Skip to main content
Log in

A novel myocardial T1 analysis method robust to fluctuations in longitudinal magnetization recovery due to heart rate variability in polarity-corrected inversion time preparation

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Myocardial T1 mapping is useful for characterizing the myocardial tissues. Polarity-corrected inversion time preparation (PCTIP), one of the T1 mapping techniques, was expected to reduce measurement underestimation versus the MOLLI method. However, measurement accuracy is reportedly reduced, especially at high heart rates (HR), owing to the shorter time interval of inversion recovery (IR) pulses. This phantom-based experiment aimed to evaluate the dependence of T1 mapping with PCTIP on HR. Here we proposed and evaluated the effectiveness of a novel HR-independent analysis method for T1 mapping. A PCTIP scan using a 3-T magnetic resonance imaging scanner was performed on a T1 measurement phantom. The virtual HR were set at 50, 60, 75, and 100 bpm. The T1 of the phantom was estimated by a least-squares fit of the PCTIP data for each obtained inversion time and a theoretical longitudinal relaxation formula. This analysis was performed for the conventional and proposed formulas. The proposed formula was derived for adapting to the transient state of longitudinal magnetization recovery caused by the trigger interval as a recurrence formula. The estimated T1 measurements using the conventional formula varied widely with HR and the accuracy decreased, especially at a high HR. However, the proposed analysis showed good accuracy versus the conventional method independent of HR. T1 mapping using the PCTIP method combined with the novel method proposed here showed good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: a society for cardiovascular magnetic resonance (SCMR) and CMR working group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92.

    Article  Google Scholar 

  2. Yoshida A, Ishibashi-Ueda H, Yamada N, Kanzaki H, Hasegawa T, Takahama H, et al. Direct comparison of the diagnostic capability of cardiac magnetic resonance and endomyocardial biopsy in patients with heart failure. Eur J Heart Fail. 2013;15:166–75.

    Article  Google Scholar 

  3. Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson. 2014;16:2.

    Article  Google Scholar 

  4. Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol. 2008;52:1574–80.

    Article  Google Scholar 

  5. Sado DM, Flett AS, Moon JC. Novel imaging techniques for diffuse myocardial fibrosis. Future Cardiol. 2011;7:643–50.

    Article  Google Scholar 

  6. Kehr E, Sono M, Chugh SS, Jerosch-Herold M. Gadolinium-enhanced magnetic resonance imaging for detection and quantification of fibrosis in human myocardium in vitro. Int J Cardiovasc Imaging. 2008;24:61–8.

    Article  Google Scholar 

  7. Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging. 2013;6:475–84.

    Article  Google Scholar 

  8. Ugander M, Bagi PS, Oki AJ, Chen B, Hsu LY, Aletras AH, et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging. 2012;5:596–603.

    Article  Google Scholar 

  9. Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Choudhury RP, et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:42.

    Article  Google Scholar 

  10. Dall’Armellina E, Piechnik SK, Ferreira VM, Si QL, Robson MD, Francis JM, et al. Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction. J Cardiovasc Magn Reson. 2012;14:15.

    Article  Google Scholar 

  11. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100:1992–2002.

    Article  CAS  Google Scholar 

  12. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, et al. Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J. 2004;25:1940–65.

    Article  Google Scholar 

  13. Hunold P, Schlosser T, Vogt FM, Eggebrecht H, Schmermund A, Bruder O, et al. Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol. 2005;184:1420–6.

    Article  Google Scholar 

  14. Ordovas KG, Higgins CB. Delayed contrast enhancement on MR images of myocardium: past, present, future. Radiology. 2011;261:358–74.

    Article  Google Scholar 

  15. Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn Reson Med. 2014;71:2082–95.

    Article  Google Scholar 

  16. Robison S, Hong KP, Kim D, Lloyd R, Ramchand J, Hornsey E, et al. Evaluation of modified look-locker inversion recovery and arrhythmia-insensitive rapid cardiac T1 mapping pulse sequences in cardiomyopathy patients. J Comput Assist Tomogr. 2018;42:732–8.

    Article  Google Scholar 

  17. Weingärtner S, Akçakaya M, Basha T, Kissinger KV, Goddu B, Berg S, et al. Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability. Magn Reson Med. 2014;71:1024–34.

    Article  Google Scholar 

  18. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52:141–6.

    Article  Google Scholar 

  19. Kellman P, Herzka DA, Arai AE, Hansen MS. Influence of Off-resonance in myocardial T1-mapping using SSFP based MOLLI method. J Cardiovasc Magn Reson. 2013;15:63.

    Article  Google Scholar 

  20. Marty B, Coppa B, Carlier PG. Fast, precise, and accurate myocardial T1 mapping using a radial MOLLI sequence with FLASH readout. Magn Reson Med. 2018;79:1387–98.

    Article  CAS  Google Scholar 

  21. Kuhara S, Ishikawa H, Kanazawa T, Seino S, Bannae S, Takasumi H, et al. Polarity-corrected TI prep tool for delayed-enhancement MR imaging and T1 mapping. Proc ISMRM. 2014;2014:2447.

    Google Scholar 

  22. Ishikawa H, Seino S, Takasumi H, Kikori K, Harata M, Kanezawa T, et al. The measurement precision and accuracy of T1 mapping using polarity corrected (PC) TI prep tool. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2018;74:13–21.

    Article  CAS  Google Scholar 

  23. Takasumi H, Seino S, Kikori K, Ishikawa H, Kanezawa T, Bannae S, et al. Evaluation of the homogeneity of native T1 myocardial mapping using the polarity corrected inversion time preparation method in a myocardial phantom and healthy volunteers. Radiol Phys Technol. 2021;14:50–6.

    Article  Google Scholar 

  24. Kellman P, Arai AE, McVeigh ER, Aletras AH. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med. 2002;47:372–83.

    Article  Google Scholar 

  25. Xue H, Greiser A, Zuehlsdorff S, Jolly MP, Guehring J, Arai AE, et al. Phase-sensitive inversion recovery for myocardial T1 mapping with motion correction and parametric fitting. Megn Reson Magn Reson Med. 2013;69:1408–20.

    Article  Google Scholar 

  26. Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim. 1998;9:112–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigehide Kuhara.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Compliance with ethical standards

This article does not include any studies with human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, Y., Kuhara, S. A novel myocardial T1 analysis method robust to fluctuations in longitudinal magnetization recovery due to heart rate variability in polarity-corrected inversion time preparation. Radiol Phys Technol 15, 224–233 (2022). https://doi.org/10.1007/s12194-022-00667-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-022-00667-1

Keywords

Navigation