Skip to main content

Advertisement

Log in

Verification of optimal conditions for the scattering correction of 123I-FP-CIT SPECT on a single-photon emission tomography system with a two-detector whole-body cadmium–zinc–telluride semiconductor detector

  • Technical Note
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

To identify the optimal scattering correction for 123I-FP-CIT SPECT (DAT-SPECT) using a two-detector whole-body cadmium–zinc–telluride semiconductor detector (C-SPECT) system with a medium-energy high-resolution sensitivity (MEHRS) collimator. The C-SPECT system with the MEHRS collimator assessed image quality and quantification using a striated phantom. Different reconstruction methods and scattering correction settings were compared, including filtered back projection (FBP) and ordered subset expectation maximization (OSEM). Higher %contrast and %CV values were observed > 10% subwindow (SW) for all conditions, with no significant differences between images without scattering correction and those < 7% SW. The FBP images show a greater increase in %CV > 10% SW than the OSEM images. The specific binding ratio in the radioactivity ratio of 8:1 was higher than the true value under all conditions. The C-SPECT system with an MEHRS collimator provided accurate scattering suppression and enabled high-quality imaging for DAT-SPECT. Careful setting of the scattering correction is essential for total count accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Owing to the sensitive nature of the questions asked in this study, survey respondents were assured that the raw data would remain confidential and would not be shared. The data that has been used is confidential.

References

  1. Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, JanssenAG WEC, Van Royen E. [123I] FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62:133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Booij J, Speelman JD, Horstink MW, Wolters EC. The clinical benefit of imaging striatal dopamine transporters with [123I] FP-CIT SPET in differentiating patients with presynaptic Parkinsonism from those with other forms of Parkinsonism. Eur J Nucl Med. 2001;28:266–72.

    Article  CAS  PubMed  Google Scholar 

  3. Schwarz J, Linke R, Kerner M, Mozley PD, Trenkwalder C, Gasser T, Tatsch K. Striatal dopamine transporter binding assessed by [I-123]IPT and single photon emission computed tomography in patients with early Parkinson’s disease: implications for a preclinical diagnosis. Arch Neurol. 2000;57:205–8.

    Article  CAS  PubMed  Google Scholar 

  4. Benamer HT, Patterson J, Grosset DG, Booij J, De Bruin K, Van Royen E, Speelman JD, Horstink MHIM, Sips HJWA, Dierckx RA, Versijpt J, Decoo D, Van Der Linden C, Hadley DM, Doder M, Lees AJ, Costa DC, Gacinovic S, Oertel WH, Pogarell O, Hoeffken H, Joseph K, Tatsch K, Schwarz J, Ries V. Accurate differentiation of Parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15:503–10.

    Article  CAS  PubMed  Google Scholar 

  5. Tissingh G, Booij J, Bergmans P, Winogrodzka A, Janssen AG, van Royen EA, Stoof JC, Wolters EC. Iodine-123-N-omega-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)tropane SPECT in healthy controls and early-stage, drug-naive Parkinson’s disease. J Nucl Med. 1998;39:1143–8.

    CAS  PubMed  Google Scholar 

  6. Catafau AM, Tolosa E, DaTSCAN Clinically uncertain parkinsonian syndromes study group. Impact of dopamine transporter SPECT using 123I-ioflupane on diagnosis and management of patients with clinically uncertain Parkinsonian syndromes. Mov Disord. 2004;19:1175–82.

    Article  PubMed  Google Scholar 

  7. Marshall VL, Reininger CB, Marquardt M, Patterson J, Hadley DM, Oertel WH, Benamer HT, Kemp P, Burn D, Tolosa E, Kulisevsky J, Cunha L, Costa D, Booij J, Tatsch K, Chaudhuri KR, Ulm G, Pogarell O, Höffken H, Gerstner A, Grosset DG. Parkinson’s disease is overdiagnosed clinically at baseline in diagnostically uncertain cases: a 3-year European multicenter study with repeat [123I]FP-CIT SPECT. Mov Disord. 2009;24:500–8.

    Article  PubMed  Google Scholar 

  8. Habraken JB, Booij J, Slomka P, Sokole EB, van Royen EA. Quantification and visualization of defects of the functional dopaminergic system using an automatic algorithm. J Nucl Med. 1999;40:1091–7.

    CAS  PubMed  Google Scholar 

  9. Radau P, Linke R, Slomka PJ, Tatsch K. Optimization of automated quantification of 123I-IBZM uptake in the striatum applied to Parkinsonism. J Nucl Med. 2000;41:220–7.

    CAS  PubMed  Google Scholar 

  10. Djang DS, Janssen MJ, Bohnen N, Booij J, Henderson TA, Herholz K, Minoshima S, Rowe CC, Sabri O, Seibyl J, Van Berckel BN. SNM practice guideline for dopamine transporter imaging with 123I-ioflupane SPECT 1.0. J Nucl Med. 2012;53:154–63.

    Article  CAS  PubMed  Google Scholar 

  11. Tossici-Bolt L, Hoffmann SM, Kemp PM, Kemp PM, Mehta RL, Fleming JS. Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging. 2006;33:1491–9.

    Article  PubMed  Google Scholar 

  12. Ito T, Matsusaka Y, Onoguchi M, Ichikawa H, Okuda K, Shibutani T, Shishido M, Sato K. Experimental evaluation of the GE NM/CT 870 CZT clinical SPECT system equipped with WEHR and MEHRS collimator. J Appl Clin Med Phys. 2021;22:165–77.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Axelsson B, Msaki P, Israelsson A. Subtraction of Compton-scattered photons in single-photon emission computerized tomography. J Nucl Med. 1984;25:490–4.

    CAS  PubMed  Google Scholar 

  14. Ljungberg M, Strand SE. Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions. J Nucl Med. 1990;31:1560–7.

    CAS  PubMed  Google Scholar 

  15. Meikle SR, Hutton BF, Bailey DL. A transmission-dependent method for scatter correction in SPECT. J Nucl Med. 1994;35:360–7.

    CAS  PubMed  Google Scholar 

  16. Jaszczak RJ, Greer KL, Floyd CE, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med. 1984;25:893–900.

    CAS  PubMed  Google Scholar 

  17. Hademenos GJ, Ljungberg M, King MA, Glick SJ. A Monte Carlo investigation of the dual photopeak window scatter correction method. IEEE Trans Nucl Sci. 1993;40:179–85.

    Article  CAS  Google Scholar 

  18. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton scatter correction in single photon emission CT. IEEE Trans Med lmag. 1991;10:408–12.

    Article  CAS  Google Scholar 

  19. Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med. 1993;34:2216–21.

    CAS  PubMed  Google Scholar 

  20. Takayama T, Ichihara T, Motomura N, Ogawa K. Determination of energy window width and position for the triple energy window (TEW) scatter compensation method. Kaku Igaku. 1998;35:51–9.

    CAS  PubMed  Google Scholar 

  21. Mueller B, O’Connor MK, Blevis I, Rhodes DJ, Smith R, Collins DA, Phillips SW. Evaluation of a small cadmium zinc telluride detector for scintimammography. J Nucl Med. 2003;44:602–9.

    CAS  PubMed  Google Scholar 

  22. Holstensson M, Erlandsson K, Poludniowski G, Ben-Haim S, Hutton BF. Model-based correction for scatter and tailing effects in simultaneous 99mTc and 123I imaging for a CdZnTe cardiac SPECT camera. Phys Med Biol. 2015;60:3045–63.

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi T, Watanabe S. Recent progress in CdTe and CdZnTe detectors. IEEE Trans Nucl Sci. 2001;48:950–9.

    Article  CAS  Google Scholar 

  24. Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  CAS  PubMed  Google Scholar 

  25. Matsuda H, Murata M, Mukai Y, Sako K, Ono H, Toyama H, Inui Y, Taki Y, Shimomura H, Nagayama H, Tateno A, Ono K, Murakami H, Kono A, Hirano S, Kuwabara S, Maikusa N, Ogawa M, Imabayashi E, Sato N, Takano H, Hatazawa J, Takahashi R. Japanese multicenter database of healthy controls for [123I]FP-CIT SPECT. Eur J Nucl Med Mol Imaging. 2018;45:1405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matsutomo N, Nagaki A, Yamao F, Sasaki M. Optimization of iterative reconstruction parameters with 3-dimensional resolution recovery, scatter and attenuation correction in 123I-FP-CIT SPECT. Ann Nucl Med. 2015;29:636–42.

    Article  CAS  PubMed  Google Scholar 

  27. Maeda Y, Nagaki A, Komi Y, Abe N, Kashimura S. Evaluation of resolution correction in single photon emission computed tomography reconstruction method using a body phantom: study of three different models. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2015;71:1070–9.

    Article  CAS  PubMed  Google Scholar 

  28. Johannes T, Michael L. Characterization of noise and resolution for quantitative 177Lu SPECT/CT with xSPECT Quant. J Nucl Med. 2015;60:50–9.

    Google Scholar 

  29. Kameiyama H, Matsutomo N, Nagaki A, Yamao F. Effect of reconstruction strategies for the quantification and diagnostic accuracy of (123)I-FP-CIT SPECT. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2016;72:595–601.

    Article  PubMed  Google Scholar 

  30. Reilhac A, Tomeï S, Buvat I, Michel C, Keheren F, Costes N. Simulation-based evaluation of OSEM iterative reconstruction methods in dynamic brain PET studies. Neuroimage. 2008;39:359–68.

    Article  PubMed  Google Scholar 

  31. Koch W, Hamann C, Welsch J, Pöpperl G, Radau PE, Tatsch K. Is iterative reconstruction an alternative to filtered backprojection in routine processing of dopamine transporter SPECT studies? J Nucl Med. 2005;46:1804–11.

    PubMed  Google Scholar 

  32. Sheehy N, Tetrault TA, Zurakowski D, Vija AH, Fahey FH, Treves ST. Pediatric 99mTc-DMSA SPECT performed by using iterative reconstruction with isotropic resolution recovery: improved image quality and reduced radiopharmaceutical activity. Radiology. 2009;251:511–6.

    Article  PubMed  Google Scholar 

  33. Pareto D, Cot A, Pavı´a J, Falco´n C, Juvells I, Lomen˜a F, Ros D. Iterative reconstruction with correction of the spatially variant fan-beam collimator response in neurotransmission SPET imaging. Eur J Nucl Med Mol Imaging. 2003;30:1322–9.

  34. Winz OH, Hellwig S, Mix M, Weber WA, Mottaghy FM, Schäfer WM, Meyer PT. Image quality and data quantification in dopamine transporter SPECT: advantage of 3-dimensional OSEM reconstruction? Clin Nucl Med. 2012;37:866–71.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff at the Department of Radiology, Saiseikai Yokohamashi Tobu Hospital, for providing technical support.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by TI, HS, TO, and AN. The first draft of the manuscript was written by DI and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Toshimune Ito.

Ethics declarations

Conflict of interest

The authors have no relevant conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izawa, D., Ito, T., Sanada, H. et al. Verification of optimal conditions for the scattering correction of 123I-FP-CIT SPECT on a single-photon emission tomography system with a two-detector whole-body cadmium–zinc–telluride semiconductor detector. Radiol Phys Technol 16, 569–577 (2023). https://doi.org/10.1007/s12194-023-00746-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00746-x

Keywords

Navigation