLASH radiotherapy in cats with squamous cell carcinoma of the nasal planum and in minipigs. Clin Cancer Res. 2022;28:3814–23.

    Article  Google Scholar 

  27. Buxton GV, Greenstock CL, Helman WP, Ross AB. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (·OH/·O-) in Aqueous Solution. J Phys Chem Ref Data. 1988;17:513–886.

    Article  ADS  CAS  Google Scholar 

  28. Spitz DR, Buettner GR, Petronek MS, St-Aubin JJ, Flynn RT, Waldron TJ, et al. An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses. Radiother Oncol. 2019;139:23–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adrian G, Konradsson E, Lempart M, Bäck S, Petersson K. The FLAH effect depends on oxygen concentration. Br J Radiol. 2020;93:2019072.

    Article  Google Scholar 

  30. Zackrisson BU, Nystrom UH, Ostbergh P. Biological response in vitro to pulsed high dose rate electrons from a clinical accelerator. Acta Oncol. 1991;30:747–51.

    Article  CAS  PubMed  Google Scholar 

  31. Cygler J, Klassen NV, Ross CK, Bichay TJ, Raaphorst GP. The survival of aerobic and anoxic human glioma and melanoma cells after irradiation at ultrahigh and clinical dose rates. Radiat Res. 1994;140:79–84.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Adrian G, Ruan J-L, Paillas S, Cooper CR, Petersson K. In vitro assays for investigating the FLASH effect. Expert Rev Mol Med. 2022;24: e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adrian G, Konradsson E, Beyer S, Wittrup A, Butterworth KT, McMahon SJ, et al. Cancer cells can exhibit a sparing FLASH effect at low doses under normoxic in vitro-conditions. Front Oncol. 2021;11: 686142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cao X, Zhang R, Esipova TV, Allu SR, Ashraf R, Rahman M, et al. Quantification of oxygen depletion during FLASH irradiation in vitro and in vivo. Int J Radiat Oncol Biol Phys. 2021;111:240–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jansen J, Knoll J, Beyreuther E, Pawelke J, Skuza R, Hanley R, et al. Does FLASH deplete oxygen? Experimental evaluation for photons, protons, and carbon ions. Med Phys. 2021;48:3982–90.

    Article  CAS  PubMed  Google Scholar 

  36. Jia M, Cao X, Pogue BW, Peng H. A mechanistic consideration of oxygen enhancement ratio, oxygen transport and their relevancies for normal tissue sparing under FLASH irradiation. Holistic Integrity Oncology. 2022;1:13.

    Article  Google Scholar 

  37. Labarbe R, Hotoiu L, Barbier J, Favaudon V. A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect. Radiother Oncol. 2020;153:303–10.

    Article  CAS  PubMed  Google Scholar 

  38. Michael BD, Davies S, Held KD. Ultrafast chemical repair of DNA single and double strand break precursors in irradiated V79 cells. Basic Life Sci. 1986;38:89–100.

    CAS  PubMed  Google Scholar 

  39. Zakaria AM, Colangelo NW, Meesunguoen J, Azzam E, Plourde M-E, Jay-Gerin J-P. Ultra-high dose-rate, pulsed (FLASH) radiotherapy with carbon ions: Generation of early, transient, highly oxygenated conditions in the tumor environment. Radiat Res. 2020;194:578–93.

    Article  Google Scholar 

  40. Weber UA, Scifoni E, Durante M. FLASH radiotherapy with carbon ion beams. Med Phys. 2022;49:1974–92.

    Article  CAS  PubMed  Google Scholar 

  41. Kreipl MS, Friedland W, Paretzke HG. Interaction of ion tracks in spatial and temporal proximity. Radiat Environ Biophys. 2009;48:349–59.

    Article  PubMed  Google Scholar 

  42. Ramos-Méndez J, Domínguez-Kondo N, Schuemann J, McNamara A, Moreno-Barbosa E, Faddegon B. LET-dependent intertrack yields in proton irradiation at ultra-high dose rates relevant for FLASH therapy. Radiat Res. 2020;194:351–62.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Alanazi A, Meesungnoen J, Jay-Gerin JP. A computer modeling study of water radiolysis at high dose rates. relevance to flash radiotherapy. Radiat Res. 2021;195:149–62.

    CAS  PubMed  Google Scholar 

  44. Derksen L, Flatten V, Engenhart-Cabillic R, Zink K, Baumann K-S. A method to implement inter-track interactions in Monte Carlo simulations with TOPAS-nBio and their influence on simulated radical yields following water radiolysis. Phys Med Biol. 2023;68: 135017.

    Article  Google Scholar 

  45. Baikalov A, Abolfath R, Schüler E, Mohan R, Wilkens JJ, Bartzsch S. Intertrack interaction at ultra-high dose rates and its role in the FLASH effect. Front Phys. 2023;11:1215422.

    Article  Google Scholar 

  46. Caër SL. Water radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water (Basel). 2011;3:235–53.

    Google Scholar 

  47. Samuel AH, Magee JL. Theory of radiation chemistry. II. Track effects in radiolysis of water. J Chem Phys. 1953;21:1080–7.

    Article  ADS  CAS  Google Scholar 

  48. Blain G, Vandenborre J, Villoing D, Fiegel V, Fois GR, Haddad F, et al. Proton irradiations at ultra-high dose Rate vs. Conventional Dose Rate: Strong Impact on Hydrogen Peroxide Yield. Radiat Res. 2022;198:318–24.

    Article  CAS  PubMed  Google Scholar 

  49. Kusumoto T, Kitamura H, Hojo S, Konishi T, Kodaira S. Significant changes in yields of 7-hydroxy-coumarin-3-carboxylic acid produced under FLASH radiotherapy conditions. RSC Adv. 2020;10:38709–14.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kusumoto T, Inaniwa T, Mizushima K, Sato S, Hojo S, Kitamura H, et al. Radiation chemical yields of 7-hydroxy-coumarin-3-carboxylic acid for proton- and carbon-ion beams at ultra-high dose rates: Potential roles in FLASH effects. Radiat Res. 2022;198:255–62.

    Article  CAS  PubMed  Google Scholar 

  51. Fouillade C, Curras-Alonso S, Giuranno L, Quelennec E, Heinrich S, Bonnet-Boissinot S, et al. FLASH irradiation spares lung progenitor cells and limits the incidence of radio-induced senescence. Clin Cancer Res. 2020;26:1497–506.

    Article  CAS  PubMed  Google Scholar 

  52. Fradet-Turcotte A, Canny MD, Escribano-Díaz C, Orthwein A, Leung CCY, Huang H, et al. 53BP1 is a reader of the DNA-damage- induced H2A Lys 15 ubiquitin mark. Nature. 2013;499:50–4.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Buonanno M, Grilj V, Brenner DJ. Biological effects in normal cells exposed to FLASH dose rate protons. Radiother Oncol. 2019;139:51–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guo Z, Buonanno M, Harken A, Zhou G, Hei TK. Mitochondrial damage response and fate of normal cells exposed to FLASH irradiation with protons. Radiat Res. 2022;197:569–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.

    Article  CAS  PubMed  Google Scholar 

  56. Lennicke C, Rahn J, Lichtenfels R, Wessjohann LA, Seliger B. Hydrogen peroxide - Production, fate and role in redox signaling of tumor cells. Cell Commun Signal. 2015;13:39.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Perillo B, Donato MD, Pezone A, Zazzo ED, Giovannelli P, Galasso G, et al. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52:192–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer Nat Res. 2022;22:280–97.

    Article  CAS  Google Scholar 

  59. Salnikow K. Role of iron in cancer. Semin Cancer Biol. 2021;76:189–94.

    Article  CAS  PubMed  Google Scholar 

  60. Ohsawa D, Hiroyama Y, Kobayashi A, Kusumoto T, Kitamura H, Hojo S, et al. DNA strand break induction of aqueous plasmid DNA exposed to 30 MeV protons at ultra-high dose rate. Radiat Res. 2022;63:255–60.

    Article  CAS  Google Scholar 

  61. Helleday T, Lo J, van Gent DC, Engelward BP. DNA double-strand break repair: From mechanistic understanding to cancer treatment. DNA Repair. 2007;6:923–35.

    Article  CAS  PubMed  Google Scholar 

  62. Harper JV, Anderson JA, O’Neill P. Radiation induced DNA DSBs: Contribution from stalled replication forks? DNA Repair. 2010;9:907–13.

    Article  CAS  PubMed  Google Scholar 

  63. Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: The molecular choreography. Mutat Res. 2012;751:158–246.

    Article  CAS  PubMed  Google Scholar 

  64. Tashiro M, Yoshida Y, Oike T, Nakao M, Yusa K, Hirota Y, et al. First human cell experiments with FLASH carbon ions. Anticancer Res. 2022;42:2469–77.

    Article  CAS  PubMed  Google Scholar 

  65. Khan S, Bassenne M, Wang J, Manjappa R, Melemenidis S, Breitkreutz DY, et al. Multicellular spheroids as in vitro models of oxygen depletion during FLASH irradiation. Int J Radiat Oncol Biol Phys. 2021;110:833–44.

    Article  PubMed  Google Scholar 

  66. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stockwell BR, Angeli JPF, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vilaplana-Lopera N, Abu-Halawa A, Walker E, Kim J, Moon EJ. Ferroptosis, a key to unravel the enigma of the FLASH effect? Br J Radiol. 2022;95:2022085.

    Article  Google Scholar 

  69. Froidevaux P, Grilj V, Bailat C, Geyer WR, Bochud F, Vozenin MC. FLASH irradiation does not induce lipid peroxidation in lipids micelles and liposomes. Radiat Phys Chem. 2023;205: 110733.

    Article  CAS  Google Scholar 

  70. Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 2020;30:146–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 2019;9:1673–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ye LF, Chaudhary KR, Zandkarimi F, Harken AD, Kinslow CJ, Upadhyayula PS, et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem Biol. 2020;15:469–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Boscolo D, Schfoni E, Durante M, Krämer M, Fuss MC. May oxygen depletion explain the FLASH effect? A chemical track structure analysis. Radiother Oncol. 2021;162:68–75.

    Article  CAS  PubMed  Google Scholar 

  74. Lai Y, Jia X, Chi Y. Modeling the effect of oxygen on the chemical on the chemical stage of water radiolysis using GPU-based microscopic Monte Carlo simulations, with an application in FLASH radiotherapy. Phys Med Biol. 2021;66: 025004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhu H, Li J, Deng X, Qiu R, Wu Z, Zhang H. Modeling of cellular response after FLASH irradiation: A quantitative analysis based on the radiolytic oxygen depletion hypothesis. Phys Med Biol. 2021;66: 185009.

    Article  CAS  Google Scholar 

  76. Hu A, Qiu R, Wu Z, Zhang H, Li J. CPU-GPU coupling independent reaction times method in NASIC and application in water radiolysis by FLASH irradiation. Biomed Phys Eng Express. 2022;8: 025015.

    Article  Google Scholar 

  77. Espinosa-Rodriguez A, Sanchez-Parcerisa D, Ibáñez P, Vera-Sánchez JA, Mazal A, Fraile LM, et al. Radical production with pulsed beams: understanding the transition to FLASH. Mol Sci. 2022;23:13484.

    Article  CAS  Google Scholar 

  78. Abolfath R, Grosshans D, Mohan R. Oxygen depletion in FLASH ultra-high-dose-rate radiotherapy: A molecular dynamics simulation. Med Phys. 2020;47:6551–61.

    Article  CAS  PubMed  Google Scholar 

  79. Abolfath R, Baikalov A, Bartzsch S, Afshordi N, Mohan R. The effect of non-ionizing excitations on the diffusion of ion species and inter-track correlations in FLASH ultra-high dose rate radiotherapy. Phys Med Biol. 2022;67: 105005.

    Article  Google Scholar 

  80. Pratx G, Kapp DS. A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio. Phys Med Biol. 2020;65: 109501.

    Article  Google Scholar 

  81. Zhou S, Zheng D, Fan Q, Yan Y, Wang S, Lei Y, et al. Minimum dose rate estimation for pulsed FLASH radiotherapy: A dimensional analysis. Med Phys. 2020;47:3243–9.

    Article  CAS  PubMed  Google Scholar 

  82. Petersson K, Adrian G, Butterworth K, McMahon SJ. A quantitative analysis of the role of oxygen tension in FLASH radiation therapy. Int J Radiat Oncol Biol Phys. 2020;107:539–47.

    Article  PubMed  Google Scholar 

  83. Rothwell BC, Kirkby NF, Merchant MJ, Chadwick AL, Lowe M, Mackay RI, et al. Determining the parameter space for effective oxygen depletion for FLASH radiation therapy. Phys Med Biol. 2021;66: 055020.

    Article  PubMed Central  Google Scholar 

  84. Hu A, Qiu R, Wu Z, Li WB, Li J. A computational model for oxygen depletion hypothesis in FLASH effect. Radiat Res. 2022;2022:135–83.

    Google Scholar 

  85. Cui S, Pratx G. 3D computational model of oxygen depletion kinetics in brain vasculature during FLASH RT and its implications for in vivo oximetry experiments. Med Phys. 2021;49:3914–25.

    Article  Google Scholar 

  86. Taylor E, Hill RP, Létourneau D. Modeling the impact of spatial oxygen heterogeneity on radiolytic oxygen depletion during FLASH radiotherapy. Phys Med Biol. 2022;67: 115017.

    Article  Google Scholar 

  87. Liew H, Mein S, Tessonnier T, Abdollahi A, Debus J, Dokic I, et al. Do we preserve tumor control probability (TCP) in FLASH radiotherapy? A model-based analysis Mol Sci. 2023;24:5118.

    CAS  Google Scholar 

  88. Song H, Kim Y, Sung W. Modeling of the FLASH effect for ion beam radiation therapy. Phys Med. 2023;108: 102553.

    Article  PubMed  Google Scholar 

  89. Jin JY, Gu A, Wang W, Oleinick NL, Machtay M, Kong FM. Ultra-high dose rate effect on circulating immune cells: A potential mechanism for FLASH effect? Radiother Oncol. 2020;149:55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cucinotta FA, Smirnova OA. Effects of flash radiotherapy on blood lymphocytes in humans and small laboratory animals. Radiat Res. 2023;199:240–51.

    Article  CAS  PubMed  Google Scholar 

  91. Camazzola G, Boscolo D, Scifoni E, Dorn A, Durante M, Krämer M, et al. TRAX-CHEMxt: Towards the homogeneous chemical stage of radiation damage. Mol Sci. 2023;24:9398.

    Article  CAS  Google Scholar 

  92. Yao N, Chen X, Fu ZH, Zhang Q. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem Rev. 2022;122:10970–1021.

    Article  CAS  PubMed  Google Scholar 

  93. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review1. Cancer Res. 1989;49:6449–65.

    CAS  PubMed  Google Scholar 

  94. Filatenkov A, Baker J, Mueller AMS, Kenkel J, Ahn GO, Dutt S, et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res. 2015;21:3727–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Hiroyuki Date (Hokkaido University) for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisanori Fukunaga.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiraishi, Y., Matsuya, Y. & Fukunaga, H. Possible mechanisms and simulation modeling of FLASH radiotherapy. Radiol Phys Technol 17, 11–23 (2024). https://doi.org/10.1007/s12194-023-00770-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00770-x

Keywords

Navigation