Skip to main content
Log in

Compton imaging for medical applications

  • Review Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Compton imaging exploits inelastic scattering, known as Compton scattering, using a Compton camera consisting of a scatterer detector in the front layer and an absorber detector in the back layer. This method was developed for astronomy, and in recent years, research and development for environmental and medical applications has been actively conducted. Compton imaging can discriminate gamma rays over a wide energy range from several hundred keV to several MeV. Therefore, it is expected to be applied to the simultaneous imaging of multiple nuclides in nuclear medicine and prompt gamma ray imaging for range verification in particle therapy. In addition, multiple gamma coincidence imaging is expected to be realized, which allows the source position to be determined from a single coincidence event using nuclides that emit multiple gamma rays simultaneously, such as nuclides that emit a single gamma ray simultaneously with positron decay. This review introduces various efforts toward the practical application of Compton imaging in the medical field, including in vivo studies, and discusses its prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The relationship among the incidence and outgoing photon energies and the scattering angle is determined by conservation of relativistic energy and momentum.

  2. A scintillator is excited by gamma-ray irradiation and then emits luminescent lights.

  3. The Doppler effect by a distribution of the velocities of electrons bounded to atoms results in uncertainty of Doppler shifts in energy information when interacting with the gamma rays.

  4. A gamma ray immediately emitted from an atomic nucleus by a nuclear reaction is called a prompt gamma ray, and its energy depends on the nuclide.

  5. The spatial distribution of detector response for elongated elements becomes wider when gamma rays are coming at an oblique angle compared to when they are coming from the front.

  6. Radiation detectors that can detect interaction position not only in 2D but also depth direction are called DOI detectors.

  7. GAN is a machine learning framework consisting of two neural networks that contest each other, and pix2pix is a powerful tool for image conversion. In training for image conversion, one network generates a converted image, and the other discriminates whether it is an image from the training set or a generated one.

  8. https://www.cancerimagingarchive.net/

References

  1. Pinkau K. Die Messung solarer und atmosphärischer Neutronen. Zeitschrift für Naturforschung A. 1966;21:2100–1. https://doi.org/10.1515/zna-1966-1216.

    Article  CAS  Google Scholar 

  2. White RS. An experiment to measure neutrons from the sun. Bulletin Am Phys Soci. 1968;13:714.

    Google Scholar 

  3. Schönfelder V, Hirner A, Schneider K. A telescope for soft gamma ray astronomy. Nucl Inst Methods. 1973;107:385–94. https://doi.org/10.1016/0029-554X(73)90257-7.

    Article  Google Scholar 

  4. Zych AD, Wilson RB, Zanrosso E, White RS, Dayton B, Simone J. Double scatter telescope for medium energy gamma ray astronomy from a satellite. IEEE Trans Nucl Sci. 1979;26:506–12. https://doi.org/10.1109/TNS.1979.4329682.

    Article  Google Scholar 

  5. Schönfelder V, Diehl R, Lichti GG, Steinle H, Swanenburg BN, Deerenberg AJM, et al. The imaging compton telescope comptel on the gamma ray observatory. IEEE Trans Nucl Sci. 1984;31:766–70. https://doi.org/10.1109/TNS.1984.4333363.

    Article  Google Scholar 

  6. Schönfelder V, Aarts H, Bennett K, de Boer H, Clear J, Collmar W, et al. Instrument description and performance of the imaging gamma-ray telescope COMPTEL aboard the compton gamma-ray observatory. Astrophys J Suppl Ser. 1993;86:657–92. https://doi.org/10.1086/191794.

    Article  Google Scholar 

  7. Watanabe S, Tanaka T, Nakazawa K, Mitani T, Oonuki K, Takahashi T, et al. A Si/CdTe semiconductor compton camera. IEEE Trans Nucl Sci. 2005;52:2045–51. https://doi.org/10.1109/TNS.2005.856995.

    Article  CAS  Google Scholar 

  8. Bellm EC, Boggs SE, Bandstra MS, Bowen JD, Perez-Becker D, Wunderer CB, et al. Overview of the nuclear compton telescope. IEEE Trans Nucl Sci. 2009;56:1250–6. https://doi.org/10.1109/TNS.2009.2016091.

    Article  Google Scholar 

  9. Ichinohe Y, Uchida Y, Watanabe S, Edahiro I, Hayashi K, Kawano T, et al. The first demonstration of the concept of “narrow-FOV Si/CdTe semiconductor compton camera.” Nucl Instrum Methods Phys Res Sect A. 2016;806:5–13. https://doi.org/10.1016/j.nima.2015.09.081.

    Article  CAS  Google Scholar 

  10. Hosokoshi H, Kataoka J, Mochizuki S, Yoneyama M, Ito S, Kiji H, et al. Development and performance verification of a 3-D position-sensitive compton camera for imaging meV gamma rays. Sci Rep. 2019;9:18551. https://doi.org/10.1038/s41598-019-54862-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martin JB, Knoll GF, Wehe DK, Dogan N, Jordanov V, Petrick N, et al. A ring compton scatter camera for imaging medium energy gamma rays. IEEE Trans Nucl Sci. 1993;40:972–8. https://doi.org/10.1109/23.256695.

    Article  CAS  Google Scholar 

  12. Martin JB, Dogan N, Gormley JE, Knoll GF, O’Donnell M, Wehe DK. Imaging multi-energy gamma-ray fields with a compton scatter camera. IEEE Trans Nucl Sci. 1994;41:1019–25. https://doi.org/10.1109/23.322851.

    Article  CAS  Google Scholar 

  13. King SE, Phillips GW, Haskins PS, McKisson JE, Piercey RB, Mania RC. A solid-state compton camera for three-dimensional imaging. Nuclear Inst and Methods in Physics Research, A. 1994;353:320–3. https://doi.org/10.1016/0168-9002(94)91666-7.

    Article  CAS  Google Scholar 

  14. Meng LJ, Wehe DK. Feasibility study of using hybrid collimation for nuclear environmental imaging. IEEE Trans Nucl Sci. 2003;50:1103–10. https://doi.org/10.1109/TNS.2003.815135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoover AS, Sullivan JP, Baird B, Brumby SP, Kippen RM, McCluskey CW, et al. Gamma-ray imaging with a Si/CsI(Tl) compton detector. Appl Radiat Isot. 2006;64:1648–54. https://doi.org/10.1016/j.apradiso.2006.05.015.

    Article  CAS  PubMed  Google Scholar 

  16. Mihailescu L, Vetter KM, Burks MT, Hull EL, Craig WW. SPEIR: a ge compton camera. Nucl Instrum Methods Phys Res Sect A. 2007;570:89–100. https://doi.org/10.1016/j.nima.2006.09.111.

    Article  CAS  Google Scholar 

  17. Takeda SS, Ichinohe Y, Hagino K, Odaka H, Yuasa T, Ishikawa SN, et al. Applications and imaging techniques of a Si/CdTe compton gamma-ray camera. Phys Procedia. 2012;37:859–66. https://doi.org/10.1016/j.phpro.2012.04.096.

    Article  CAS  Google Scholar 

  18. Kagaya M, Katagiri H, Enomoto R, Hanafusa R, Hosokawa M, Itoh Y, et al. Development of a low-cost-high-sensitivity compton camera using CsI (Tl) scintillators (γI). Nucl Instrum Methods Phys Res Sect A. 2015;804:25–32. https://doi.org/10.1016/j.nima.2015.09.014.

    Article  CAS  Google Scholar 

  19. Jiang J, Shimazoe K, Nakamura Y, Takahashi H, Shikaze Y, Nishizawa Y, et al. A prototype of aerial radiation monitoring system using an unmanned helicopter mounting a GAGG scintillator compton camera. J Nucl Sci Technol. 2016;53:1067–75. https://doi.org/10.1080/00223131.2015.1089796.

    Article  CAS  Google Scholar 

  20. Tomono D, Mizumoto T, Takada A, Komura S, Matsuoka Y, Mizumura Y, et al. First On-Site true gamma-ray imaging-spectroscopy of contamination near fukushima plant. Sci Rep. 2017;7:41972. https://doi.org/10.1038/srep41972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sato Y, Tanifuji Y, Terasaka Y, Usami H, Kaburagi M, Kawabata K, et al. Radiation imaging using a compact compton camera inside the Fukushima daiichi nuclear power station building. J Nucl Sci Technol. 2018;55:965–70. https://doi.org/10.1080/00223131.2018.1473171.

    Article  CAS  Google Scholar 

  22. Muraishi H, Enomoto R, Katagiri H, Kagaya M, Watanabe T, Narita N, et al. Visualization of low-level gamma radiation sources using a low-cost, high-sensitivity, omnidirectional compton camera. J V Exp. 2020;30(155):e60463. https://doi.org/10.3791/60463.

    Article  CAS  Google Scholar 

  23. Champion RJ, Golduber RM, Kearfott KJ. Use of an Imaging spectrometer for characterization of a cesium dosimeter calibration facility. Health Phys. 2020;118:462–9. https://doi.org/10.1097/HP.0000000000001150.

    Article  CAS  PubMed  Google Scholar 

  24. Todd RW, Nightingale JM, Everett DB. A proposed γ camera. Nature. 1974;251:132–4. https://doi.org/10.1038/251132a0.

    Article  CAS  Google Scholar 

  25. Everett DB, Fleming JS, Todd RW, Nightingale JM. Gamma-radiation imaging system based on the compton effect. Proceedings Inst Electrical Eng. 1977;124:995–1000. https://doi.org/10.1049/piee.1977.0203.

    Article  Google Scholar 

  26. Singh M, Doria D. An electronically collimated gamma camera for single photon emission computed tomography. Part II: Image reconstruction and preliminary experimental measurements. Med Phys. 1983;10:428–35. https://doi.org/10.1118/1.595314.

    Article  CAS  PubMed  Google Scholar 

  27. Phillips GW. Gamma-ray imaging with Compton cameras. Nucl Instrum Methods Phys Res Sect B. 1995;99:674–7. https://doi.org/10.1016/0168-583X(95)80085-9.

    Article  CAS  Google Scholar 

  28. Rohe RC, Valentine JD. An energy-subtraction compton scatter camera design for in vivo medical imaging of radiopharmaceuticals. IEEE Trans Nucl Sci. 1996;43:3256–63. https://doi.org/10.1109/23.552730.

    Article  CAS  Google Scholar 

  29. Valentine JD, Bonnerave C, Rohe RC. Energy-subtraction compton scatter camera design considerations: a monte carlo study of timing and energy resolution effects. IEEE Trans Nucl Sci. 1997;44:1134–9. https://doi.org/10.1109/23.596977.

    Article  CAS  Google Scholar 

  30. Bolozdynya AI, Egorov VV, Koutchenkov AV, Safronov GA, Smirnov GN, Medved SA, et al. High pressure xenon electronically collimated camera for low energy gamma ray imaging. IEEE Trans Nucl Sci. 1997;44:2408–14. https://doi.org/10.1109/23.656444.

    Article  CAS  Google Scholar 

  31. Bolozdynya A, Egorov V, Koutchenkov A, Safronov G, Smirnov G, Medved S, et al. A high pressure xenon self-triggered scintillation drift chamber with 3D sensitivity in the range of 20–140 keV deposited energy. Nucl Instrum Methods Phys Res Sect A. 1997;385:225–38. https://doi.org/10.1016/S0168-9002(96)01035-2.

    Article  CAS  Google Scholar 

  32. Ordonez CE, Bolozdynya A, Chang W. Dependence of angular uncertainties on the energy resolution of Compton cameras. IEEE Nucl Sci Sympos Conf Rec. 1997. https://doi.org/10.1109/NSSMIC.1997.670505.

    Article  Google Scholar 

  33. Bolozdynya A, Ordonez CE, Chang W. A Concept of cylindrical Compton camera for SPECT. IEEE Nucl Sci Sympos Conf Rec. 1997;1997:1047–51. https://doi.org/10.1109/nssmic.1997.670489.

    Article  Google Scholar 

  34. Ordonez CE, Bolozdynya A, Chang W. Doppler broadening of energy spectra in compton cameras. IEEE Nucl Sci Sympos Conf Rec. 1997;1997:1361–5. https://doi.org/10.1109/NSSMIC.1997.670574.

    Article  Google Scholar 

  35. LeBlanc JW, Clinthorne NH, Hua CH, Nygard E, Rogers WL, Wehe DK, et al. C-SPRINT: A prototype compton camera system for low energy gamma ray imaging. IEEE Trans Nucl Sci. 1998;45:943–9. https://doi.org/10.1109/23.682679.

    Article  CAS  Google Scholar 

  36. LeBlanc JW, Bai X, Clinthorne NH, Hua C, Meier D, Rogers WL, et al. 99mTc imaging performance of the C-SPRINT compton camera. IEEE Nucl Sci Sympos Conf Rec. 1999;1999:545–52. https://doi.org/10.1109/nssmic.1999.842544.

    Article  Google Scholar 

  37. LeBlanc JW, Clinthorne NH, Hua CH, Nygard E, Rogers WL, Wehe DK, et al. Experimental results from the C-SPRINT prototype compton camera. IEEE Nucl Sci Sympos Med Imaging Conf. 1999;2:743–6. https://doi.org/10.1109/nssmic.1998.774282.

    Article  Google Scholar 

  38. Yang YF, Gono Y, Motomura S, Enomoto S, Yano Y. A compton camera for multitracer imaging. IEEE Trans Nucl Sci. 2001;48:656–61. https://doi.org/10.1109/23.940142.

    Article  Google Scholar 

  39. Zhang L, Rogers WL, Clinthorne NH. Potential of a compton camera for high performance scintimammography. Phys Med Biol. 2004;49:617–38. https://doi.org/10.1088/0031-9155/49/4/011.

    Article  PubMed  Google Scholar 

  40. Chelikani S, Gore J, Zubal G. Optimizing compton camera geometries. Phys Med Biol. 2004;49:1387–408. https://doi.org/10.1088/0031-9155/49/8/002.

    Article  PubMed  Google Scholar 

  41. Rogers WL, Clinthorne NH, Bolozdynya A. Compton Cameras for Nuclear Medicine Imaging. In: Wernick M, Aarsvold JN, editors. Emission Tomography: The fundamentals of PET and SPECT. 2004. 383–419.

  42. Takada A, Hattori K, Kubo H, Miuchi K, Nagayoshi T, Nishimura H, et al. Development of an advanced compton camera with gaseous TPC and scintillator. Nucl Instrum Methods Phys Res Sect A. 2005;546:258–62. https://doi.org/10.1016/j.nima.2005.03.050.

    Article  CAS  Google Scholar 

  43. Kurosawa S, Kubo H, Hattori K, Ida C, Iwaki S, Kabuki S, et al. Performance of 8 × 8 pixel LaBr 3: Ce and Gd 2SiO5: Ce scintillator arrays coupled to a 64-channel multi-anode PMT. IEEE Transac Nucl Sci. 2009. https://doi.org/10.1109/TNS.2009.2034657.

    Article  Google Scholar 

  44. Takeda S, Aono H, Okuyama S, Ishikawa SN, Odaka H, Watanabe S, et al. Experimental results of the gamma-ray imaging capability with a Si/CdTe semiconductor compton camera. IEEE Trans Nucl Sci. 2009;56:783–90. https://doi.org/10.1109/TNS.2008.2012059.

    Article  CAS  Google Scholar 

  45. Motomura S, Enomoto S, Haba H, Igarashi K, Gono Y, Yano Y. Gamma-ray compton imaging of multitracer in biological samples using strip germanium telescope. IEEE Trans Nucl Sci. 2007;54:710–7. https://doi.org/10.1109/TNS.2007.894209.

    Article  Google Scholar 

  46. Motomura S, Kanayama Y, Haba H, Watanabe Y, Enomoto S. Multiple molecular simultaneous imaging in a live mouse using semiconductor compton camera. J Anal At Spectrom. 2008;23:1089–92. https://doi.org/10.1039/b802964d.

    Article  CAS  Google Scholar 

  47. Motomura S, Kanayama Y, Hiromura M, Fukuchi T, Ida T, Haba H, et al. Improved imaging performance of a semiconductor compton camera GREI makes for a new methodology to integrate bio-metal analysis and molecular imaging technology in living organisms. J Anal At Spectrom. 2013;28:934–9. https://doi.org/10.1039/c3ja30185k.

    Article  CAS  Google Scholar 

  48. Munekane M, Motomura S, Kamino S, Ueda M, Haba H, Yoshikawa Y, et al. Visualization of biodistribution of Zn complex with antidiabetic activity using semiconductor compton camera GREI. Biochem Biophys Rep. 2016;5:211–5. https://doi.org/10.1016/j.bbrep.2015.12.004.

    Article  PubMed  Google Scholar 

  49. Kabuki S, Hattori K, Kohara R, Kunieda E, Kubo A, Kubo H, et al. Development of electron tracking compton camera using micro pixel gas chamber for medical imaging. Nucl Instrum Methods Phys Res Sect A. 2007;580:1031–5. https://doi.org/10.1016/j.nima.2007.06.098.

    Article  CAS  Google Scholar 

  50. Kabuki S, Kimura H, Amano H, Nakamoto Y, Kubo H, Miuchi K, et al. Electron-tracking Compton gamma-ray camera for small animal and phantom imaging. Nucl Instrum Methods Phys Res Sect A. 2010;623:606–7. https://doi.org/10.1016/J.NIMA.2010.03.085.

    Article  CAS  Google Scholar 

  51. Takahashi M, Kabuki S, Hattori K, Higashi N, Iwaki S, Kubo H, et al. Development of an electron-tracking compton camera using CF4 gas at high pressure for improved detection efficiency. Nucl Instrum Methods Phys Res Sect A. 2011;628:150–3. https://doi.org/10.1016/J.NIMA.2010.06.305.

    Article  CAS  Google Scholar 

  52. Kurosawa S, Kubo H, Ueno K, Kabuki S, Iwaki S, Takahashi M, et al. Prompt gamma detection for range verification in proton therapy. Curr Appl Phys. 2012;12:364–8. https://doi.org/10.1016/j.cap.2011.07.027.

    Article  Google Scholar 

  53. Takeda S, Odaka H, Ishikawa S-N, Watanabe S, Aono H, Takahashi T, et al. Demonstration of in-vivo multi-probe tracker based on a Si/CdTe semiconductor compton camera. IEEE Trans Nucl Sci. 2012;59:70–6. https://doi.org/10.1109/TNS.2011.2178432.

    Article  Google Scholar 

  54. Suzuki Y, Yamaguchi M, Odaka H, Shimada H, Yoshida Y, Torikai K, et al. Three-dimensional and multienergy gamma-ray simultaneous imaging by using a Si/CdTe compton camera. Radiology. 2013;267:941–7. https://doi.org/10.1148/radiol.13121194.

    Article  PubMed  Google Scholar 

  55. Yamaguchi M, Nagao Y, Kawachi N, Fujimaki S, Kamiya T, Odaka H, et al. An evaluation of three-dimensional imaging by use of Si/CdTe compton cameras. IEEE Nucl Sci Sympos Med Imaging Conf. 2013. https://doi.org/10.1109/NSSMIC.2013.6829081.

    Article  Google Scholar 

  56. Sakai M, Yamaguchi M, Nagao Y, Kawachi N, Kikuchi M, Torikai K, et al. In vivo simultaneous imaging with 99m Tc and 18 F using a compton camera. Phys Med Biol. 2018;63: 205006. https://doi.org/10.1088/1361-6560/aae1d1.

    Article  CAS  PubMed  Google Scholar 

  57. Yabu G, Yoneda H, Orita T, Takeda S, Caradonna P, Takahashi T, et al. Tomographic Imaging by a Si/CdTe Compton Camera for 111In and 131I Radionuclides. IEEE Transact Radiat Plasma Med Sci. 2022;6:592–600. https://doi.org/10.1109/TRPMS.2021.3104665.

    Article  Google Scholar 

  58. Kishimoto A, Kataoka J, Koide A, Sueoka K, Iwamoto Y, Taya T, et al. Development of a compact scintillator-based high-resolution compton camera for molecular imaging. Nucl Instrum Methods Phys Res Sect A. 2017;845:656–9. https://doi.org/10.1016/j.nima.2016.06.056.

    Article  CAS  Google Scholar 

  59. Kishimoto A, Kataoka J, Taya T, Tagawa L, Mochizuki S, Ohsuka S, et al. First demonstration of multi-color 3-D in vivo imaging using ultra-compact compton camera. Sci Rep. 2017;7:2110. https://doi.org/10.1038/s41598-017-02377-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kataoka J, Kishimoto A, Taya T, Mochizuki S, Tagawa L, Koide A, et al. Ultracompact compton camera for innovative gamma-ray imaging. Nucl Instrum Methods Phys Res Sect A. 2018;912:1–5. https://doi.org/10.1016/J.NIMA.2017.09.048.

    Article  CAS  Google Scholar 

  61. Koide A, Kataoka J, Masuda T, Mochizuki S, Taya T, Sueoka K, et al. Precision imaging of 4 4 MeV gamma rays using a 3-D position sensitive compton camera. Scientific Rep. 2018. https://doi.org/10.1038/s41598-018-26591-2.

    Article  Google Scholar 

  62. Mochizuki S, Kataoka J, Koide A, Fujieda K, Maruhashi T, Kurihara T, et al. High-precision compton imaging of 4.4 MeV prompt gamma-ray toward an on-line monitor for proton therapy. Nucl Instrum Methods Phys Res Section A Accelerators, Spectrometers Detectors Associated Equip. 2019;936:43–5. https://doi.org/10.1016/J.NIMA.2018.11.032.

    Article  CAS  Google Scholar 

  63. Fujieda K, Kataoka J, Mochizuki S, Tagawa L, Sato S, Tanaka R, et al. First demonstration of portable compton camera to visualize 223-Ra concentration for radionuclide therapy. Nucl Instrum Methods Phys Res Sect A. 2020;958: 162802. https://doi.org/10.1016/J.NIMA.2019.162802.

    Article  CAS  Google Scholar 

  64. Omata A, Kataoka J, Fujieda K, Sato S, Kuriyama E, Kato H, et al. Performance demonstration of a hybrid Compton camera with an active pinhole for wide-band X-ray and gamma-ray imaging. Sci Rep. 2020;10:14064. https://doi.org/10.1038/s41598-020-71019-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kataoka J, Omata A, Masubuchi M, Koshikawa N. Active dynamic imaging with compton camera. Medical Imaging Technol. 2021;39:223–8. https://doi.org/10.11409/mit.39.223.

    Article  Google Scholar 

  66. Nakamura Y, Shimazoe K, Takahashi H. Design and fabrication of endoscope-type Compton camera. Nucl Instrum Methods Phys Res Sect A. 2013;731:283–7. https://doi.org/10.1016/j.nima.2013.06.100.

    Article  CAS  Google Scholar 

  67. Nakamura Y, Shimazoe K, Takahashi H, Yoshimura S, Seto Y, Kato S, et al. Development of a novel handheld intra-operative laparoscopic compton camera for 18F-Fluoro-2-deoxy-2-D-glucose-guided surgery. Phys Med Biol. 2016;61:5837–50. https://doi.org/10.1088/0031-9155/61/15/5837.

    Article  CAS  PubMed  Google Scholar 

  68. Shimazoe K, Yoshino M, Ohshima Y, Uenomachi M, Oogane K, Orita T, et al. Development of simultaneous PET and Compton imaging using GAGG-SiPM based pixel detectors. Nucl Instrum Methods Phys Res Sect. 2020;954: 161499. https://doi.org/10.1016/j.nima.2018.10.177.

    Article  CAS  Google Scholar 

  69. Uenomachi M, Mizumachi Y, Yoshihara Y, Takahashi H, Shimazoe K, Yabu G, et al. Double photon emission coincidence imaging with GAGG-SiPM Compton camera. Nucl Instrum Methods Phys Res Sect. 2020;954: 161682. https://doi.org/10.1016/j.nima.2018.11.141.

    Article  CAS  Google Scholar 

  70. Orita T, Yabu G, Yoneda H, Takeda S, Caradonna P, Takahashi T, et al. Double-photon emission imaging with high-resolution Si/CdTe compton cameras. IEEE Trans Nucl Sci. 2021;68:2279–85. https://doi.org/10.1109/TNS.2021.3086799.

    Article  CAS  Google Scholar 

  71. Ogane K, Uenomachi M, Shimazoe K, Takahashi M, Takahashi H, Seto Y, et al. Simultaneous measurements of single gamma ray of 131I and annihilation radiation of 18F with compton PET hybrid camera. Appl Radiat Isot. 2021;176: 109864. https://doi.org/10.1016/J.APRADISO.2021.109864.

    Article  CAS  PubMed  Google Scholar 

  72. Parajuli RK, Sakai M, Kada W, Torikai K, Kikuchi M, Arakawa K, et al. Annihilation gamma imaging for carbon ion beam range monitoring using Si/CdTe compton camera. Phys Med Biol. 2019;64: 055003. https://doi.org/10.1088/1361-6560/ab00b2.

    Article  CAS  PubMed  Google Scholar 

  73. Nakano T, Sakai M, Torikai K, Suzuki Y, Takeda S, Noda S, et al. Imaging of 99mTc-DMSA and 18F-FDG in humans using a Si/CdTe Compton camera. Physics in Med Biol. 2020. https://doi.org/10.1088/1361-6560/ab33d8.

    Article  Google Scholar 

  74. Shiba S, Parajuli RK, Sakai M, Oike T, Ohno T, Nakano T. Use of a Si/CdTe compton camera for in vivo real-time monitoring of annihilation gamma rays generated by carbon ion beam irradiation. Front Oncol. 2020;10:635. https://doi.org/10.3389/fonc.2020.00635.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Draeger E, Peterson S, Mackin D, Chen H, Beddar S, Polf JC. Feasibility studies of a new event selection method to improve spatial resolution of compton imaging for medical applications. IEEE Transac Radiat Plasma Med Sci. 2017;1:358–67. https://doi.org/10.1109/TRPMS.2017.2703095.

    Article  CAS  Google Scholar 

  76. Draeger E, Mackin D, Peterson S, Chen H, Avery S, Beddar S, et al. 3D prompt gamma imaging for proton beam range verification. Phys Med Biol. 2018;63: 035019. https://doi.org/10.1088/1361-6560/aaa203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Llosá G, Trovato M, Barrio J, Etxebeste A, Muñoz E, Lacasta C, et al. First images of a three-layer compton telescope prototype for treatment monitoring in hadron therapy. Front Oncol. 2016;6:14. https://doi.org/10.3389/fonc.2016.00014.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Muñoz E, Barrio J, Etxebeste A, Ortega PG, Lacasta C, Oliver JF, et al. Performance evaluation of MACACO: a multilayer compton camera. Phys Med Biol. 2017;62:7321–41. https://doi.org/10.1088/1361-6560/aa8070.

    Article  CAS  PubMed  Google Scholar 

  79. Barrio J, Etxebeste A, Granado L, Muñoz E, Oliver JF, Ros A, et al. Performance improvement tests of MACACO: A Compton telescope based on continuous crystals and SiPMs. Nucl Instrum Methods Phys Res Sect A. 2018;912:48–52. https://doi.org/10.1016/j.nima.2017.10.033.

    Article  CAS  Google Scholar 

  80. Muñoz E, Barrientos L, Bernabéu J, Borja-Lloret M, Llosá G, Ros A, et al. A spectral reconstruction algorithm for two-plane compton cameras. Phys Med Biol. 2020;65: 025011. https://doi.org/10.1088/1361-6560/ab58ad.

    Article  PubMed  Google Scholar 

  81. Roser J, Muñoz E, Barrientos L, Barrio J, Bernabéu J, Borja-Lloret M, et al. Image reconstruction for a multi-layer Compton telescope: an analytical model for three interaction events. Phys Med Biol. 2020;65: 145005. https://doi.org/10.1088/1361-6560/ab8cd4.

    Article  CAS  PubMed  Google Scholar 

  82. Ros García A, Barrio J, Etxebeste A, García López J, Jiménez-Ramos MC, Lacasta C, et al. MACACO II test-beam with high energy photons. Phys Med Biol. 2020;65: 245027. https://doi.org/10.1088/1361-6560/abc5cd.

    Article  CAS  PubMed  Google Scholar 

  83. Muñoz E, Ros A, Borja-Lloret M, Barrio J, Dendooven P, Oliver JF, et al. Proton range verification with MACACO II compton camera enhanced by a neural network for event selection. Sci Rep. 2021;11:1–12. https://doi.org/10.1038/s41598-021-88812-5.

    Article  CAS  Google Scholar 

  84. Nagao Y, Yamaguchi M, Watanabe S, Ishioka NS, Kawachi N, Watabe H. Astatine-211 imaging by a compton camera for targeted radiotherapy. Appl Radiat Isot. 2018;139:238–43. https://doi.org/10.1016/j.apradiso.2018.05.022.

    Article  CAS  PubMed  Google Scholar 

  85. Nagao Y, Yamaguchi M, Kawachi N, Watabe H. Development of a cost-effective Compton camera using a positron emission tomography data acquisition system. Nucl Instrum Methods Phys Res Sect A. 2018;912:20–3. https://doi.org/10.1016/j.nima.2017.10.009.

    Article  CAS  Google Scholar 

  86. Yoshida E, Tashima H, Nagatsu K, Tsuji A, Kamada K, Parodi K, et al. Whole gamma imaging: a new concept of PET combined with compton imaging. Phys Med Biol. 2020;65: 125013. https://doi.org/10.1088/1361-6560/ab8e89.

    Article  CAS  PubMed  Google Scholar 

  87. Tashima H, Yoshida E, Wakizaka H, Takahashi M, Nagatsu K, Tsuji AB, et al. 3D Compton image reconstruction method for whole gamma imaging. Phys Med Biol. 2020;65: 225038. https://doi.org/10.1088/1361-6560/abb92e.

    Article  CAS  PubMed  Google Scholar 

  88. Takyu S, Tashima H, Yoshida E, Nishikido F, Nishina T, Yamaya T. Reseasrch and development of whole gamma imaging. Med Imaging Technol. 2021;39:199–205. https://doi.org/10.11409/mit.39.199.

    Article  Google Scholar 

  89. Calderón Y, Chmeissani M, Kolstein M, De LG. Evaluation of compton gamma camera prototype based on pixelated CdTe detectors. J Instrum. 2014;9:C06003. https://doi.org/10.1088/1748-0221/9/06/C06003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Toyokawa H, Saji C, Kawase M, Wu S, Furukawa Y, Kajiwara K, et al. Development of CdTe pixel detectors combined with an aluminum Schottky diode sensor and photon-counting ASICs. Journal Inst. 2017. https://doi.org/10.1088/1748-0221/12/01/C01044.

    Article  Google Scholar 

  91. Watanabe S, Tanaka T, Oonuki K, Mitani T, Takeda S, Kishishita T, et al. Development of CdTe pixel detectors for compton cameras. Nucl Instrum Methods Phys Res Sect A. 2006;567:150–3. https://doi.org/10.1016/j.nima.2006.05.164.

    Article  CAS  Google Scholar 

  92. Du YF, He Z, Knoll GF, Wehe DK, Li W. Evaluation of a compton scattering camera using 3-D position sensitive CdZnTe detectors. Nuclear Inst Methods Phys Res A. 2001. https://doi.org/10.1016/S0168-9002(00)00669-0.

    Article  Google Scholar 

  93. McCleskey M, Kaye W, Mackin DS, Beddar S, He Z, Polf JC. Evaluation of a multistage CdZnTe Compton camera for prompt γ imaging for proton therapy. Nucl Instrum Methods Phys Res, Sect A. 2015;785:163–9. https://doi.org/10.1016/j.nima.2015.02.030.

    Article  CAS  Google Scholar 

  94. Llosá G, Barrio J, Cabello J, Crespo A, Lacasta C, Rafecas M, et al. Detector characterization and first coincidence tests of a Compton telescope based on LaBr 3 crystals and SiPMs. Nucl Instrum Methods Phys Res Sect A. 2012;695:105–8. https://doi.org/10.1016/j.nima.2011.11.041.

    Article  CAS  Google Scholar 

  95. Aldawood S, Castelhano I, Gernhäuser R, van der Kolff H, Lang C, Liprandi S, et al. Comparative characterization study of a LaBr 3(Ce) scintillation crystal in two surface wrapping scenarios: Absorptive and reflective. Front Oncol. 2015;5:270. https://doi.org/10.3389/fonc.2015.00270.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Thirolf PG, Aldawood S, Böhmer M, Bortfeldt J, Castelhano I, Dedes G, et al. A Compton camera prototype for prompt gamma medical imaging. EPJ Web of Conf. 2016. https://doi.org/10.1051/epjconf/201611705005.

    Article  Google Scholar 

  97. Iltis A, Snoussi H, de Magalhaes LR, Hmissi MZ, Zafiarifety CT, Tadonkeng GZ, et al. Temporal imaging CeBr 3 compton camera: a new concept for nuclear decommissioning and nuclear waste management Greco V, la Cognata M, Pirrone S, Rizzo F, Spitaleri C, editors. EPJ Web of Conf. 2018;170:06003. https://doi.org/10.1051/EPJCONF/201817006003.

    Article  Google Scholar 

  98. Kawula M, Binder TM, Liprandi S, Viegas R, Parodi K, Thirolf PG. Sub-millimeter precise photon interaction position determination in large monolithic scintillators via convolutional neural network algorithms. Phys Med Biol. 2021;66: 135017. https://doi.org/10.1088/1361-6560/AC06E2.

    Article  CAS  Google Scholar 

  99. Turecek D, Jakubek J, Trojanova E, Sefc L. Compton camera based on Timepix3 technology. J Instrum. 2018;13:C11022–C11022. https://doi.org/10.1088/1748-0221/13/11/C11022.

    Article  Google Scholar 

  100. Kim SM, Seo H, Park JH, Kim CH, Lee CS, Lee S-J, et al. Resolution recovery reconstruction for a compton camera. Phys Med Biol. 2013;58:2823–40. https://doi.org/10.1088/0031-9155/58/9/2823.

    Article  PubMed  Google Scholar 

  101. Uche CZ, Cree MJ, Round WH. GEANT4 simulation of the effects of doppler energy broadening in compton imaging. Australas Phys Eng Sci Med. 2011;34:409–14. https://doi.org/10.1007/s13246-011-0076-2.

    Article  CAS  PubMed  Google Scholar 

  102. Lee Y. Preliminary evaluation of dual-head compton camera with Si/CZT material for breast cancer detection: monte carlo simulation study. Optik (Stuttg). 2020;202: 163519. https://doi.org/10.1016/j.ijleo.2019.163519.

    Article  CAS  Google Scholar 

  103. Uche CZ, Round WH, Cree MJ. Evaluation of detector material and radiation source position on compton camera’s ability for multitracer imaging. Australas Phys Eng Sci Med. 2012;35:357–64. https://doi.org/10.1007/s13246-012-0150-4.

    Article  CAS  PubMed  Google Scholar 

  104. Subramanian M, Wulf EA, Phlips B, Krawczynski H, Martin J, Dowknott P. Compton imaging with thick Si and CZT detectors. Nucl Instrum Methods Phys Res Sect A. 2012;682:79–84. https://doi.org/10.1016/j.nima.2012.04.011.

    Article  CAS  Google Scholar 

  105. Takeda S, Harayama A, Ichinohe Y, Odaka H, Watanabe S, Takahashi T, et al. A portable Si/CdTe Compton camera and its applications to the visualization of radioactive substances. Nucl Instrum Methods Phys Res, Sect A. 2015;787:207–11. https://doi.org/10.1016/j.nima.2014.11.119.

    Article  CAS  Google Scholar 

  106. Odaka H, Ichinohe Y, Takeda S, Fukuyama T, Hagino K, Saito S, et al. High-resolution Compton cameras based on Si/CdTe double-sided strip detectors. Nucl Instruments Methods Phys Res Sec Accel. 2012. https://doi.org/10.1016/j.nima.2011.12.061.

    Article  Google Scholar 

  107. Watanabe S, Tajima H, Fukazawa Y, Ichinohe Y, Takeda S, Enoto T, et al. The Si/CdTe semiconductor Compton camera of the ASTRO-H soft gamma-ray detector (SGD). Nucl Instrum Methods Phys Res Sect A. 2014;765:192–201. https://doi.org/10.1016/j.nima.2014.05.127.

    Article  CAS  Google Scholar 

  108. Owe SH, Kuvvetli I, Budtz-JØrgensen C, Zoglauer A. Evaluation of a compton camera concept using the 3D CdZnTe drift strip detectors. J Instrum. 2019;14:C01020–C01020. https://doi.org/10.1088/1748-0221/14/01/C01020.

    Article  CAS  Google Scholar 

  109. Aldawood S, Thirolf PGG, Miani A, Böhmer M, Dedes G, Gernhäuser R, et al. Development of a compton camera for prompt-gamma medical imaging. Radiat Phys Chem. 2017;140:190–7. https://doi.org/10.1016/j.radphyschem.2017.01.024.

    Article  CAS  Google Scholar 

  110. Fontana M, Ley J-L, Dauvergne D, Freud N, Krimmer J, Letang JM, et al. Monitoring Ion beam therapy with a compton camera: simulation studies of the clinical feasibility. IEEE Transac Radiat Plasma Med Sci. 2020;4:218–32. https://doi.org/10.1109/TRPMS.2019.2933985.

    Article  Google Scholar 

  111. Llosá G, Cabello J, Callier S, Gillam JEE, Lacasta C, Rafecas M, et al. First compton telescope prototype based on continuous LaBr 3-SiPM detectors. Nucl Instrum Methods Phys Res Sect A. 2013;718:130–3. https://doi.org/10.1016/j.nima.2012.08.074.

    Article  CAS  Google Scholar 

  112. Hebert T, Leahy R, Singh M. Three-dimensional maximum-likelihood reconstruction for an electronically collimated single-photon-emission imaging system. J Opt Soc Am A. 1990;7:1305–13. https://doi.org/10.1364/josaa.7.001305.

    Article  CAS  PubMed  Google Scholar 

  113. Rohe RC, Sharfi MM, Kecevar KA, Valentine JD, Bonnerave C. The spatially-variant backprojection point kernel function of an energy-subtraction compton scatter camera for medical imaging. IEEE Trans Nucl Sci. 1997;44:2477–82. https://doi.org/10.1109/23.656455.

    Article  Google Scholar 

  114. Sauve AC, Hero AO, Rogers WL, Wilderman SJ, Clinthorne NH. 3D image reconstruction for a compton SPECT camera model. IEEE Trans Nucl Sci. 1999;46:2075–84. https://doi.org/10.1109/23.819285.

    Article  Google Scholar 

  115. Terzioglu F. Exact inversion of an integral transform arising in compton camera imaging. J Med Imaging. 2020;7:1. https://doi.org/10.1117/1.JMI.7.3.032504.

    Article  Google Scholar 

  116. Maxim V. Enhancement of Compton camera images reconstructed by inversion of a conical Radon transform. Inverse Prob. 2019;35: 014001. https://doi.org/10.1088/1361-6420/aaecdb.

    Article  Google Scholar 

  117. Terzioglu F. Some analytic properties of the cone transform. Inverse Prob. 2019;35: 034002. https://doi.org/10.1088/1361-6420/aafccf.

    Article  Google Scholar 

  118. Moon S. Inversion of the conical Radon transform with vertices on a surface of revolution arising in an application of a compton camera. Inverse Prob. 2017;33: 065002. https://doi.org/10.1088/1361-6420/aa69c9.

    Article  Google Scholar 

  119. Maxim V. Filtered backprojection reconstruction and redundancy in compton camera imaging. IEEE Trans Image Process. 2014;23:332–41. https://doi.org/10.1109/TIP.2013.2288143.

    Article  PubMed  Google Scholar 

  120. Smith B. Line-reconstruction from compton cameras: data sets and a camera design. Opt Eng. 2011;50: 053204. https://doi.org/10.1117/1.3575648.

    Article  Google Scholar 

  121. Smith B. Reconstruction methods and completeness conditions for two compton data models. J Opt Soc Am A. 2005;22:445–59. https://doi.org/10.1364/josaa.22.000445.

    Article  Google Scholar 

  122. Hirasawa M, Tomitani T. Effect of compensation for scattering angular uncertainty in analytical compton camera reconstruction. Phys Med Biol. 2004;49:2083–93. https://doi.org/10.1088/0031-9155/49/10/017.

    Article  CAS  PubMed  Google Scholar 

  123. Tomitani T, Hirasawa M. Image reconstruction from limited angle compton camera data. Phys Med Biol. 2002;47:2129–45. https://doi.org/10.1088/0031-9155/47/12/309.

    Article  CAS  PubMed  Google Scholar 

  124. Parra LC. Reconstruction of cone-beam projections from compton scattered data. IEEE Trans Nucl Sci. 2000;47:1543–50. https://doi.org/10.1109/23.873014.

    Article  Google Scholar 

  125. Basko R, Zeng GL, Gullberg GT. Application of spherical harmonics to image reconstruction for the compton camera. Phys Med Biol. 1998;43:887–94. https://doi.org/10.1088/0031-9155/43/4/016.

    Article  CAS  PubMed  Google Scholar 

  126. Cree MJ, Bones PJ. Towards direct reconstruction from a gamma camera based on Compton scattering. IEEE Trans Med Imaging. 1994;13:398–407. https://doi.org/10.1109/42.293932.

    Article  CAS  PubMed  Google Scholar 

  127. Kuchment P, Terzioglu F. Three-dimensional image reconstruction from Compton camera data. SIAM J Imag Sci. 2016;9:1708–25. https://doi.org/10.1137/16M107476X.

    Article  Google Scholar 

  128. Wilderman SJ, Clinthorne NH, Fessler JA, Hua C -h., Rogers WL. List mode EM reconstruction of compton scatter camera images in 3-D. 2000 IEEE nuclear science symposium conference record (Cat No00CH37149). 292–5. https://doi.org/10.1109/NSSMIC.2000.950123

  129. Wilderman SJ, Fessler JA, Clinthorne NH, LeBlanc JW, Rogers WL. Improved modeling of system response in list mode EM reconstruction of Compton scatter camera images. IEEE Trans Nucl Sci. 2001;48:111–6. https://doi.org/10.1109/23.910840.

    Article  Google Scholar 

  130. Seo H, Lee SH, Jeong JH, Kim CH, Lee JH, Lee CS, et al. Feasibility study on hybrid medical imaging device based on Compton imaging and magnetic resonance imaging. Appl Radiat Isot. 2009;67:1412–5. https://doi.org/10.1016/j.apradiso.2009.02.082.

    Article  CAS  PubMed  Google Scholar 

  131. Kolstein M, de Lorenzo G, Chmeissani M. Evaluation of list-mode ordered subset expectation maximization image reconstruction for pixelated solid-state compton gamma camera with large number of channels. J Instrum. 2014;9:C04034. https://doi.org/10.1088/1748-0221/9/04/C04034.

    Article  Google Scholar 

  132. Nguyen VG, Lee SJ, Lee MN. GPU-accelerated 3D Bayesian image reconstruction from Compton scattered data. Phys Med Biol. 2011;56:2817–36. https://doi.org/10.1088/0031-9155/56/9/012.

    Article  PubMed  Google Scholar 

  133. Sakai M, Parajuli RK, Kubota Y, Kubo N, Kikuchi M, Arakawa K, et al. Improved iterative reconstruction method for compton imaging using median filter. PLoS ONE. 2020. https://doi.org/10.1371/journal.pone.0229366.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Lojacono X, Richard MH, Ley JL, Testa E, Ray C, Freud N, et al. Low statistics reconstruction of the Compton camera point spread function in 3D prompt-γ imaging of ion beam therapy. IEEE Trans Nucl Sci. 2013;60:3355–63. https://doi.org/10.1109/TNS.2013.2275200.

    Article  Google Scholar 

  135. Ida T, Motomura S, Ueda M, Watanabe Y, Enomoto S. Accurate modeling of event-by-event backprojection for a germanium semiconductor compton camera for system response evaluation in the LM-ML-EM image reconstruction method. Jpn J Appl Phys. 2019;58: 016002. https://doi.org/10.7567/1347-4065/aae8e9.

    Article  CAS  Google Scholar 

  136. Feng Y, Létang JM, Sarrut D, Maxim V. Influence of Doppler broadening model accuracy in Compton camera list-mode MLEM reconstruction. Inverse Probl Sci Eng. 2021;29:3509–29. https://doi.org/10.1080/17415977.2021.2011863.

    Article  Google Scholar 

  137. Mackin D, Polf J, Peterson S, Beddar S. The effects of Doppler broadening and detector resolution on the performance of three-stage Compton cameras. Med Phys. 2012;40: 012402. https://doi.org/10.1118/1.4767756.

    Article  CAS  PubMed Central  Google Scholar 

  138. Sakai M, Parajuli RK, Kubota Y, Kubo N, Yamaguchi M, Nagao Y, et al. Crosstalk reduction using a dual energy window scatter correction in compton imaging. Sensors. 2020;20:2453. https://doi.org/10.3390/s20092453.

    Article  PubMed Central  Google Scholar 

  139. Andreyev A, Sitek A, Celler A. Fast image reconstruction for compton camera using stochastic origin ensemble approach. Med Phys. 2010;38:429–38. https://doi.org/10.1118/1.3528170.

    Article  Google Scholar 

  140. Mackin D, Peterson S, Beddar S, Polf J. Evaluation of a stochastic reconstruction algorithm for use in compton camera imaging and beam range verification from secondary gamma emission during proton therapy. Phys Med Biol. 2012;57:3537–53. https://doi.org/10.1088/0031-9155/57/11/3537.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Kohlhase N, Wegener T, Schaar M, Bolke A, Etxebeste A, Sarrut D, et al. Capability of MLEM and OE to detect range shifts with a compton camera in particle therapy. IEEE Transac Radiat Plasma Med Sci. 2020;4:233–42. https://doi.org/10.1109/trpms.2019.2937675.

    Article  Google Scholar 

  142. Sitek A. Representation of photon limited data in emission tomography using origin ensembles. Phys Med Biol. 2008;53:3201–16. https://doi.org/10.1088/0031-9155/53/12/009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect A. 2003;506:250–303. https://doi.org/10.1016/S0168-9002(03)01368-8.

    Article  CAS  Google Scholar 

  144. Fontana M, Dauvergne D, Létang JM, Ley J-L, Testa É. Compton camera study for high efficiency SPECT and benchmark with anger system. Phys Med Biol. 2017;62:8794–812. https://doi.org/10.1088/1361-6560/aa926a.

    Article  CAS  PubMed  Google Scholar 

  145. An SH, Seo H, Lee JH, Lee CS, Lee JS, Kim CH. Effect of detector parameters on the image quality of Compton camera for 99mTc. Nucl Instrum Methods Phys Res Sect A. 2007;571:251–4. https://doi.org/10.1016/j.nima.2006.10.075.

    Article  CAS  Google Scholar 

  146. Rohling H, Priegnitz M, Schoene S, Schumann A, Enghardt W, Hueso-González F, et al. Requirements for a compton camera for in vivo range verification of proton therapy. Phys Med Biol. 2017;62:2795–811. https://doi.org/10.1088/1361-6560/aa6068.

    Article  CAS  PubMed  Google Scholar 

  147. Kasper J, Rusiecka K, Hetzel R, Kozani MK, Lalik R, Magiera A, et al. The SiFi-CC project—Feasibility study of a scintillation-fiber-based compton camera for proton therapy monitoring. Physica Med. 2020;76:317–25. https://doi.org/10.1016/j.ejmp.2020.07.013.

    Article  Google Scholar 

  148. Dubov LY, Belyaev VN, Berdnikova AK, Bolozdynia AI, Akmalova YA, Shtotsky YV. Gate simulation of compton Ar-Xe gamma-camera for radionuclide imaging in nuclear medicine. J Phy Conf Series. 2017. https://doi.org/10.1088/1742-6596/784/1/012019.

    Article  Google Scholar 

  149. Etxebeste A, Dauvergne D, Fontana M, Létang JM, Llosá G, Munoz E, et al. CCMod: a GATE module for compton camera imaging simulation. Phys Med Biol. 2020;65: 055004. https://doi.org/10.1088/1361-6560/ab6529.

    Article  CAS  PubMed  Google Scholar 

  150. Maxim V, Lojacono X, Hilaire E, Krimmer J, Testa E, Dauvergne D, et al. Probabilistic models and numerical calculation of system matrix and sensitivity in list-mode MLEM 3D reconstruction of compton camera images. Phys Med Biol. 2016;61:243–64. https://doi.org/10.1088/0031-9155/61/1/243.

    Article  PubMed  Google Scholar 

  151. Frandes M, Zoglauer A, Maxim V, Prost R. A tracking compton-scattering imaging system for hadron therapy monitoring. IEEE Trans Nucl Sci. 2010;57:144–50. https://doi.org/10.1109/TNS.2009.2031679.

    Article  CAS  Google Scholar 

  152. Lee SH, Seo H, Park JH, Park SH, Lee JS, Lee JH, et al. CIS: a GUI-based software system for monte carlo simulation of compton camera. Nucl Technol. 2009;168:55–60. https://doi.org/10.13182/NT09-A9101.

    Article  CAS  Google Scholar 

  153. Battistoni G, Bauer J, Boehlen TT, Cerutti F, Chin MPW, Dos Santos AR, et al. The FLUKA code: An accurate simulation tool for particle therapy. Front Oncol. 2016. https://doi.org/10.3389/fonc.2016.00116.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Ortega PG, Torres-Espallardo I, Cerutti F, Ferrari A, Gillam JE, Lacasta C, et al. Noise evaluation of compton camera imaging for proton therapy. Phys Med Biol. 2015;60:1845–63. https://doi.org/10.1088/0031-9155/60/5/1845.

    Article  CAS  PubMed  Google Scholar 

  155. Kang B-H, Kim J-W. Monte carlo design study of a gamma detector system to locate distal dose falloff in proton therapy. IEEE Trans Nucl Sci. 2009;56:46–50. https://doi.org/10.1109/TNS.2008.2005189.

    Article  Google Scholar 

  156. Hirayama H, Namito Y, Bielajew AF, Wilderman SJ, Nelson WR. The EGS5 Code System. SLAC-R-730 and KEK Report 2005–8. 2005. https://rcwww.kek.jp/research/egs/egs5_manual/slac730-160113.pdf.

  157. Kataoka J, Kishimoto A, Fujita T, Nishiyama T, Kurei Y, Tsujikawa T, et al. Recent progress of MPPC-based scintillation detectors in high precision X-ray and gamma-ray imaging. Nucl Inst and Methods Phys Res A. 2014. https://doi.org/10.1016/j.nima.2014.11.004.

    Article  Google Scholar 

  158. Uenomachi M, Takahashi M, Shimazoe K, Takahashi H, Kamada K, Orita T, et al. Simultaneous in vivo imaging with PET and SPECT tracers using a compton-PET hybrid camera. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-97302-7.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Yoshida C, Tsuji AB, Sudo H, Sugyo A, Kikuchi T, Koizumi M, et al. Therapeutic efficacy of C-Kit-targeted radioimmunotherapy using 90Y-Labeled anti-C-Kit antibodies in a mouse model of small cell lung cancer. PLoS ONE. 2013;8: e59248. https://doi.org/10.1371/JOURNAL.PONE.0059248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Shimazoe K, Uenomachi M, Yoshino M. Development of compton-PET Hybrid camera for simultaneous imaging of pet/spect and therapeutic nuclides. Med Imaging Technol. 2021;39:206–10. https://doi.org/10.11409/mit.39.206.

    Article  Google Scholar 

  161. Kolstein M, Chmeissani M. Using triple gamma coincidences with a pixelated semiconductor Compton-PET scanner: a simulation study. J Instrum. 2016;11:C01039. https://doi.org/10.1088/1748-0221/11/01/C01039.

    Article  CAS  Google Scholar 

  162. Grignon C, Barbet J, Bardiès M, Carlier T, Chatal JFF, Couturier O, et al. Nuclear medical imaging using β+γ coincidences from 44Sc radio-nuclide with liquid xenon as detection medium. Nucl Instrum Methods Phys Res Sect A. 2007;571:142–5. https://doi.org/10.1016/j.nima.2006.10.048.

    Article  CAS  Google Scholar 

  163. Liang Z, Jaszczak R. Comparisons of multiple photon coincidence imaging techniques. IEEE Trans Nucl Sci. 1990;37:1282–92. https://doi.org/10.1109/23.57378.

    Article  CAS  Google Scholar 

  164. Moskal P, Jasińska B, Stępień EŁ, Bass SD. Positronium in medicine and biology. Nature Reviews Physics. 2019;1:527–9. https://doi.org/10.1038/s42254-019-0078-7.

    Article  Google Scholar 

  165. Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol. 2019;64:055017. https://doi.org/10.1088/1361-6560/aafe20.

    Article  CAS  PubMed  Google Scholar 

  166. Moskal P, Kisielewska D, Shopa YR, Bura ZJC, Curceanu C, et al. Performance assessment of the 2 γ positronium imaging with the total-body PET scanners. EJNMMI Phy. 2020;7:44. https://doi.org/10.1186/s40658-020-00307-w.

    Article  CAS  Google Scholar 

  167. Shibuya K, Saito H, Nishikido F, Takahashi M, Yamaya T. Oxygen sensing ability of positronium atom for tumor hypoxia imaging. Commun Phys. 2020;3:1–8. https://doi.org/10.1038/s42005-020-00440-z.

    Article  CAS  Google Scholar 

  168. Takyu S, Quantum PET, Yamaya T, editor. 2021 report on PET imaging physics research; 2022. p.35–40. Available from: https://www.nirs.qst.go.jp/usr/medical-imaging/ja/study/pdf/QST_R_22.pdf.

  169. Krimmer J, Dauvergne D, Létang JM, Testa É. Prompt-gamma monitoring in hadrontherapy: A review. Nucl Instrum Methods Phys Res Sect A. 2018;878:58–73. https://doi.org/10.1016/j.nima.2017.07.063.

    Article  CAS  Google Scholar 

  170. Jongen Y, Stichelbaut F. Verification of the proton beams position in the patient by the detection of prompt gamma-rays emission. Abstracts of the 39th PTCOG meeting; 2003. p. 16. https://www.ptcog.ch/archive/steering_committee_docs/ptcog39-2003/2003_PTCOG_39_Abstracts.pdf.

  171. Min CH, Kim CH, Youn MY, Kim JW. Prompt gamma measurements for locating the dose falloff region in the proton therapy. Appl Phys Lett. 2006;89: 183517. https://doi.org/10.1063/1.2378561.

    Article  CAS  Google Scholar 

  172. Enghardt W, Crespo P, Fiedler F, Hinz R, Parodi K, Pawelke J, et al. Charged hadron tumour therapy monitoring by means of PET. Nucl Instrum Methods Phys Res Sect A. 2004;525:284–8. https://doi.org/10.1016/j.nima.2004.03.128.

    Article  CAS  Google Scholar 

  173. Pshenichnov I, Mishustin I, Greiner W. Distributions of positron-emitting nuclei in proton and carbon-ion therapy studied with GEANT4. Phys Med Biol. 2006;51:6099. https://doi.org/10.1088/0031-9155/51/23/011.

    Article  PubMed  Google Scholar 

  174. Testa E, Bajard M, Chevallier M, Dauvergne D, le Foulher F, Freud N, et al. Monitoring the Bragg peak location of 73MeV∕u carbon ions by means of prompt γ-ray measurements. Appl Phys Lett. 2008;93: 093506. https://doi.org/10.1063/1.2975841.

    Article  CAS  Google Scholar 

  175. Berthold J, Khamfongkhruea C, Petzoldt J, Thiele J, Hölscher T, Wohlfahrt P, et al. First-In-human validation of ct-based proton range prediction using prompt gamma imaging in prostate cancer treatments. Int J Radiat Oncol Biol Phys. 2021;111:1033–43. https://doi.org/10.1016/J.IJROBP.2021.06.036.

    Article  PubMed  Google Scholar 

  176. Verbakel WFAR, Stecher-Rasmussen F. A γ-ray telescope for on-line measurements of low boron concentrations in a head phantom for BNCT. Nucl Instrum Methods Phys Res Sect A. 1997;394:163–72. https://doi.org/10.1016/S0168-9002(97)00667-0.

    Article  CAS  Google Scholar 

  177. Kobayashi T, Sakurai Y, Ishikawa M. A noninvasive dose estimation system for clinical BNCT based on PG-SPECT—Conceptual study and fundamental experiments using HPGe and CdTE semiconductor detectors. Med Phys. 2000;27:2124–32. https://doi.org/10.1118/1.1288243.

    Article  CAS  PubMed  Google Scholar 

  178. Minsky DM, Valda AA, Kreiner AJ, Green S, Wojnecki C, Ghani Z. First tomographic image of neutron capture rate in a BNCT facility. Appl Radiat Isot. 2011;69:1858–61. https://doi.org/10.1016/J.APRADISO.2011.01.030.

    Article  CAS  PubMed  Google Scholar 

  179. Hales B, Katabuchi T, Hayashizaki N, Terada K, Igashira M, Kobayashi T. Feasibility study of SPECT system for online dosimetry imaging in boron neutron capture therapy. Appl Radiat Isot. 2014;88:167–70. https://doi.org/10.1016/J.APRADISO.2013.11.135.

    Article  CAS  PubMed  Google Scholar 

  180. Defrise M. A factorization method for the 3D X-ray transform. Inverse Prob. 1995;11:983–94. https://doi.org/10.1088/0266-5611/11/5/003.

    Article  Google Scholar 

  181. Lee T, Yoon C, Lee W. Optimization of a Multiple-scattering compton camera as a photon-tracking imager for 6-MV photon therapy. J Korean Phys Soc. 2014;64:1745–50. https://doi.org/10.3938/jkps.64.1745.

    Article  CAS  Google Scholar 

  182. Krstić D, Nikezić D. Input files with ORNL-mathematical phantoms of the human body for MCNP-4B. Comput Phys Commun. 2007;176:33–7. https://doi.org/10.1016/J.CPC.2006.06.016.

    Article  Google Scholar 

  183. Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. Proceedings - 30th IEEE Conference on computer vision and pattern recognition, CVPR 2017. 2017;2017-January:5967–76. doi: https://doi.org/10.1109/CVPR.2017.632

  184. Hou Z, Geng C, Tang X, Tian F, Zhao S, Qi J, et al. Boron concentration prediction from compton camera image for boron neutron capture therapy based on generative adversarial network. Appl Radiat Isot. 2022;186: 110302. https://doi.org/10.1016/J.APRADISO.2022.110302.

    Article  CAS  PubMed  Google Scholar 

  185. Yao Z, Xiao Y, Chen Z, Wang B, Hou Q. Compton-based prompt gamma imaging using ordered origin ensemble algorithm with resolution recovery in proton therapy. Sci Rep. 2019. https://doi.org/10.1038/s41598-018-37623-2.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Herrmann K, Schwaiger M, Lewis JS, Solomon SB, McNeil BJ, Baumann M, et al. Radiotheranostics: a roadmap for future development. Lancet Oncol. 2020;21:e146–56. https://doi.org/10.1016/S1470-2045(19)30821-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Eychenne R, Chérel M, Haddad F, Guérard F, Gestin JF. Overview of the most promising radionuclides for targeted alpha therapy: the “Hopeful Eight.” Pharmaceutics. 2021. https://doi.org/10.3390/PHARMACEUTICS13060906.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Feng Y, Zalutsky MR. Production, purification and availability of 211At: Near term steps towards global access. Nucl Med Biol. 2021;100–101:12–23. https://doi.org/10.1016/j.nucmedbio.2021.05.007.

    Article  CAS  PubMed  Google Scholar 

  189. Nagatsu K, Suzuki H, Fukada M, Ito T, Ichinose J, Honda Y, et al. Cyclotron production of 225Ac from an electroplated 226Ra target. Eur J Nucl Med Mol Imaging. 2021;49:279–89. https://doi.org/10.1007/S00259-021-05460-7/FIGURES/7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gosewisch A, Schleske M, Gildehaus FJ, Berg I, Kaiser L, Brosch J, et al. Image-based dosimetry for 225Ac-PSMA-I&T therapy using quantitative SPECT. Eur J Nucl Med Mol Imaging. 2021;48:1260–1. https://doi.org/10.1007/s00259-020-05024-1.

    Article  CAS  PubMed  Google Scholar 

  191. Benabdallah N, Bernardini M, Bianciardi M, de Labriolle-Vaylet C, Franck D, Desbrée A. 223Ra-dichloride therapy of bone metastasis: optimization of SPECT images for quantification. EJNMMI Res. 2019;9:20. https://doi.org/10.1186/s13550-019-0488-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Akamatsu G. Practical application of next generation PET technologies. 2021 report on PET imaging physics research; 2022. p.15–20. Available from: https://www.nirs.qst.go.jp/usr/medical-imaging/ja/study/pdf/QST_R_22.pdf.

Download references

Acknowledgements

The authors would like to thank Dr. Takashi Nakano for the financial support provided under the “Directorate’s Fund Project.” This work was supported by the QST President's Strategic Grant (QST Advanced Study Laboratory), Nakatani Foundation, Konica Minolta Science and Technology Foundation, and JSPS KAKENHI Grant (21K19936, 20H05667, and 20K12683).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Tashima.

Ethics declarations

Conflict of interest

This work was funded by Nakatani Foundation and Konica Minolta Science and Technology Foundation.

Statement of human rights

This article does not contain any studies performed with human participants.

Statement of animal rights

All procedures performed in the studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashima, H., Yamaya, T. Compton imaging for medical applications. Radiol Phys Technol 15, 187–205 (2022). https://doi.org/10.1007/s12194-022-00666-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-022-00666-2

Keywords

Navigation