Skip to main content
Log in

Occupational eye dose correlation with neck dose and patient-related quantities in interventional cardiology procedures

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Occupational eye dose monitoring during interventional radiology and interventional cardiology is important to avoid radiation-induced cataracts. The aim of this study was to assess the eye dose correlation with neck dose and patient-related quantities for interventional cardiology physicians and nurses. The originality of this study lies in obtaining correlations between the location of the dosimeter and eye dose radiation readings among different procedures and practitioners. The doses were measured for each procedure (18 procedures of coronary angiography and 16 procedures of percutaneous coronary intervention) using an active personal dosimeter. The eye dose for physicians was not correlated with the neck dose. The eye dose for nurses had a good correlation with the neck dose during both coronary angiography (R2 = 0.91) and percutaneous coronary intervention (R2 = 0.93). Kerma-area product values may be used for a rough estimation of the eye dose for physicians during routine coronary angiography procedures (R2 = 0.76). For nurses, the neck dose is a good proxy for the eye dose during coronary angiography and percutaneous coronary intervention procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Balter S, Miller DL. Patient skin reactions from interventional fluoroscopy procedures. Am J Roentgenol. 2014;202:W335-342. https://doi.org/10.2214/AJR.13.12029.

    Article  Google Scholar 

  2. International Commission on Radiological Protection. Avoidance of radiation injuries from medical interventional procedures, ICRP Publication 85. Ann ICRP. 2001. https://doi.org/10.1016/s0146-6453(01)00004-5.

    Article  Google Scholar 

  3. Chida K, Inaba Y, Masuyama H, Yanagawa I, Mori I, Saito H, Maruoka S, Zuguchi M. Evaluating the performance of a MOSFET dosimeter at diagnostic X-ray energies for interventional radiology. Radiol Phys Technol. 2009;2:58–61. https://doi.org/10.1007/s12194-008-0044-z.

    Article  PubMed  Google Scholar 

  4. Inaba Y, Nakamura M, Chida K, Zuguchi M. Effectiveness of a novel real-time dosimeter in interventional radiology: a comparison of new and old radiation sensors. Radiol Phys Technol. 2018;11(4):445–50. https://doi.org/10.1007/s12194-018-0484-z.

    Article  PubMed  Google Scholar 

  5. Kato M, Chida K, Nakamura M, et al. New real-time patient radiation dosimeter for use in radiofrequency catheter ablation. J Radiat Res. 2019;60(2):215–20. https://doi.org/10.1093/jrr/rry110.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Inaba Y, Chida K, Murabayashi Y, Endo M, Otomo K, Zuguchi M. An initial investigation of a wireless patient radiation dosimeter for use in interventional radiology. Radiol Phys Technol. 2020;13:321–6. https://doi.org/10.1007/s12194-020-00575-2.

    Article  PubMed  Google Scholar 

  7. Chida K, Inaba Y, Masuyama H, Yanagawa I, Mori I, Saito H, Maruoka S, Zuguchi M. Comparison of dose at an interventional reference point between the displayed estimated value and measured value. Radiol Phys Technol. 2011;4:189–93. https://doi.org/10.1007/s12194-011-0121-6.

    Article  PubMed  Google Scholar 

  8. Chida K, Saito H, Otani H, Kohzuki M, Takahashi S, Yamada S, Shirato K, Zuguchi M. Relationship between fluoroscopic time, dose-area product, body weight, and maximum radiation skin dose in cardiac interventional procedures. Am J Roentgenol. 2006;186(3):774–8. https://doi.org/10.2214/ajr.04.1653.

    Article  Google Scholar 

  9. Chida K, Inaba Y, Saito H, Ishibashi T, Takahashi S, Kohzuki M, Zuguchi M. Radiation dose of interventional radiology system using a flat-panel detector. AJR Am J Roentgenol. 2009;193(6):1680–5. https://doi.org/10.2214/ajr.09.2747.

    Article  PubMed  Google Scholar 

  10. Chida K, Ohno T, Kakizaki S, Takegawa M, Yuuki H, Nakada M, Takahashi S, Zuguchi M. Radiation dose to the pediatric cardiac catheterization and intervention patient. AJR Am J Roentgenol. 2010;195(5):1175–9. https://doi.org/10.2214/ajr.10.4466.

    Article  PubMed  Google Scholar 

  11. Kato M, Chida K, Munehisa M, Sato T, Inaba Y, Suzuki M, Zuguchi M. Non-lead protective aprons for the protection of interventional radiology physicians from radiation exposure in clinical settings: An initial study. Diagnostics (Basel). 2021;11(9):1613. https://doi.org/10.3390/diagnostics11091613.

    Article  Google Scholar 

  12. Chida K, Kato M, Kagaya Y, Zuguchi M, Saito H, Ishibashi T, Takahashi S, Yamada S, Takai Y. Radiation dose and radiation protection for patients and physicians during interventional procedure. J Radiat Res. 2010;51(2):97–105. https://doi.org/10.1269/jrr.09112.

    Article  PubMed  Google Scholar 

  13. Inaba Y, Nakamura M, Zuguchi M, Chida K. Development of novel real-time radiation systems using 4-channel sensors. Sensors (Basel). 2020;20(9):2741. https://doi.org/10.3390/s20092741.

    Article  CAS  Google Scholar 

  14. Chida K, Takahashi T, Ito D, et al. Clarifying and visualizing sources of staff-received scattered radiation in interventional procedures. Am J Roentgenol. 2011;197:W900-903. https://doi.org/10.2214/ajr.10.6396.

    Article  Google Scholar 

  15. Kato M, Chida K, Ishida T, et al. Occupational radiation exposure dose of the eye in department of cardiac arrhythmia physician. Radiat Prot Dosim. 2019;187(3):361–8. https://doi.org/10.1093/rpd/ncz175.

    Article  Google Scholar 

  16. Ito H, Kobayashi I, Watanabe K, Ochi S, Yanagawa N. Evaluation of scattered radiation from fluoroscopy using small OSL dosimeters. Radiol Phys Technol. 2019;12(4):393–400. https://doi.org/10.1007/s12194-019-00536-4.

    Article  PubMed  Google Scholar 

  17. Morishima Y, Chida K, Watanabe H. Estimation of the dose of radiation received by patient and physician during a video fluoroscopic swallowing study. Dysphagia. 2016;31(4):574–8. https://doi.org/10.1007/s00455-016-9718-6.

    Article  PubMed  Google Scholar 

  18. Haga Y, Chida K, Kimura Y, Yamanda S, et al. Radiation eye dose to medical staff during respiratory endoscopy under X-ray fluoroscopy. J Radiol Res. 2020;61(5):691–6. https://doi.org/10.1093/jrr/rraa034.

    Article  CAS  Google Scholar 

  19. Zuguchi M, Chida K, Taura M, Inaba Y, Ebata A, Yamada S. Usefulness of non-lead aprons in radiation protection for physicians performing interventional procedures. Radiat Prot Dosim. 2008;131(4):531–4. https://doi.org/10.1093/rpd/ncn244.

    Article  Google Scholar 

  20. Morishima Y, Chida K, Meguro T. Effectiveness of additional lead shielding to protect staff from scattering radiation during endoscopic retrograde cholangiopancreatography procedures. J Radiat Res. 2018;59(2):225–32. https://doi.org/10.1093/jrr/rrx039.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chida K, Kaga Y, Haga Y, Kataoka N, Kumasaka E, Meguro T, Zuguchi M. Occupational dose in interventional radiology procedures. AJR Am J Roentgenol. 2013;200(1):138–41. https://doi.org/10.2214/ajr.11.8455.

    Article  PubMed  Google Scholar 

  22. Chida K, Morishima Y, Inaba Y, Taura M, Ebata A, Takeda K, Shimura H, Zuguchi M. Physician-received scatter radiation with angiography systems used for interventional radiology: comparison among many X-ray systems. Radiat Prot Dosim. 2012;149(4):410–6. https://doi.org/10.1093/rpd/ncr312.

    Article  CAS  Google Scholar 

  23. Vano E, Gonzalez L, Beneytez F, Moreno F. Lens injuries induced by occupational exposure in non-optimized interventional radiology laboratories. Br J Radiol. 1998;71:728–33. https://doi.org/10.1259/bjr.71.847.9771383.

    Article  CAS  PubMed  Google Scholar 

  24. Coppeta L, Pietroiusti A, Neri A, Spataro A, De Angelis E, Perrone S, Magrini A. Risk of radiation-induced lens opacities among surgeons and interventional medical staff. Radiol Phys Technol. 2019;12(1):26–9. https://doi.org/10.1007/s12194-018-0487-9.

    Article  PubMed  Google Scholar 

  25. Ota J, Yokota H, Kawasaki T, Taoka J, Kato H, Chida K, Masuda Y, Uno T. Evaluation of radiation protection methods for assistant staff during CT imaging in high-energy trauma: lens dosimetry with a phantom study. Health Phys. 2021;120(6):635–40. https://doi.org/10.1097/hp.0000000000001391.

    Article  CAS  PubMed  Google Scholar 

  26. International Commission on Radiological Protection. ICRP statement on tissue reactions. 2011. http://www.icrp.org/docs/2011%20Seoul.pdf.

  27. International Commission on Radiological Protection. ICRP Publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 2012;41(1/2):1–322. https://doi.org/10.1016/j.icrp.2012.02.001.

    Article  Google Scholar 

  28. Ishii H, Haga Y, Sota M, et al. Performance of the DOSIRIS™ eye lens dosimeter. J Radiol Prot. 2019;39(3):N19-26. https://doi.org/10.1088/1361-6498/ab2729.

    Article  CAS  PubMed  Google Scholar 

  29. Ishii H, Chida K, Satsurai K, et al. A phantom study to determine the optimal placement of eye dosimeters on interventional cardiology staff. Radiat Prot Dosim. 2019;185(4):409–13. https://doi.org/10.1093/rpd/ncz027.

    Article  CAS  Google Scholar 

  30. Haga Y, Chida K, Kaga Y, et al. Occupational eye dose in interventional cardiology procedures. Sci Rep. 2017;7(1):569. https://doi.org/10.1038/s41598-017-00556-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kato M, Chida K, Ishida T, et al. Occupational radiation exposure of the eye in neurovascular interventional physician. Radiat Prot Dosim. 2019;185(2):151–6. https://doi.org/10.1093/rpd/ncy285.

    Article  CAS  Google Scholar 

  32. Endo M, Haga Y, Sota M, Tanaka A, Otomo K, Murabayashi Y, Abe M, Kaga Y, Inaba Y, Suzuki M, Meguro T, Chida K. Evaluation of novel X-ray protective eyewear in reducing the eye dose to interventional radiology physicians. J Radiat Res. 2021;62(3):414–9. https://doi.org/10.1093/jrr/rrab014.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Inaba Y, Hitachi S, Watanuki M, Chida K. Occupational radiation dose to eye lenses in CT-guided interventions using MDCT-fluoroscopy. Diagnostics (Basel). 2021;11(4):646. https://doi.org/10.3390/diagnostics11040646.

    Article  Google Scholar 

  34. International Commission on Radiological Protection. Occupational radiological protection in interventional procedures. ICRP Publication 139. Ann ICRP. 2018. https://doi.org/10.1177/0146645317750356.

    Article  Google Scholar 

  35. Martin CJ, Magee JS. Assessment of eye and body dose for interventional radiologists, cardiologists, and other interventional staff. J Radiol Prot. 2013;33(2):445–60. https://doi.org/10.1088/0952-4746/33/2/445.

    Article  CAS  Google Scholar 

  36. Vanhavere F, Carinou E, Domienik J, et al. Measurements of eye lens doses in interventional radiology and cardiology: Final results of the ORAMED project. Radiat Meas. 2011;46:1243–7. https://doi.org/10.1016/j.radmeas.2011.08.013.

    Article  CAS  Google Scholar 

  37. Krim S, Brodecki M, Carinou E, et al. Extremity doses of medical staff involved in interventional radiology and cardiology: correlations and annual doses (hands and legs). Radiat Meas. 2011;46:1223–7. https://doi.org/10.1016/j.radmeas.2011.07.010.

    Article  CAS  Google Scholar 

  38. Sanchez RM, Vano E, Fernandez JM, et al. Occupational eye lens doses in interventional cardiology. A multicentric study. J Radiol Prot. 2016;36:133–43. https://doi.org/10.1088/0952-4746/36/1/133.

    Article  CAS  PubMed  Google Scholar 

  39. O’Connor U, Walsh C, Gallagher A, Dowling A, Guiney M, Ryan JM, McEniff N, O’Reilly G. Occupational radiation dose to eyes from interventional radiology procedures in light of the new eye lens dose limit from the International Commission on Radiological Protection. Br J Radiol. 2015;88(1049):20140627. https://doi.org/10.1259/bjr.20140627.

    Article  PubMed  PubMed Central  Google Scholar 

  40. O’Connor U, Gallagher A, Malone L, O’Reilly G. Occupational radiation dose to eyes from endoscopic retrograde cholangiopancreatography procedures in light of the revised eye lens dose limit from the International Commission on Radiological Protection. Br J Radiol. 2013;86(1022):20120289. https://doi.org/10.1259/bjr.20120289.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gracia-Ochoa M, Candela-Juan C, Vilar-Palop J, Ruiz Rodríguez JC, Soriano Cruz A, Palma Copete JD, Pujades Claumarchirant MC, Llorca DN. Correlation between eye lens doses and over apron doses in interventional procedures. Phys Med. 2020;77:10–7. https://doi.org/10.1016/j.ejmp.2020.07.025.

    Article  CAS  PubMed  Google Scholar 

  42. Inaba Y, Chida K, Kobayashi R, Kaga Y, Zuguchi M. Fundamental study of a real-time occupational dosimetry system for interventional radiology staff. J Radiol Prot. 2014;34:N65-71. https://doi.org/10.1088/0952-4746/34/3/n65.

    Article  PubMed  Google Scholar 

  43. Božović P, Ciraj-Bjelac O, Petrović JS. Occupational eye lens dose estimated using whole-body dosemeter in interventional cardiology and radiology: a Monte Carlo study. Radiat Prot Dosim. 2019;185(2):135–42. https://doi.org/10.1093/rpd/ncy283.

    Article  CAS  Google Scholar 

  44. Vanhavere F, Carinou E, Gualdrini G, et al. ORAMED: optimization of radiation protection of medical staff. EURADOS Report 2012-02. 2012. http://www.eurados.org/~/media/Files/Eurados/documents/EURADOS_Report_201202.pdf.

  45. Principi S, Delgado Soler C, Ginjaume M, Beltran Vilagrasa M, Rovira Escutia JJ, Duch MA. Eye lens dose in interventional cardiology. Radiat Prot Dosim. 2015;165(1–4):289–93. https://doi.org/10.1093/rpd/ncy283.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Ishii.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Ethical approval

The present study was approved by the Institutional Review Board of Sendai Kousei Hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, H., Chida, K., Satsurai, K. et al. Occupational eye dose correlation with neck dose and patient-related quantities in interventional cardiology procedures. Radiol Phys Technol 15, 54–62 (2022). https://doi.org/10.1007/s12194-022-00650-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-022-00650-w

Keywords

Navigation