Skip to main content
Log in

Half-value layer measurements using solid-state detectors and single-rotation technique with lead apertures in spiral computed tomography with and without a tin filter

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Solid-state detectors (SSDs) may be used along with a lead collimator for half-value layer (HVL) measurement using computed tomography (CT) with or without a tin filter. We aimed to compare HVL measurements obtained using three SSDs (AGMS-DM+ , X2 R/F sensor, and Black Piranha) with those obtained using the single-rotation technique with lead apertures (SRTLA). HVL measurements were performed using spiral CT at tube voltages of 70–140 kV without a tin filter and 100–140 kV (Sn 100–140 kV) with a tin filter in increments of 10 kV. For SRTLA, a 0.6-cc ionization chamber was suspended at the isocenter to measure the free-in-air kerma rate (\(\dot{K}_{\text{air}}\)) values. Five apertures were made on the gantry cover using lead sheets, and four aluminum plates were placed on these apertures. HVLs in SRTLA were obtained from \(\dot{K}_{\text{air}}\) decline curves. Subsequently, SSDs inserted into the lead collimator were placed on the gantry cover and used to measure HVLs. Maximum HVL differences of AGMS-DM+ , X2 R/F sensor, and Black Piranha with respect to SRTLA without/with a tin filter were − 0.09/0.6 (only two Sn 100–110 kV) mm, − 0.50/ − 0.6 mm, and − 0.17/(no data available) mm, respectively. These values were within the specification limit. SSDs inserted into the lead collimator could be used to measure HVL using spiral CT without a tin filter. HVLs could be measured with a tin filter using only the X2 R/F sensor, and further improvement of its calibration accuracy with respect to other SSDs is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zeman RK, Fox SH, Silverman PM, et al. Helical (spiral) CT of the abdomen. AJR Am J Roentgenol. 1993;160:719–25. https://doi.org/10.2214/ajr.160.4.8456652.

    Article  CAS  PubMed  Google Scholar 

  2. Hu H. Multi-slice helical CT: scan and reconstruction. Med Phys. 1999;26:5–18. https://doi.org/10.1118/1.598470.

    Article  CAS  PubMed  Google Scholar 

  3. Taguchi K, Aradate H. Algorithm for image reconstruction in multi-slice helical CT. Med Phys. 1998;25:550–61. https://doi.org/10.1118/1.598230.

    Article  CAS  PubMed  Google Scholar 

  4. Fukuda A, Lin PJ, Matsubara K, Miyati T. Measurement of gantry rotation time in modern ct. J Appl Clin Med Phys. 2014;15:4517. https://doi.org/10.1120/jacmp.v15i1.4517.

    Article  PubMed  Google Scholar 

  5. Bodelle B, Fischbach C, Booz C, et al. Single-energy pediatric chest computed tomography with spectral filtration at 100 kVp: effects on radiation parameters and image quality. Pediatr Radiol. 2017;47:831–7. https://doi.org/10.1007/s00247-017-3813-1.

    Article  PubMed  Google Scholar 

  6. Steidel J, Maier J, Sawall S, Kachelrieß M. Dose reduction potential in diagnostic single energy CT through patient-specific prefilters and a wider range of tube voltages. Med Phys. 2022;49:93–106. https://doi.org/10.1002/mp.15355.

    Article  CAS  PubMed  Google Scholar 

  7. Mozaffary A, Trabzonlu TA, Kim D, Yaghmai V. Comparison of tin filter-based spectral shaping CT and low-dose protocol for detection of urinary calculi. AJR Am J Roentgenol. 2019;212(4):808–14. https://doi.org/10.2214/AJR.18.20154.

    Article  PubMed  Google Scholar 

  8. Zhou W, Malave MN, Maloney JA, et al. Radiation dose reduction using spectral shaping in pediatric non-contrast sinus CT. Pediatr Radiol. 2023;53(10):2069–78. https://doi.org/10.1007/s00247-023-05699-2.

    Article  PubMed  Google Scholar 

  9. Choi YS, Choo HJ, Lee SJ, Kim DW, Han JY, Kim DS. Computed tomography arthrography of the shoulder with tin filter-based spectral shaping at 100 kV and 140 kV. Acta Radiol. 2021;62(10):1349–57. https://doi.org/10.1177/0284185120965551.

    Article  PubMed  Google Scholar 

  10. Huflage H, Grunz JP, Hackenbroch C, et al. Metal artefact reduction in low-dose computed tomography: Benefits of tin prefiltration versus postprocessing of dual-energy datasets over conventional CT imaging. Radiography (Lond). 2022;28(3):690–6. https://doi.org/10.1016/j.radi.2022.05.006.

    Article  CAS  PubMed  Google Scholar 

  11. Samei E, Bakalyar D, Boedeker KL, et al. Performance evaluation of computed tomography systems: summary of AAPM Task Group 233. Med Phys. 2019;46:e735–56. https://doi.org/10.1002/mp.13763.

    Article  PubMed  Google Scholar 

  12. Kruger RL, McCollough CH, Zink FE. Measurement of half-value layer in x-ray CT: a comparison of two noninvasive techniques. Med Phys. 2000;27:1915–9. https://doi.org/10.1118/1.1287440.

    Article  CAS  PubMed  Google Scholar 

  13. Japanese Industrial Standards. JIS Z 4751-2-44: 2018, Medical electrical equipment - Part 2-44: Particular requirements for the basic safety and essential performance of X-ray equipment for computed tomography. Japanese standards association. 2018.

  14. Matsubara K, Lin PP, Fukuda A, Koshida K. Differences in behavior of tube current modulation techniques for thoracic CT examinations between male and female anthropomorphic phantoms. Radiol Phys Technol. 2014;7:316–28. https://doi.org/10.1007/s12194-014-0269-y.

    Article  PubMed  Google Scholar 

  15. Bazalova M, Verhaegen F. Monte Carlo simulation of a computed tomography x-ray tube. Phys Med Biol. 2007;52(19):5945–55. https://doi.org/10.1088/0031-9155/52/19/015.

    Article  PubMed  Google Scholar 

  16. McKenney SE, Seibert JA, Burkett GW, et al. Real-time dosimeter employed to evaluate the half-value layer in CT. Phys Med Biol. 2014;59:363–77. https://doi.org/10.1088/0031-9155/59/2/363.

    Article  PubMed  Google Scholar 

  17. Fukuda A, Ichikawa N, Tashiro M, Yamao T, Murakami K, Kubo H. Measurement of the half-value layer for CT systems in a single-rotation technique: reduction of stray radiation with lead apertures. Phys Med. 2020;76:221–6. https://doi.org/10.1016/j.ejmp.2020.07.004.

    Article  PubMed  Google Scholar 

  18. Okkalides D, Arvanitides D. Aberrations in X-ray output waveforms of radiological generators. Eur J Radiol. 1992;15:248–51. https://doi.org/10.1016/0720-048x(92)90117-r.

    Article  CAS  PubMed  Google Scholar 

  19. Lin PP, Goode AR. Accuracy of HVL measurements utilizing solid state detectors for radiography and fluoroscopy X-ray systems. J Appl Clin Med Phys. 2021;22:339–44. https://doi.org/10.1002/acm2.13389.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Akaishi H, Takeda H, Kanazawa Y, Yoshii Y, Asanuma O. Development of a lead-covered case for a wireless X-ray output analyzer to perform CT half-value layer measurements. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2016;72:244–50. https://doi.org/10.6009/jjrt.2016_JSRT_72.3.244.

    Article  PubMed  Google Scholar 

  21. Moriwake R, Takei Y, Kuroda T, Ikenaga H. Experiment of a dedicated lead slit for X-ray output analyzer in X-ray CT half-value layer measurements. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2022;78:152–8. https://doi.org/10.6009/jjrt.780202.

    Article  CAS  PubMed  Google Scholar 

  22. Giavarina D. Understanding Bland Altman analysis. Biochem Med (Zagreb). 2015;25(2):141–51. https://doi.org/10.11613/BM.2015.015. (eCollection 2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126:1763–8. https://doi.org/10.1213/ANE.0000000000002864.

    Article  PubMed  Google Scholar 

  24. The R project for statistical computing. https://www.r-project.org/. Accessed 13 Jan 2023.

  25. Greffier J, Pereira F, Hamard A, Addala T, Beregi JP, Frandon J. Effect of tin filter-based spectral shaping CT on image quality and radiation dose for routine use on ultralow-dose CT protocols: a phantom study. Diagn Interv Imaging. 2020;101(6):373–81. https://doi.org/10.1016/j.diii.2020.01.002.

    Article  CAS  PubMed  Google Scholar 

  26. Fukuda A, Lin PP, Ichikawa N, Matsubara K. Estimation of primary radiation output for wide-beam computed tomography scanner. J Appl Clin Med Phys. 2019;20(6):152–9. https://doi.org/10.1002/acm2.12598.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Unfors T. Detector for detecting x-ray radiation parameters. US patent No. 9405021. 2016. https://www.freepatentsonline.com/9405021.html. Accessed 13 Jan 2023.

  28. Nomura K, Fujii K, Goto T, et al. Radiation dose reduction for computed tomography localizer radiography using an Ag additional filter. J Comput Assist Tomogr. 2021;45:84–92. https://doi.org/10.1097/RCT.0000000000001026.

    Article  PubMed  Google Scholar 

  29. Zhou LN, Zhao SJ, Wang RB, Wang YW, Yang SX, Wu N. Comparison of radiation dose and image quality between split-filter twin-beam dual-energy images and single-energy images in single-source contrast-enhanced chest computed tomography. J Comput Assist Tomogr. 2021;45:888–93. https://doi.org/10.1097/RCT.0000000000001220.

    Article  PubMed  Google Scholar 

  30. Mahoney R, Pavitt CW, Gordon D, et al. Clinical validation of dual-source dual-energy computed tomography (DECT) for coronary and valve imaging in patients undergoing trans-catheter aortic valve implantation (TAVI). Clin Radiol. 2014;69:786–94. https://doi.org/10.1016/j.crad.2014.03.010.

    Article  CAS  PubMed  Google Scholar 

  31. Matsubara K, Nagata H, Okubo R, Takata T, Kobayashi M. Method for determining the half-value layer in computed tomography scans using a real-time dosimeter: application to dual-source dual-energy acquisition. Phys Med. 2017;44:227–31. https://doi.org/10.1016/j.ejmp.2017.10.020.

    Article  PubMed  Google Scholar 

Download references

Funding

Atsushi Fukuda receives research support from Toyo Medic Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Fukuda.

Ethics declarations

Conflict of interest

Atsushi Fukuda received a research grant from Toyo Medic Corporation for research in the HVL measurements in the CT system. Other authors have no conflict of interest to declare.

Ethical standards

This article does not include any studies performed on human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuda, A., Ichikawa, N., Hayashi, T. et al. Half-value layer measurements using solid-state detectors and single-rotation technique with lead apertures in spiral computed tomography with and without a tin filter. Radiol Phys Technol 17, 207–218 (2024). https://doi.org/10.1007/s12194-023-00767-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00767-6

Keywords

Navigation