Skip to main content
Log in

Patch-based artifact reduction for three-dimensional volume projection data of sparse-view micro-computed tomography

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Micro-computed tomography (micro-CT) enables the non-destructive acquisition of three-dimensional (3D) morphological structures at the micrometer scale. Although it is expected to be used in pathology and histology to analyze the 3D microstructure of tissues, micro-CT imaging of tissue specimens requires a long scan time. A high-speed imaging method, sparse-view CT, can reduce the total scan time and radiation dose; however, it causes severe streak artifacts on tomographic images reconstructed with analytical algorithms due to insufficient sampling. In this paper, we propose an artifact reduction method for 3D volume projection data from sparse-view micro-CT. Specifically, we developed a patch-based lightweight fully convolutional network to estimate full-view 3D volume projection data from sparse-view 3D volume projection data. We evaluated the effectiveness of the proposed method using physically acquired datasets. The qualitative and quantitative results showed that the proposed method achieved high estimation accuracy and suppressed streak artifacts in the reconstructed images. In addition, we confirmed that the proposed method requires both short training and prediction times. Our study demonstrates that the proposed method has great potential for artifact reduction for 3D volume projection data under sparse-view conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Du Plessis A, Broeckhoven C, Guelpa A, Le Roux SG. Laboratory x-ray micro-computed tomography: a user guideline for biological samples. Gigascience. 2017;6(6):1–11.

    Article  Google Scholar 

  2. Favata J, Shahbazmohamadi S. Realistic non-destructive testing of integrated circuit bond wiring using 3-D X-ray tomography, reverse engineering, and finite element analysis. Microelectron Reliab. 2018;83:91–100.

    Article  CAS  Google Scholar 

  3. Chung SY, Kim JS, Stephan D, Han TS. Overview of the use of micro-computed tomography (micro-CT) to investigate the relation between the material characteristics and properties of cement-based materials. Constr Build Mater. 2019;229: 116843.

    Article  Google Scholar 

  4. Du Plessis A, Le Roux SG, Els J, Booysen G, Blaine DC. Application of microCT to the non-destructive testing of an additive manufactured titanium component. Case Stud Nondestruct Test Eval. 2015;4:1–7.

    Article  Google Scholar 

  5. Hutchinson JC, Shelmerdine SC, Simcock IC, Sebire NJ, Arthurs OJ. Early clinical applications for imaging at microscopic detail: microfocus computed tomography (micro-CT). Br J Radiol. 2017;90:107520170113.

    Article  Google Scholar 

  6. Senter-Zapata M, Patel K, Bautista PA, Griffin M, Michaelson J, Yagi Y. The role of micro-CT in 3D histology imaging. Pathobiology. 2016;83:140–7.

    Article  Google Scholar 

  7. Albers J, Pacilé S, Markus MA, Wiart M, Vande Velde G, Tromba G, Dullin C. X-ray-based 3D virtual histology—adding the next dimension to histological analysis. Mol Imaging Biol. 2018;20(5):732–41.

    Article  CAS  Google Scholar 

  8. Katsamenis OL, Olding M, Warner JA, Chatelet DS, Jones MG, Sgalla G, et al. X-ray micro-computed tomography for nondestructive three-dimensional (3D) X-ray histology. Am J Pathol. 2019;189(8):1608–20.

    Article  Google Scholar 

  9. Scott AE, Vasilescu DM, Seal KA, Keyes SD, Mavrogordato MN, Hogg JC, et al. Three dimensional imaging of paraffin embedded human lung tissue samples by micro-computed tomography. PLoS ONE. 2015;10(6): e0126230.

    Article  Google Scholar 

  10. Tang R, Saksena M, Coopey SB, Fernandez L, Buckley JM, Lei L, et al. Intraoperative micro-computed tomography (micro-CT): a novel method for determination of primary tumour dimensions in breast cancer specimens. Br J Radiol. 2016;89:20150581.

    Article  Google Scholar 

  11. Xu B, Teplov A, Ibrahim K, Inoue T, Stueben B, Katabi N, et al. Detection and assessment of capsular invasion, vascular invasion and lymph node metastasis volume in thyroid carcinoma using microCT scanning of paraffin tissue blocks (3D whole block imaging): a proof of concept. Mod Pathol. 2020;33(12):2449–57.

    Article  CAS  Google Scholar 

  12. Jones MG, Fabre A, Schneider P, Cinetto F, Sgalla G, Mavrogordato M, et al. Three-dimensional characterization of fibroblast foci in idiopathic pulmonary fibrosis. JCI Insight. 2016;1(5):e86375. https://doi.org/10.1172/jci.insight.86375.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Teplov A, Tabata K, Fu X, Uraoka N, A Roehrl MH, Ntiamoah P, et al. Development of standard operating procedure (SOP) of micro-computed tomography (micro-CT) in pathology. Diagn Pathol. 2019;5(1). https://doi.org/10.17629/www.diagnosticpathology.eu-2019-5:273.

  14. Kudo H, Suzuki T, Rashed EA. Image reconstruction for sparse-view CT and interior CT—introduction to compressed sensing and differentiated backprojection. Quant Imaging Med Surg. 2013;3(3):147–61.

    PubMed  PubMed Central  Google Scholar 

  15. Frikel J. Sparse regularization in limited angle tomography. Appl Comput Harmon Anal. 2013;34(1):117–41.

    Article  Google Scholar 

  16. Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am A. 1984;1(6):612–9.

    Article  Google Scholar 

  17. Candes EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory. 2006;52(2):489–509.

    Article  Google Scholar 

  18. Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006;52(4):1289–306.

    Article  Google Scholar 

  19. Han Y, Ye JC. Framing U-Net via deep convolutional framelets: application to sparse-view CT. IEEE Trans Med Imaging. 2018;37(6):1418–29.

    Article  Google Scholar 

  20. Shan H, Zhang Y, Yang Q, Kruger U, Kalra MK, Sun L, et al. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network. IEEE Trans Med Imaging. 2018;37(6):1522–34.

    Article  Google Scholar 

  21. Xie S, Zheng X, Chen Y, Xie L, Liu J, Zhang Y, et al. Artifact removal using improved GoogLeNet for sparse-view CT reconstruction. Sci Rep. 2018;8:6700.

    Article  Google Scholar 

  22. Zhang Z, Liang X, Dong X, Xie Y, Cao G. A sparse-view CT reconstruction method based on combination of DenseNet and deconvolution. IEEE Trans Med Imaging. 2018;37(6):1407–17.

    Article  Google Scholar 

  23. Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging. 2017;36(12):2524–35.

    Article  Google Scholar 

  24. Wolterink JM, Leiner T, Viergever MA, Išgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 2017;36(12):2536–45.

    Article  Google Scholar 

  25. You C, Yang Q, Shan H, Gjesteby L, Li G, Ju S, et al. Structurally-sensitive multi-scale deep neural network for low-dose CT denoising. IEEE Access. 2018;6:41839–55.

    Article  Google Scholar 

  26. You C, Li G, Zhang Y, Zhang X, Shan H, Li M, et al. CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE). IEEE Trans Med Imaging. 2020;39(1):188–203.

    Article  Google Scholar 

  27. Lee H, Lee J, Kim H, Cho B, Cho S. Deep-neural-network-based sinogram synthesis for sparse-view CT image reconstruction. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):109–19.

    Article  Google Scholar 

  28. Dong X, Vekhande S, Cao G. Sinogram interpolation for sparse-view micro-CT with deep learning neural network. Proc SPIE. 2019;10948:109482O.

    Google Scholar 

  29. Lee D, Choi S, Kim HJ. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains. Med Phys. 2019;46(1):104–15.

    Article  Google Scholar 

  30. Yin X, Zhao Q, Liu J, Yang W, Yang J, Quan G, et al. Domain progressive 3D residual convolution network to improve low-dose CT imaging. IEEE Trans Med Imaging. 2019;38(12):2903–13.

    Article  Google Scholar 

  31. Goodfellow IJ, Pouget-Abadie J, Mirza M, Bing X, Warde-Farley D, Ozair S, et al. Generative Adversarial Nets. In: NIPS. 2014.

  32. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: MICCAI LNCS. 2015; p. 234–41.

  33. Okamoto T, Ohnishi T, Haneishi H. Artifact reduction for sparse-view CT using deep learning with band patch. IEEE Trans Radiat Plasma Med Sci. 2022. https://doi.org/10.1109/TRPMS.2022.3168970.

    Article  Google Scholar 

  34. Yamanaka J, Kuwashima S, Kurita T. Fast and accurate image super resolution by deep CNN with skip connection and network in network. In: ICONIP LNCS. 2017. p. 217–25.

  35. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: CVPR. 2016. p. 770–8.

  36. Kim J, Lee JK, Lee KM. Accurate image super-resolution using very deep convolutional networks. In: CVPR. 2016. p.1646–54.

  37. Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A et al. Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR. 2017. p.105–14.

  38. Lim B, Son S, Kim H, Nah S, Lee KM. Enhanced deep residual networks for single image super-resolution. In: CVPRW. 2017. p 1132–40.

  39. Tai Y, Yang J, Liu X. Image super-resolution via deep recursive residual network. In: CVPR. 2017. p. 2790–98.

  40. Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y. Residual dense network for image super-resolution. In: CVPR. 2018. p.2472–81.

  41. Maas AL, Hannun AY, Ng AY, Rectifier nonlinearities improve neural network acoustic models. In: ICML. 2013.

  42. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML PMLR. 2015. p. 448–56.

  43. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D et al. Going deeper with convolutions. In: CVPR. 2015. p.1–9.

  44. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: CVPR. 2016. p. 2818–26.

  45. Odena A, Dumoulin V, Olah C. Deconvolution and checkerboard artifacts. Distill. 2016. https://doi.org/10.23915/distill.00003.

    Article  Google Scholar 

  46. Der Sarkissian H, Lucka F, van Eijnatten M, Colacicco G, Coban SB, Batenburg KJ. A cone-beam X-ray computed tomography data collection designed for machine learning. Sci Data. 2019;6:215. https://doi.org/10.1038/s41597-019-0235-y.

    Article  Google Scholar 

  47. Der Sarkissian H, Lucka F, van Eijnatten M, Colacicco G, Coban SB, Batenburg KJ. Cone-beam x-ray CT data collection designed for machine learning: samples 1–8. 2021. Zenodo. https://doi.org/10.5281/zenodo.2686726.

  48. Der Sarkissian H, Lucka F, van Eijnatten M, Colacicco G, Coban SB, Batenburg KJ. Cone-beam x-ray CT data collection designed for machine learning: samples 9–16. 2021. Zenodo. https://doi.org/10.5281/zenodo.2686971.

  49. Kingma DP, Ba J. Adam: a method for stochastic optimization. In: ICLR. 2015.

  50. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G et al. PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS. 2019. p. 8024–35.

  51. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12.

    Article  Google Scholar 

  52. Tanaka E, Kudo H. Optimal relaxation parameters of DRAMA (dynamic RAMLA) aiming at one-pass image reconstruction for 3D-PET. Phys Med Biol. 2010;55(10):2917–39.

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the Japan Society for the Promotion of Science (JSPS), KAKENHI Grant-in-Aid for Scientific Research (A), grant number 19H01172. We wish to thank Machiko Horiuchi from Summit Pharma International Corporation (Tokyo, Japan) for technical assistance with the micro-CT scan experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Okamoto.

Ethics declarations

Conflict of interest

Hideaki Haneishi received an unnumbered research grant from Rigaku Corporation (Tokyo, Japan) for research separate from the submitted work.

Ethical approval

This article does not contain any studies with human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, T., Kumakiri, T. & Haneishi, H. Patch-based artifact reduction for three-dimensional volume projection data of sparse-view micro-computed tomography. Radiol Phys Technol 15, 206–223 (2022). https://doi.org/10.1007/s12194-022-00661-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-022-00661-7

Keywords

Navigation