Skip to main content

Advertisement

Log in

Dedicated phantom tools using traceable 68Ge/68Ga point-like sources for dedicated-breast PET and positron emission mammography scanners

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Since the early 2000s, many types of positron emission tomography (PET) scanners dedicated to breast imaging for the diagnosis of breast cancer have been introduced. However, conventional performance evaluation methods developed for whole-body PET scanners cannot be used for such devices. In this study, we developed phantom tools for evaluating the quantitative accuracy of positron emission mammography (PEM) and dedicated-breast PET (dbPET) scanners using novel traceable point-like 68Ge/68 Ga sources. The PEM phantom consisted of an acrylic cube (100 × 100 × 40 mm) and three point-like sources. The dbPET phantom comprised an acrylic cylinder (ø100 × 100 mm) and five point-like sources. These phantoms were used for evaluating the fundamental responses of clinical PEM and dbPET scanners to point-like inputs in a medium. The results showed that reasonable recovery values were obtained based on region-of-interest analyses of the reconstructed images. The developed phantoms using traceable 68Ge/68 Ga point-like sources were useful for evaluating the physical characteristics of PEM and dbPET scanners. Thus, they offer a practical, reliable, and universal measurement scheme for evaluating various types of PET scanners using common sets of sealed sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hsu DF, Freese DL, Levin CS. Breast-dedicated radionuclide imaging systems. J Nucl Med. 2016;57(Supp 1):40S-45S.

    Article  CAS  PubMed  Google Scholar 

  2. Berg WA, Weinberg IN, Narayanan D, Lobrano ME, Ross E, Amodei L, Tafra L, Adler LP, Uddo J, Stein W 3rd, Levine EA. Positron emission mammography working group. High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J. 2006;12:309–23.

    Article  PubMed  Google Scholar 

  3. Schilling K, Conti P, Adler L, Tafra L. The role of positron emission mammography in breast cancer imaging and management. Appl Radiol. 2008;37:26–36.

    Article  Google Scholar 

  4. Berg WA, Madsen KS, Schilling K, Tartar M, Pisano ED, Larsen LH, Narayanan D, Ozonoff A, Miller JP, Kalinyak JE. Breast cancer: comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology. 2011;258:59–72.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schilling K, Narayanan D, Kalinyak JE, The J, Velasquez MV, Kahn S, Saady M, Mahal R, Chrystal L. Positron emission mammography in breast cancer presurgical planning comparisons with magnetic resonance imaging. Eur J Nucl Med Mol Imaging. 2011;38:23–36.

    Article  PubMed  Google Scholar 

  6. Iima M, Nakamoto Y, Kanao S, Sugie T, Ueno T, Kawada M, Mikami Y, Toi M, Togashi K. Clinical performance of 2 dedicated PET scanners for breast imaging: Initial evaluation. J Nucl Med. 2012;53:1534–42.

    Article  PubMed  Google Scholar 

  7. Yamamoto Y, Tasaki Y, Kuwada Y, Ozawa Y, Inoue T. A preliminary report of breast cancer screening by positron emission mammography. Ann Nucl Med. 2016;30:130–7.

    Article  PubMed  Google Scholar 

  8. Nishimatsu K, Nakamoto Y, Miyake KK, Ishimori T, Kanao S, Toi M, Togashi K. Higher breast cancer conspicuity on dbPET compared to WB-PET/CT. Eur J Radiol. 2017;90:138–45.

    Article  PubMed  Google Scholar 

  9. National Electrical Manufacturers Association (NEMA). Performance measurements of positron emission tomographs. NEMA Standards Publication. NU2–1994 pp. 1–28

  10. National Electrical Manufacturers Association (NEMA). Performance measurements of positron emission tomographs NEMA. Standards Publication. NU2–2019 pp. 1–41

  11. International Electrotechnical Commission (IEC). Radionuclide imaging devices - Characteristics and test conditions - Part 1: Positron emission tomographs. IEC Standard. 1998;61675–1 pp. 1–35

  12. International Electrotechnical Commission (IEC). Radionuclide imaging devices - Characteristics and test conditions - Part 1: Positron emission tomographs. IEC International Standard. 2013;61675–1 pp. 1–38

  13. Springer A, Mawlawi OR. Evaluation of the quantitative accuracy of a commercially available positron emission mammography scanner. Med Phys. 2011;38:2132–9.

    Article  PubMed  Google Scholar 

  14. Wu Y, Bowen SL, Yang K, Packard N, Fu L, Burkett G, Qi J, Boone JM, Cherry SR, Badawi RD. PET characteristics of a dedicated breast PET/CT scanner prototype. Phys Med Biol. 2009;54:4273–87.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Moliner L, Gonzalez AJ, Soriano A, Sanchez F, Correcher C, Orero A, Carles M, Vidal LF, Barbera J, Caballero L, Seimetz M, Vazquez C, Benlloch JM. Design and evaluation of the MAMMI dedicated breast PET. Med Phys. 2012;39:5393–404.

    Article  CAS  PubMed  Google Scholar 

  16. García Hernández T, Vicedo González A, Ferrer Rebolleda J, Sánchez Jurado R, Roselló Ferrando J, Brualla González L, Granero Cabañero D, Santiago DPC, M,. Performance evaluation of a high resolution dedicated breast PET scanner. Med Phys. 2016;43:2261–72.

    Article  PubMed  Google Scholar 

  17. Satoh Y, Motosugi U, Imai M, Onishi H. Comparison of dedicated breast positron emission tomography and whole-body positron emission tomography/computed tomography images: A common phantom study. Ann Nucl Med. 2020;34:119–27.

    Article  PubMed  Google Scholar 

  18. National Electrical Manufacturers Association (NEMA). Performance measurements of small animal positron emission tomographs. NEMA Standards Publication. NU4–2008 pp. 1–23

  19. Luo W, Anashkin E, Matthews CG. Performance evaluation of a PEM scanner using the NEMA NU4-2008 small animal PET standards. IEEE Trans Nucl Sci. 2010;57:94–103.

    Article  Google Scholar 

  20. Miyake KK, Matsumoto K, Inoue M, Nakamoto Y, Kanao S, Oishi T, Kawase S, Kitamura K, Yamakawa Y, Akazawa A, Kobayashi T, Ohi J, Togashi K. Performance evaluation of a new dedicated breast PET scanner using NEMA NU4-2008 Standards. J Nucl Med. 2014;55:1198–203.

    Article  CAS  PubMed  Google Scholar 

  21. Japan Medical Imaging and Radiological Systems Industries Association (JIRA). Performance evaluation of positron emission tomographs. JESRA X-0073*G-2019

  22. Raylman RR, Majewski S, Smith MF, Proffitt J, Hammond W, Srinivasan A, McKisson J, Popov V, Weisenberger A, Judy CO, Kross B, Ramasubramanian S, Banta LE, Kinahan PE, Champley K. The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): Design, construction and phantom-based measurements. Phys Med Biol. 2008;53:637–53.

    Article  PubMed  Google Scholar 

  23. Spinks T, Jones T, Heather J, Gilardi M. Quality control procedures in positron tomography. Eur J Nucl Med. 1989;15:736–40.

    Article  CAS  PubMed  Google Scholar 

  24. Geworski L, Knoop BO, de Wit M, Ivancević V, Bares R, Munz DL. Multicenter comparison of calibration and cross calibration of PET scanners. J Nucl Med. 2002;43:635–9.

    PubMed  Google Scholar 

  25. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50:11S-20S.

    Article  CAS  PubMed  Google Scholar 

  26. Zimmerman BE, Cessna JT. Development of a traceable calibration methodology for solid 68Ge/68Ga sources used as a calibration surrogate for 18F in radionuclide activity calibrators. J Nucl Med. 2010;51:448–53.

    Article  CAS  PubMed  Google Scholar 

  27. Zimmerman BE, Pibida L, King LE, Bergeron DE, Cessna JT, Mille MM. Development of a calibration methodology for large-volume, solid 68Ge phantoms for traceable measurements in positron emission tomography. Appl Radiat Isot. 2014;87:5–9.

    Article  CAS  PubMed  Google Scholar 

  28. Zimmerman BE, Bergeron DE, Cessna JT. Impact of recent change in the National Institute of Standards and Technology standard for 18F on the relative response of 68Ge-based mock syringe dose calibrator standards. J Nucl Med. 2015;56:1453–7.

    Article  CAS  PubMed  Google Scholar 

  29. Hasegawa T, Sato Y, Oda K, Wada Y, Murayama H, Yamada T. Semi-quantitative and simulation analyses of effects of γ rays on determination of calibration factors of PET scanners with point-like 22Na sources. Phys Med Biol. 2011;56:6031–45.

    Article  CAS  PubMed  Google Scholar 

  30. Hasegawa T, Okamoto M, Yamada T, Ishizu H, Mikamoto T, Sato Y, Miyatake H, Kikuchi K, Inoue Y. Traceable point-like 68Ge/68Ga source with a spherically symmetric positron absorber for PET scanners. Radiol Phys Technol. 2020;13:170–6.

    Article  PubMed  Google Scholar 

  31. Yamada Y, Kitamura K, Hashizume N, Yamakawa Y, Kumaza Y. Reconstruction of 4-Layer DOI detector equipped C-Shaped PEM via list-mode iterative algorithm. IEEE Nuclear Science Symposium Conference Record. 2007;4397–4400. https://doi.org/10.1109/NSSMIC.2007.4437087

  32. Hasegawa T, Oda K, Wada Y, Sasaki T, Sato Y, Yamada T, Matsumoto M, Murayama H, Kikuchi K, Miyatake H, Abe Y, Miwa K, Akimoto K, Wagatsuma K. Validation of novel calibration scheme with traceable point-like 22Na sources on six types of PET scanner. Ann Nucl Med. 2013;27:346–54.

    Article  CAS  PubMed  Google Scholar 

  33. Panetta JV, Daube-Witherspoon ME, Karp JS. Validation of phantom-based harmonization for patient harmonization. Med Phys. 2017;44:3534–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van der Vos CS, Koopman D, Rijnsdorp S, Arends AJ, Boellaard R, van Dalen JA, Lubberink M, Willemsen ATM, Visser EP. Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):4–16.

    PubMed  PubMed Central  Google Scholar 

  35. Namías M, Bradshaw T, Menezes VO, Machado MAD, Jeraj R. A novel approach for quantitative harmonization in PET. Phys Med Biol. 2018;63: 095019.

    Article  PubMed  Google Scholar 

  36. Disselhorst JA, Brom M, Laverman P, Slump CoH, Boerman OC, Oyen WJG, Gotthardt M, Visser EP. Image-quality assessment for several positron emitters using the NEMA NU 4–2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med. 2010;51:610–7.

    Article  PubMed  Google Scholar 

  37. Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 2011;56:2375–89.

    Article  CAS  PubMed  Google Scholar 

  38. MacDonald L, Edwards J, Lewellen T, Haseley D, Rogers J, Kinahan P. Clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II. J Nucl Med. 2009;50:1666–75.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Takahiro Yamada (Kinki University), Yasushi Sato (AIST), Mikio Matsuo, Hidetaka Ishizu, and Takahiro Mikamoto (JRIA) for their collaboration in the development and production of the traceable 68Ge/68Ga point-like sources. We would also like to thank Kentaro Takahashi (Kitasato University Graduate School) for help with related data analyses. Finally, we would like to thank Kenta Miwa (Fukushima Medical University), and Noriaki Miyaji (Cancer Institute Hospital of JFCR) for their collaboration with the multicenter studies using traceable point-like sources. This study was supported in part by JSPS KAKENHI JP18K07688 and JP21K07605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Hasegawa.

Ethics declarations

Conflict of interest

The authors have no conflict of interest. This article does not contain any studies performed with human and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, M., Hasegawa, T., Oda, K. et al. Dedicated phantom tools using traceable 68Ge/68Ga point-like sources for dedicated-breast PET and positron emission mammography scanners. Radiol Phys Technol 16, 49–56 (2023). https://doi.org/10.1007/s12194-022-00692-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-022-00692-0

Keywords

Navigation