Skip to main content
Log in

Neutron dose from a 6-MV X-ray beam in radiotherapy

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Although a 6-MV X-ray beam is employed clinically as a non-neutron-producing beam, no studies have reported how few neutrons are produced from a 6-MV beam. This study aimed to theoretically deduce the neutron dose from a 6-MV beam using Monte Carlo simulations for the notification of safety and risk in radiotherapy. Nuclei from a nuclear database with neutron separation energies below 6 MeV were surveyed, suggesting that the certain content of 2H in the human body may result in some contribution. Thus, Monte Carlo calculation considering 2H in a phantom was performed. The calculation suggested that the distribution of the neutron dose from a 6-MV beam consisted of two components: one had neutrons from 2H concentrated within an irradiation field, and the other had those due to other elements such as 183W spreading from a gantry head to a treatment room. Although uncertainty owing to the normalization factor of the Monte Carlo calculations was a factor of three, the neutron doses at distances of 0 and 50 cm from an irradiation field were calculated as 27 and 1.5 nSv/MU, respectively, under intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT). The calculations suggest that neutrons produced by a 6-MV beam are approximately 70 and 20 times safer than those by a 10-MV beam in the case of IMRT/VMAT and total body irradiation, respectively. Thus, this study theoretically reported the approximate number of neutrons delivered by a 6-MV beam for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nicolaidis M. Soft errors in modern electronic systems. Boston: Springer; 2011.

    Book  Google Scholar 

  2. Elders J, Kunze-Busch M, Smeenk RJ, et al. High incidence of implantable cardioverter defibrillator malfunctions during radiation therapy: neutrons as a probable cause of soft errors. Europace. 2013;15:60–5.

    Article  PubMed  Google Scholar 

  3. Gelblum DY, Amols H. Implanted cardiac defibrillator care in radiation oncology patient population. Int J Radiat Oncol Biol Phys. 2009;73:1525–31.

    Article  PubMed  Google Scholar 

  4. Soejima T, Yoden E, Nishimura Y, et al. Radiation therapy in patients with implanted cardiac pacemakers and implantable cardioverter defibrillators: a prospective survey in Japan. J Radiat Res. 2011;52:516–21.

    Article  PubMed  Google Scholar 

  5. Hashii H, Hashimoto T, Okawa A, et al. Comparison of the effects of high-energy photon beam irradiation (10 and 18 MV) on 2 types of implantable cardioverter-defibrillators. Int J Radiat Oncol Bio Phys. 2013;85:840–5.

    Article  Google Scholar 

  6. Zecchin M, Morea G, Severgnini M, et al. Malfunction of cardiac devices after radiotherapy without direct exposure to ionizing radiation: mechanisms and experimental data. Europace. 2016;18:288–93.

    Article  PubMed  Google Scholar 

  7. Zecchin M, Artico J, Morea G, et al. Radiotherapy and risk of implantable cardioverter-defibrillator malfunctions: experimental data from direct exposure at increasing doses. J Cardiovasc Med. 2018;19:155–60.

    Article  Google Scholar 

  8. Oshiro Y, Sugahara S, Noma M, et al. Proton beam therapy interference with implanted cardiac pacemakers. Int J Radiat Oncol Bio Phys. 2008;72:723–7.

    Article  Google Scholar 

  9. Hashimoto T, Isobe T, Hashii H, et al. Influence of secondary neutrons induced by proton radiotherapy for cancer patients with implantable cardioverter defibrillators. Radiat Oncol. 2012;7:10.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gomez DR, Poenisch F, Pinnix CC, et al. Malfunctions of implantable cardiac devices in patients receiving proton beam therapy: incidence and predictors. Int J Radiat Oncol Bio Phys. 2013;87:570–5.

    Article  Google Scholar 

  11. Grant JD, Jensen GL, Tang C, et al. Radiotherapy-induced malfunction in contemporary cardiovascular implantable electronic devices. JAMA Oncol. 2015;1:624–32.

    Article  PubMed  Google Scholar 

  12. Matsubara H, Ezura T, Hashimoto Y, et al. Prediction of radiation-induced malfunction for cardiac implantable electronic devices (CIEDs). Med Phys. 2020;47(4):1489–98.

    Article  PubMed  Google Scholar 

  13. Matsubara H. CIEDs (cardiac implantable electronic devices) error due to neutrons from X-ray therapy equipment. Impact. 2021;2021:31–3.

    Article  Google Scholar 

  14. Hashimoto T, Demizu Y, Numajiri H, et al. Particle therapy using protons or carbon ions for cancer patients with cardiac implantable electronic devices (CIED): a retrospective multi-institutional study. Jpn J Radiol. 2021;40:525–33.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hurkmans CW, Knegjens JL, Oei BS, et al. Management of radiation oncology patients with a pacemaker or ICD: a new comprehensive practical guideline in The Netherlands. Dutch Society of Radiotherapy and Oncology (NVRO). Radiot Oncol. 2012;7:198.

    Article  Google Scholar 

  16. Gauter-Fleckenstein B, Israel CW, Dorenkamp M, et al. DEGRO/DGK guideline for radiotherapy in patients with cardiac implantable electronic devices. Strahlenther Onkol. 2015;191:393–404.

    Article  PubMed  Google Scholar 

  17. Salerno F, Gomellini S, Caruso C, et al. Management of radiation therapy patients with cardiac defibrillator or pacemaker. Radiol Med. 2016;121:515–20.

    Article  PubMed  Google Scholar 

  18. Tajstra M, Gadula-Gacek E, Buchta P, et al. Effect of therapeutic ionizing radiation on implantable electronic devices: systematic review and practical guidance. J Cardiovasc Electrophysiol. 2016;27:1247–2125.

    Article  PubMed  Google Scholar 

  19. Indik JH, Gimbel JR, Abe H, et al. 2017 HRS expert consensus statement on magnetic resonance imaging and radiation exposure in patients with cardiovascular implantable electronic devices. Heart Rhythm. 2017;14:e97–153.

    Article  PubMed  Google Scholar 

  20. Zecchin M, Severgnini M, Fiorentino A, et al. Management of patients with cardiac implantable electronic devices (CIED) undergoing radiotherapy: a consensus document from Associazione Italiana Aritmologia e Cardiostimolazione (AIAC), Associazione Italiana Radioterapia Oncologica (AIRO), Associazione Italiana Fisica Medica (AIFM). Int J Cardiol. 2018;225:175–83.

    Article  Google Scholar 

  21. Tajstra M, Blamek S, Niedziela JT, et al. Patients with cardiac implantable electronic devices undergoing radiotherapy in Poland. Expert opinion of the Heart Rhythm Section of the Polish Cardiac Society and the Polish Society of Radiation Oncology. Kardiol Pol. 2019;77:1106–16.

    Article  PubMed  Google Scholar 

  22. Miften M, Mihailidis D, Kry SF, et al. Management of radiotherapy patients with implanted cardiac pacemakers and defibrillators: a Report of the AAPM TG-203. Med Phys. 2019;46:e757–88.

    Article  PubMed  Google Scholar 

  23. Ohno T, Soejima T, Sekiguchi Y, et al. JASTRO/JCS Guidelines for radiotherapy in patients with cardiac implantable electronic devices. J Radiat Res. 2021;62:172–84.

    Article  CAS  Google Scholar 

  24. Firestone RB. Table of Isotopes. 8th ed. New York: Wiley; 1996.

    Google Scholar 

  25. Matsubara H, Ezura T, Hashimoto Y, et al. Study of feasible and safe condition for total body irradiation using cardiac implantable electronic devices. J Radiat Res. 2021;62:1006–14.

    CAS  Google Scholar 

  26. Gauter-Fleckenstein B, Tulumen E, Rudic B, et al. Local dose rate effects in implantable cardioverter-defibrillators with flattening filter free and flattened photon radiation. Strahlenther Onkol. 2022;198:566–72.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shibata K, Iwamoto O, Nakagawa T, et al. JENDL-4.0: A New Library for Nuclear Science and Engineering. J Nucl Sci Technol. 2011;48:1–30.

    Article  CAS  Google Scholar 

  28. Soppera N, Bossant M, Dupont E, et al. JANIS 4: an improved version of the NEA Java-based nuclear data information system. Nucl Data Sheets. 2014;120:294–6.

    Article  CAS  Google Scholar 

  29. Sato T, Niita K, Matsuda N, et al. Particle and heavy ion transport code system PHITS, Version 2.52. J Nucl Sci Technol. 2013;50:913–23.

    Article  CAS  Google Scholar 

  30. Iwamoto N, Kosako K, Murata T. Photonuclear data file. JARA-Conf. 2016;2016–004:53–8.

    Google Scholar 

  31. Noda S, Hashimoto S, Sato T, et al. Improvement of photonuclear reaction model below 140 MeV in the PHITS code. J Nucl Sci Technol. 2015;52:57–62.

    Article  CAS  Google Scholar 

  32. Hiraytama H, Namito Y, Bielajew AF, et al. THE EGS5 CODE SYSTEM, SLAC-R-730 and KEK Report 2005-8, Stanford Linear Accelerator Center and High Energy Accelerator Research Organization, 2005.

  33. Ogawa T, Hashimoto S, Sato T, et al. Development of gamma de-excitation model for prediction of prompt gamma-rays and isomer production based on energy-dependent level structure treatment. Nucl Inst Meth. 2014;B325:35–42.

    Article  Google Scholar 

  34. Iwamoto Y, Niita K, Sato T, et al. Application and validation of event generator in the PHITS code for the low-energy neutron-induced reactions. Prog Nucle Sci Technol. 2011;2:931–5.

    Article  Google Scholar 

  35. Mao XS, Kase KR, Liu JC. Neutron sources in the Varian Clinac 2100C/2300C medical accelerator calculated by the EGS4 code. Health Phys. 1997;72:524–9.

    Article  CAS  PubMed  Google Scholar 

  36. Karimi AH, Brkic H, Shahbazi-Gahrouei D, et al. Essential considerations for accurate evaluation of photoneutron contamination in Radiotherapy. Appl Radiat Isot. 2019;145:24–31.

    Article  CAS  PubMed  Google Scholar 

  37. Kry SF, Bednarz B, Howell RM, et al. AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy. Med Phys. 2017;44:e391–429.

    Article  PubMed  Google Scholar 

  38. Kase KR, Mao XS, Nelson WR. Neutron fluence and energy spectra around the varian clinac 2100C/2300C Medical accelerator. Health Phys. 1998;74:38–47.

    Article  CAS  PubMed  Google Scholar 

  39. Howell RM, Ferenci MS, Hertel NE. Investigation of secondary neutron dose for 18 MV dynamic MLC IMRT delivery. Med Phys. 2005;32:786–93.

    Article  PubMed  Google Scholar 

  40. Constantin M, Perl J, LoSasso T, et al. Modeling the truebeam linac using a CAD to Geant4 geometry implementation: dose and IAEA-compliant phase space calculations. Med Phys. 2011;38:4018–24.

    Article  PubMed  Google Scholar 

  41. Kry SF, Salehpour M, Followill DS, et al. Out-of-field photon and neutron dose equivalents from step-and-shoot intensity-modulated radiation therapy. Int J Radiat Oncol Bio Phys. 2005;62:1204–16.

    Article  Google Scholar 

  42. ICRP. Report of the task group on reference man. ICRP Publication 23. Oxford: Pergamon Press; 1975.

    Google Scholar 

  43. Hauri P, Schneider U. Whole-body dose equivalent including neutrons is similar for 6 MV and 15 MV IMRT, VMAT, and 3D conformal radiotherapy. J Appl Clin Med Phys. 2019;20:56–70.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sato T. Analytical model for estimating terrestrial cosmic ray fluxes nearly anytime and anywhere in the world: extension of PARMA/EXPACS. PLoS ONE. 2015;10: e0144679.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sato T. Analytical model for estimating the zenith angle dependence of terrestrial cosmic ray fluxes. PLoS ONE. 2016;11: e0160390.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hartman AR, Williams SF, Dillon JJ. Survival, disease-free survival and adverse effects of conditioning for allogeneic bone marrow transplantation with busulfan/cyclophosphamide vs total body irradiation: a meta-analysis. Bone Marrow Transpl. 1998;22:439–43.

    Article  CAS  Google Scholar 

  47. Gupta T, Kannan S, Dantkale V, et al. Cyclophosphamide plus total body irradiation compared with busulfan plus cyclophosphamide as a conditioning regimen prior to hematopoietic stem cell transplantation in patients with leukemia: a systematic review and meta-analysis. Hematol Oncol Stem Cell Ther. 2011;4:17–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Matsubara.

Ethics declarations

Conflict of interest

The author has no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsubara, H. Neutron dose from a 6-MV X-ray beam in radiotherapy. Radiol Phys Technol 16, 186–194 (2023). https://doi.org/10.1007/s12194-023-00705-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00705-6

Keywords

Navigation