Skip to main content
Log in

Discrimination of inter-crystal scattering events by signal processing for the X'tal cube PET detector

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Inter-crystal scattering (ICS) events cause degradation of the contrast in PET images. We developed the X’tal cube PET detector with submillimeter spatial resolution, which consisted of a segmented LYSO scintillator and 96 MPPCs. For this high spatial resolution PET detector, the ICS event was not negligible. In this study, we proposed a method to discriminate the ICS events and showed its feasibility by the following method. For each 96 MPPC, we measured the mean and standard deviation of the peak in the pulse height distribution obtained by the photoabsorption events in a scintillator pixel. Every time a newly detected event was identified as the segment, we monitored the reduced chi-square value that was calculated with the pulse height and the prepared mean and the standard deviation for each 96 MPPC. Since the pulse height caused by the photoabsorption event resulted in a small reduced chi-square value, we could eliminate the ICS events by setting a threshold on the reduced chi-square value. We carried out both a Monte Carlo simulation and a scanning experiment. By the simulation, we confirmed that the threshold of the reduced chi square significantly discriminated the ICS event. We obtained the response function by a scanning experiment with a 0.2 mm slit beam of 511 keV gamma-ray. The standard deviation of the response function was improved from 1.6 to 1.06 mm by eliminating the ICS events. The proposed method could significantly eliminate the ICS events and retain the true events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ota R, Omura T, Yamada R, Miwa T, Watanabe M. Evaluation of a sub-millimeter resolution pet detector with a 12 mm pitch TSV-MPPC array one-to-one coupled to lFS scintillator crystals and inter-crystal scatter studies with individual signal readout. IEEE Trans Radiat Plasma Med Sci. 2017;1(1):15–22.

    Article  Google Scholar 

  2. Park S-J, Rogers WL, Clinthorne NH. Effect of inter-crystal Compton scatter on efficiency and image noise in small animal PET module. In: Nuclear Science Symposium Conference Record IEEE, 2003;4: 2272–77.

  3. Stickel JR, Cherry SR. High-resolution PET detector design: modelling components of intrinsic spatial resolution. Phys Med Biol. 2005;50:179–95.

    Article  PubMed  Google Scholar 

  4. Ghazanfari N, Ay MR, Zeraatkar N, Sarkar S, Loudos G. Quantitative assessment of the influence of crystal material and size on the inter crystal scattering and penetration effect in pixilated dual head small animal PET scanner. IFMBE Proceedings. 2011;35:712–5.

    Article  Google Scholar 

  5. Surti S, Scheuermann R, Werner ME, Karp JS. Improved spatial resolution in PET scanners using sampling techniques. IEEE Trans Nucl Sci. 2009;56:596–601.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lam CF, Hagiwara N, Obi T, Yamaguchi M, Yamaya T, Murayama H. An inter-crystal scatter correction method for DOI PET image reconstruction. Jpn J Med Phys. 2006;26:118–30.

    Google Scholar 

  7. Daghighian F, Shenderov P, Pentlow KS, Graham MC, Eshaghian B. Evaluation of cerium doped lutetium oxyorthosilicate (LSO) scintillation crystal for PET. IEEE Trans Nucl Sci. 1992;40:1045–7.

    Article  Google Scholar 

  8. Melcher CL, Schweitzer JS. Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans Nucl Sci. 1992;39:502–5.

    Article  CAS  Google Scholar 

  9. Cooke DW, McClellan KJ, Bennett BL, Roper JM, Whittaker MT, Muenchausen RE. Crystal growth and optical characterization of cerium-doped Lu Y SiO. J Appl Phys. 2000;88:7360–2.

    Article  CAS  Google Scholar 

  10. Kimble T, Chou M, Chai BHT. Scintillation properties of LYSO crystals. Proc IEEE Nuclear Science Symp Conf. 2002;3:1434–7.

    Google Scholar 

  11. Shimizu S, Pepin CM, Lecomte R. Assessment of (LGSO) scintillators with APD readout for PET/SPECT/CT detectors. IEEE Trans Nucl Sci. 2010;57:1512–7.

    Article  CAS  Google Scholar 

  12. https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html. Accessed Oct 2017

  13. Yazaki Y, Inadama N, Nishikido F, Mitsuhashi T, Suga M, Shibuya K, Watanabe M, Yamashita T, Yoshida E, Murayama H, Yamaya T. Development of the X’tal cube: a 3D position-sensitive radiation detector with all-surface MPPC readout. IEEE Trans Nucl Sci. 2012;59:462–8.

    Article  CAS  Google Scholar 

  14. Yamaya T, Mitsuhashi T, Matsumoto T, et al. A SiPM-based isotropic-3D PET detector X’tal cube with a three-dimensional array of 1 mm3 crystals. Phys Med Biol. 2011;56:6793–807.

    Article  CAS  PubMed  Google Scholar 

  15. Naoko I, Takahiro M, et al. X’tal cube PET detector composed of a stack of scintillator plates segmented by laser processing. IEEE Trans Nucl Sci. 2014;59:53–9.

    Google Scholar 

  16. Nitta M, Inadama N, Hirano Y, Nishikido F, Yoshida E, Tashima H, Kawai H, Yamaya T. Development of the X’tal cube PET detector with segments of (0.77 mm). IEEE Trans Radiat Plasma Med Sci. 2018;2:564–73.

    Article  Google Scholar 

  17. Vandenbroucke A, Foudray AMK, Olcott PD, Levin CS. Performance characterization of a new high-resolution PET scintillation detector. Phys Med Biol. 2010;55:5895–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moriya T, Fukumitsu K, Yamashita T, Watanabe M. Fabrication of finely pitched LYSO arrays using subsurface laser engraving technique with picosecond and nanosecond pulse lasers. IEEE Trans Nucl Sci. 2014;61:1032–8.

    Article  Google Scholar 

  19. Agostinelli S, et al. Geant4—a simulation toolkit Nucl. Instrum Methods Phys Res A. 2003;506:250–303.

    Article  CAS  Google Scholar 

  20. van der Laan DJ, Schaart DR, Maas MC, Beekman FJ, Bruyndonckx P, van Eijk CW. Optical simulation of monolithic scintillator detectors using GATE/GEANT4. Phys Med Biol. 2010;55:1659–75.

    Article  PubMed  Google Scholar 

  21. Mao R, Zhang L, Zhu R-Y. Emission spectra of LSO and LYSO crystals excited by UV Light, X-ray and -ray. IEEE Trans Nucl Sci. 2008;55:1759–66.

    Article  CAS  Google Scholar 

  22. Ogata Y, Ohnishi T, Moriya T, Inadama N, Nishikido F, Yoshida E, Murayama H, Yamaya T. Hideaki Haneishi “GPU-based optical propagation simulator of a laser-processed crystal block for the X’tal cube PET detector.” Radiol Phys Technol. 2014;7:35–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munetaka Nitta.

Ethics declarations

Conflicts of interest

No funding was received to assist with the preparation of this manuscript.

Ethics approval

No ethical approval from patients was needed for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitta, M., Nishikido, F., Inadama, N. et al. Discrimination of inter-crystal scattering events by signal processing for the X'tal cube PET detector. Radiol Phys Technol 16, 516–531 (2023). https://doi.org/10.1007/s12194-023-00740-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00740-3

Keywords

Navigation