Skip to main content

Advertisement

Log in

Stance of MRD in Non-Hodgkin’s Lymphoma and its upsurge in the novel era of cell-free DNA

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Cancer genomics has evolved over the years from understanding the pathogenesis of cancer to screening the future possibilities of cancer occurrence. Understanding the genetic profile of tumors holds a prognostic as well as a predictive value in this era of therapeutic surveillance, molecular remission, and precision medicine. Identifying molecular markers in tumors is the current standard of approach, and requires an efficient combination of an accessible sample type and a profoundly sensitive technique. Liquid biopsy or cell-free DNA has evolved as a novel sample type with promising results in recent years. Although cell-free DNA has significant role in various cancer types, this review focuses on its application in Non-Hodgkin’s Lymphoma. Beginning with the current concept and clinical relevance of minimal residual disease in Non-Hodgkin’s lymphoma, we discuss the literature on circulating DNA and its evolving application in the realm of cutting-edge technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

    Article  PubMed  Google Scholar 

  2. Mathur P, Sathishkumar K, Chaturvedi M, Das P, Sudarshan KL, Santhappan S, et al. Cancer statistics, 2020: report from national cancer registry programme, India. JCO Global Oncol. 2020;6:1063–75.

    Article  Google Scholar 

  3. Bottcher S, Ritgen M, Fischer K, Stilgenbauer S, Busch RM, Fingerle-Rowson G, et al. Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol. 2012;30(9):980–8.

    Article  PubMed  Google Scholar 

  4. Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10.

    Article  CAS  PubMed  Google Scholar 

  5. Kovacs G, Robrecht S, Fink AM, Bahlo J, Cramer P, von Tresckow J, et al. Minimal residual disease assessment improves prediction of outcome in patients with chronic lymphocytic leukemia (CLL) who achieve partial response: comprehensive analysis of two phase III studies of the German CLL study group. J Clin Oncol. 2016;34(31):3758–65.

    Article  CAS  PubMed  Google Scholar 

  6. Langerak AW, Ritgen M, Goede V, Robrecht S, Bahlo J, Fischer K, et al. Prognostic value of MRD in CLL patients with comorbidities receiving chlorambucil plus obinutuzumab or rituximab. Blood. 2019;133(5):494–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Logan AC, Zhang B, Narasimhan B, Carlton V, Zheng J, Moorhead M, et al. Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia. Leukemia. 2013;27(8):1659–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Strati P, Keating MJ, O’Brien SM, Burger J, Ferrajoli A, Jain N, et al. Eradication of bone marrow minimal residual disease may prompt early treatment discontinuation in CLL. Blood. 2014;123(24):3727–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones JA, Mato AR, Wierda WG, Davids MS, Choi M, Cheson BD, et al. Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol. 2018;19(1):65–75.

    Article  CAS  PubMed  Google Scholar 

  10. Barrientos JC, O’Brien S, Brown JR, Kay NE, Reddy NM, Coutre S, et al. Improvement in parameters of hematologic and immunologic function and patient well-being in the Phase III RESONATE study of ibrutinib versus ofatumumab in patients with previously treated chronic lymphocytic leukemia/small lymphocytic lymphoma. Clin Lymphoma Myeloma Leuk. 2018;18(12):803-13 e7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Berger JA. Fully parameter-free calculation of optical spectra for insulators, semiconductors, and metals from a simple polarization functional. Phys Rev Lett. 2015;115(13):137402.

    Article  CAS  PubMed  Google Scholar 

  12. Casulo C, Nastoupil L, Fowler NH, Friedberg JW, Flowers CR. Unmet needs in the first-line treatment of follicular lymphoma. Ann Oncol. 2017;28(9):2094–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gritti G, Pavoni C, Rambaldi A. Is there a role for minimal residual disease monitoring in follicular lymphoma in the chemo-immunotherapy era? Mediterr J Hematol Infect Dis. 2017;9(1):2017010.

    Article  Google Scholar 

  14. Galimberti S, Luminari S, Ciabatti E, Grassi S, Guerrini F, Dondi A, et al. Minimal residual disease after conventional treatment significantly impacts on progression-free survival of patients with follicular lymphoma: the FIL FOLL05 trial. Clin Cancer Res. 2014;20(24):6398–405.

    Article  CAS  PubMed  Google Scholar 

  15. Ladetto M, Lobetti-Bodoni C, Mantoan B, Ceccarelli M, Boccomini C, Genuardi E, et al. Persistence of minimal residual disease in bone marrow predicts outcome in follicular lymphomas treated with a rituximab-intensive program. Blood. 2013;122(23):3759–66.

    Article  CAS  PubMed  Google Scholar 

  16. Ladetto M, De Marco F, Benedetti F, Vitolo U, Patti C, Rambaldi A, et al. Prospective, multicenter randomized GITMO/IIL trial comparing intensive (R-HDS) versus conventional (CHOP-R) chemoimmunotherapy in high-risk follicular lymphoma at diagnosis: the superior disease control of R-HDS does not translate into an overall survival advantage. Blood. 2008;111(8):4004–13.

    Article  CAS  PubMed  Google Scholar 

  17. Hirt C, Schuler F, Kiefer T, Schwenke C, Haas A, Niederwieser D, et al. Rapid and sustained clearance of circulating lymphoma cells after chemotherapy plus rituximab: clinical significance of quantitative t(14;18) PCR monitoring in advanced stage follicular lymphoma patients. Br J Haematol. 2008;141(5):631–40.

    Article  CAS  PubMed  Google Scholar 

  18. Andersen NS, Pedersen L, Elonen E, Johnson A, Kolstad A, Franssila K, et al. Primary treatment with autologous stem cell transplantation in mantle cell lymphoma: outcome related to remission pretransplant. Eur J Haematol. 2003;71(2):73–80.

    Article  PubMed  Google Scholar 

  19. Pott C, Schrader C, Gesk S, Harder L, Tiemann M, Raff T, et al. Quantitative assessment of molecular remission after high-dose therapy with autologous stem cell transplantation predicts long-term remission in mantle cell lymphoma. Blood. 2006;107(6):2271–8.

    Article  CAS  PubMed  Google Scholar 

  20. Kolstad A, Laurell A, Jerkeman M, Gronbaek K, Elonen E, Raty R, et al. Nordic MCL3 study: 90Y-ibritumomab-tiuxetan added to BEAM/C in non-CR patients before transplant in mantle cell lymphoma. Blood. 2014;123(19):2953–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beltran B, Castillo J, Salas R, Quinones P, Morales D, Hurtado F, et al. ALK-positive diffuse large B-cell lymphoma: report of four cases and review of the literature. J Hematol Oncol. 2009;2:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kalinova M, Krskova L, Brizova H, Kabickova E, Kepak T, Kodet R. Quantitative PCR detection of NPM/ALK fusion gene and CD30 gene expression in patients with anaplastic large cell lymphoma–residual disease monitoring and a correlation with the disease status. Leuk Res. 2008;32(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  23. Weng WK, Armstrong R, Arai S, Desmarais C, Hoppe R, Kim YH. Minimal residual disease monitoring with high-throughput sequencing of T cell receptors in cutaneous T cell lymphoma. Sci Transl Med. 2013;5(214):214ra171.

    Article  PubMed  CAS  Google Scholar 

  24. Stroun M, Anker P, Lyautey J, Lederrey C, Maurice PA. Isolation and characterization of DNA from the plasma of cancer patients. Eur J Cancer Clin Oncol. 1987;23(6):707–12.

    Article  CAS  PubMed  Google Scholar 

  25. Roth C, Pantel K, Muller V, Rack B, Kasimir-Bauer S, Janni W, et al. Apoptosis-related deregulation of proteolytic activities and high serum levels of circulating nucleosomes and DNA in blood correlate with breast cancer progression. BMC Cancer. 2011;11:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jung K, Fleischhacker M, Rabien A. Cell-free DNA in the blood as a solid tumor biomarker–a critical appraisal of the literature. Clin Chim Acta. 2010;411(21–22):1611–24.

    Article  CAS  PubMed  Google Scholar 

  27. Jiang N, Reich CF 3rd, Pisetsky DS. Role of macrophages in the generation of circulating blood nucleosomes from dead and dying cells. Blood. 2003;102(6):2243–50.

    Article  CAS  PubMed  Google Scholar 

  28. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chun FK, Muller I, Lange I, Friedrich MG, Erbersdobler A, Karakiewicz PI, et al. Circulating tumour-associated plasma DNA represents an independent and informative predictor of prostate cancer. BJU Int. 2006;98(3):544–8.

    Article  CAS  PubMed  Google Scholar 

  30. Schwarzenbach H, Chun FK, Lange I, Carpenter S, Gottberg M, Erbersdobler A, et al. Detection of tumor-specific DNA in blood and bone marrow plasma from patients with prostate cancer. Int J Cancer. 2007;120(7):1465–71.

    Article  CAS  PubMed  Google Scholar 

  31. Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64(1):218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci. 2013;14(9):18925–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huet S, Salles G. Potential of circulating tumor DNA for the management of patients with lymphoma. JCO Oncol Pract. 2020;16(9):561–8.

    Article  PubMed  Google Scholar 

  34. Scherer F, Kurtz DM, Newman AM, Stehr H, Craig AF, Esfahani MS, et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med. 2016;8(364):364ra155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bohers E, Viailly PJ, Becker S, Marchand V, Ruminy P, Maingonnat C, et al. Non-invasive monitoring of diffuse large B-cell lymphoma by cell-free DNA high-throughput targeted sequencing: analysis of a prospective cohort. Blood Cancer J. 2018;8(8):74.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Garcia-Olmo DC, Ruiz-Piqueras R, Garcia-Olmo D. Circulating nucleic acids in plasma and serum (CNAPS) and its relation to stem cells and cancer metastasis: state of the issue. Histol Histopathol. 2004;19(2):575–83.

    CAS  PubMed  Google Scholar 

  39. Garcia-Olmo D, Garcia-Olmo DC. Functionality of circulating DNA: the hypothesis of genometastasis. Ann N Y Acad Sci. 2001;945:265–75.

    Article  CAS  PubMed  Google Scholar 

  40. Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman MJ, Spetz AL, et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA. 2001;98(11):6407–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018;10(466):4921.

    Article  CAS  Google Scholar 

  42. Lu JL, Liang ZY. Circulating free DNA in the era of precision oncology: pre- and post-analytical concerns. Chronic Dis Transl Med. 2016;2(4):223–30.

    PubMed  PubMed Central  Google Scholar 

  43. Ignatiadis M, Lee M, Jeffrey SS. Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res. 2015;21(21):4786–800.

    Article  CAS  PubMed  Google Scholar 

  44. Underhill HR, Kitzman JO, Hellwig S, Welker NC, Daza R, Baker DN, et al. Fragment length of circulating tumor DNA. PLoS Genet. 2016;12(7):1006162.

    Article  CAS  Google Scholar 

  45. Mandel P, Metais P. [Nuclear acids in human blood plasma]. C R Seances Soc Biol Fil. 1948;142(3–4):241–3.

    CAS  PubMed  Google Scholar 

  46. Bendich A, Wilczok T, Borenfreund E. Circulating DNA as a possible factor in oncogenesis. Science. 1965;148(3668):374–6.

    Article  CAS  PubMed  Google Scholar 

  47. Anker P, Stroun M, Maurice PA. Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Can Res. 1975;35(9):2375–82.

    CAS  Google Scholar 

  48. Duvvuri B, Lood C. Cell-free DNA as a biomarker in autoimmune rheumatic diseases. Front Immunol. 2019;10:502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barnett EV. Detection of nuclear antigens (DNA) in normal and pathologic human fluids by quantitative complement fixation. Arthritis Rheum. 1968;11(3):407–17.

    Article  CAS  PubMed  Google Scholar 

  50. Koffler D, Agnello V, Winchester R, Kunkel HG. The occurrence of single-stranded DNA in the serum of patients with systemic lupus erythematosus and other diseases. J Clin Investig. 1973;52(1):198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vasyukhin VSM, Maurice P, Lyautey J, Lederrey C, Anker P. cartographer K-ras point mutations in the blood plasma DNA of patients with colorectal tumors. Rome: Area-Serono Symposia Publications; 1994.

    Google Scholar 

  52. Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol. 1994;86(4):774–9.

    Article  CAS  PubMed  Google Scholar 

  53. Chen XQ, Stroun M, Magnenat JL, Nicod LP, Kurt AM, Lyautey J, et al. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med. 1996;2(9):1033–5.

    Article  CAS  PubMed  Google Scholar 

  54. Nawroz H, Koch W, Anker P, Stroun M, Sidransky D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med. 1996;2(9):1035–7.

    Article  CAS  PubMed  Google Scholar 

  55. Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–7.

    Article  CAS  PubMed  Google Scholar 

  56. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Can Res. 1977;37(3):646–50.

    CAS  Google Scholar 

  57. Deligezer U, Yaman F, Erten N, Dalay N. Frequent copresence of methylated DNA and fragmented nucleosomal DNA in plasma of lymphoma patients. Clin Chim Acta. 2003;335(1–2):89–94.

    Article  CAS  PubMed  Google Scholar 

  58. Hohaus S, Giachelia M, Massini G, Mansueto G, Vannata B, Bozzoli V, et al. Cell-free circulating DNA in Hodgkin’s and non-Hodgkin’s lymphomas. Ann Oncol. 2009;20(8):1408–13.

    Article  CAS  PubMed  Google Scholar 

  59. Mussolin L, Burnelli R, Pillon M, Carraro E, Farruggia P, Todesco A, et al. Plasma cell-free DNA in paediatric lymphomas. J Cancer. 2013;4(4):323–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Frickhofen N, Muller E, Sandherr M, Binder T, Bangerter M, Wiest C, et al. Rearranged Ig heavy chain DNA is detectable in cell-free blood samples of patients with B-cell neoplasia. Blood. 1997;90(12):4953–60.

    Article  CAS  PubMed  Google Scholar 

  61. Tohda S, Murakami N, Nara N. Polymerase chain reaction detection of rearranged immunoglobulin heavy chain DNA in plasma samples is useful in the diagnosis of B-cell lymphoma. Int J Hematol. 2000;72(1):74–8.

    CAS  PubMed  Google Scholar 

  62. Gocke CD, Kopreski MS, Benko FA, Sternas L, Kwak LW. Serum BCL2/IGH DNA in follicular lymphoma patients: a minimal residual disease marker. Leuk Lymphoma. 2000;39(1–2):165–72.

    Article  CAS  PubMed  Google Scholar 

  63. Lei KI, Chan LY, Chan WY, Johnson PJ, Lo YM. Diagnostic and prognostic implications of circulating cell-free Epstein-Barr virus DNA in natural killer/T-cell lymphoma. Clin Cancer Res. 2002;8(1):29–34.

    CAS  PubMed  Google Scholar 

  64. Roschewski M, Dunleavy K, Pittaluga S, Moorhead M, Pepin F, Kong K, et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol. 2015;16(5):541–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sun P, Chen C, Xia Y, Wang Y, Liu PP, Bi XW, et al. Mutation profiling of malignant lymphoma by next-generation sequencing of circulating cell-free DNA. J Cancer. 2019;10(2):323–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sarkozy C, Huet S, Carlton VE, Fabiani B, Delmer A, Jardin F, et al. The prognostic value of clonal heterogeneity and quantitative assessment of plasma circulating clonal IG-VDJ sequences at diagnosis in patients with follicular lymphoma. Oncotarget. 2017;8(5):8765–74.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Armand P, Oki Y, Neuberg DS, Faham M, Cummings C, Klinger M, et al. Detection of circulating tumour DNA in patients with aggressive B-cell non-Hodgkin lymphoma. Br J Haematol. 2013;163(1):123–6.

    Article  CAS  PubMed  Google Scholar 

  68. Delfau-Larue MH, van der Gucht A, Dupuis J, Jais JP, Nel I, Beldi-Ferchiou A, et al. Total metabolic tumor volume, circulating tumor cells, cell-free DNA: distinct prognostic value in follicular lymphoma. Blood Adv. 2018;2(7):807–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Younes A. Prognostic significance of diffuse large B-cell lymphoma cell of origin: seeing the forest and the trees. J Clin Oncol. 2015;33(26):2835–6.

    Article  CAS  PubMed  Google Scholar 

  70. International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94.

    Article  Google Scholar 

  71. Darrah JM, Herrera AF. Updates on circulating tumor DNA assessment in lymphoma. Curr Hematol Malig Rep. 2018;13(5):348–55.

    Article  PubMed  Google Scholar 

  72. Kurtz DM, Scherer F, Jin MC, Soo J, Craig AFM, Esfahani MS, et al. Circulating tumor DNA measurements as early outcome predictors in diffuse large B-cell lymphoma. J Clin Oncol. 2018;36(28):2845–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tokuhisa Y, Iizuka N, Sakaida I, Moribe T, Fujita N, Miura T, et al. Circulating cell-free DNA as a predictive marker for distant metastasis of hepatitis C virus-related hepatocellular carcinoma. Br J Cancer. 2007;97(10):1399–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ren N, Ye QH, Qin LX, Zhang BH, Liu YK, Tang ZY. Circulating DNA level is negatively associated with the long-term survival of hepatocellular carcinoma patients. World J Gastroenterol. 2006;12(24):3911–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Papadopoulou E, Davilas E, Sotiriou V, Georgakopoulos E, Georgakopoulou S, Koliopanos A, et al. Cell-free DNA and RNA in plasma as a new molecular marker for prostate and breast cancer. Ann N Y Acad Sci. 2006;1075:235–43.

    Article  CAS  PubMed  Google Scholar 

  76. Kohler C, Radpour R, Barekati Z, Asadollahi R, Bitzer J, Wight E, et al. Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer. 2009;8:105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Zhong XY, Ladewig A, Schmid S, Wight E, Hahn S, Holzgreve W. Elevated level of cell-free plasma DNA is associated with breast cancer. Arch Gynecol Obstet. 2007;276(4):327–31.

    Article  CAS  PubMed  Google Scholar 

  78. Ellinger J, Bastian PJ, Ellinger N, Kahl P, Perabo FG, Buttner R, et al. Apoptotic DNA fragments in serum of patients with muscle invasive bladder cancer: a prognostic entity. Cancer Lett. 2008;264(2):274–80.

    Article  CAS  PubMed  Google Scholar 

  79. Catarino R, Ferreira MM, Rodrigues H, Coelho A, Nogal A, Sousa A, et al. Quantification of free circulating tumor DNA as a diagnostic marker for breast cancer. DNA Cell Biol. 2008;27(8):415–21.

    Article  CAS  PubMed  Google Scholar 

  80. Deligezer U, Eralp Y, Akisik EE, Akisik EZ, Saip P, Topuz E, et al. Size distribution of circulating cell-free DNA in sera of breast cancer patients in the course of adjuvant chemotherapy. Clin Chem Lab Med. 2008;46(3):311–7.

    Article  CAS  PubMed  Google Scholar 

  81. Yoon KA, Park S, Lee SH, Kim JH, Lee JS. Comparison of circulating plasma DNA levels between lung cancer patients and healthy controls. J Mol Diagn. 2009;11(3):182–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chan KC, Leung SF, Yeung SW, Chan AT, Lo YM. Persistent aberrations in circulating DNA integrity after radiotherapy are associated with poor prognosis in nasopharyngeal carcinoma patients. Clin Cancer Res. 2008;14(13):4141–5.

    Article  CAS  PubMed  Google Scholar 

  83. Huang ZH, Li LH, Hua D. Quantitative analysis of plasma circulating DNA at diagnosis and during follow-up of breast cancer patients. Cancer Lett. 2006;243(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  84. Gautschi O, Bigosch C, Huegli B, Jermann M, Marx A, Chasse E, et al. Circulating deoxyribonucleic acid as prognostic marker in non-small-cell lung cancer patients undergoing chemotherapy. J Clin Oncol. 2004;22(20):4157–64.

    Article  CAS  PubMed  Google Scholar 

  85. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.

    Article  CAS  PubMed  Google Scholar 

  86. Perego RA, Corizzato M, Brambilla P, Ferrero S, Bianchi C, Fasoli E, et al. Concentration and microsatellite status of plasma DNA for monitoring patients with renal carcinoma. Eur J Cancer. 2008;44(7):1039–47.

    Article  CAS  PubMed  Google Scholar 

  87. Zitt M, Muller HM, Rochel M, Schwendinger V, Zitt M, Goebel G, et al. Circulating cell-free DNA in plasma of locally advanced rectal cancer patients undergoing preoperative chemoradiation: a potential diagnostic tool for therapy monitoring. Dis Markers. 2008;25(3):159–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fiegl H, Millinger S, Mueller-Holzner E, Marth C, Ensinger C, Berger A, et al. Circulating tumor-specific DNA: a marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Res. 2005;65(4):1141–5.

    Article  CAS  PubMed  Google Scholar 

  89. Gifford G, Paul J, Vasey PA, Kaye SB, Brown R. The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clin Cancer Res. 2004;10(13):4420–6.

    Article  CAS  PubMed  Google Scholar 

  90. Bastian PJ, Palapattu GS, Lin X, Yegnasubramanian S, Mangold LA, Trock B, et al. Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin Cancer Res. 2005;11(11):4037–43.

    Article  CAS  PubMed  Google Scholar 

  91. Di Paolo A, Arrigoni E, Luci G, Cucchiara F, Danesi R, Galimberti S. Precision medicine in lymphoma by innovative instrumental platforms. Front Oncol. 2019;9:1417.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–46.

    Article  CAS  PubMed  Google Scholar 

  93. Cao Y, Hunter ZR, Liu X, Xu L, Yang G, Chen J, et al. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s Macroglobulinemia. Leukemia. 2015;29(1):169–76.

    Article  PubMed  CAS  Google Scholar 

  94. Xu L, Tsakmaklis N, Yang G, Chen JG, Liu X, Demos M, et al. Acquired mutations associated with ibrutinib resistance in Waldenstrom macroglobulinemia. Blood. 2017;129(18):2519–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yeh P, Hunter T, Sinha D, Ftouni S, Wallach E, Jiang D, et al. Circulating tumour DNA reflects treatment response and clonal evolution in chronic lymphocytic leukaemia. Nat Commun. 2017;8:14756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Provencio M, Rodriguez M, Cantos B, Sabin P, Quero C, Garcia-Arroyo FR, et al. mRNA in exosomas as a liquid biopsy in non-Hodgkin Lymphoma: a multicentric study by the Spanish Lymphoma Oncology Group. Oncotarget. 2017;8(31):50949–57.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sujobert P, Le Bris Y, de Leval L, Gros A, Merlio JP, Pastoret C, et al. The need for a consensus next-generation sequencing panel for mature lymphoid malignancies. HemaSphere. 2019;3(1):e169.

    Article  PubMed  Google Scholar 

  98. Pastore A, Jurinovic V, Kridel R, Hoster E, Staiger AM, Szczepanowski M, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 2015;16(9):1111–22.

    Article  CAS  PubMed  Google Scholar 

  99. Esfahani MS, Alig SK, Kurtz DM, Soo J, Jin MC, Craig AFM, et al. Towards non-invasive classification of DLBCL Genetic subtypes by Ctdna profiling. Blood. 2019;134(Suppl 1):551.

    Article  Google Scholar 

  100. Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018;378(15):1396–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Hattori K, Sakata-Yanagimoto M, Suehara Y, Yokoyama Y, Kato T, Kurita N, et al. Clinical significance of disease-specific MYD88 mutations in circulating DNA in primary central nervous system lymphoma. Cancer Sci. 2018;109(1):225–30.

    Article  CAS  PubMed  Google Scholar 

  103. Hiemcke-Jiwa LS, Minnema MC, Radersma-van Loon JH, Jiwa NM, de Boer M, Leguit RJ, et al. The use of droplet digital PCR in liquid biopsies: a highly sensitive technique for MYD88 p.(L265P) detection in cerebrospinal fluid. Hematol Oncol. 2018;36(2):429–35.

    Article  CAS  PubMed  Google Scholar 

  104. Suehara Y, Sakata-Yanagimoto M, Hattori K, Nanmoku T, Itoh T, Kaji D, et al. Liquid biopsy for the identification of intravascular large B-cell lymphoma. Haematologica. 2018;103(6):e241–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hiemcke-Jiwa LS, Ten Dam-van Loon NH, Leguit RJ, Nierkens S, Ossewaarde-van Norel J, de Boer JH, et al. Potential diagnosis of vitreoretinal lymphoma by detection of MYD88 mutation in aqueous humor with ultrasensitive droplet digital polymerase chain reaction. JAMA Ophthalmol. 2018;136(10):1098–104.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rossi D, Diop F, Spaccarotella E, Monti S, Zanni M, Rasi S, et al. Diffuse large B-cell lymphoma genotyping on the liquid biopsy. Blood. 2017;129(14):1947–57.

    Article  CAS  PubMed  Google Scholar 

  107. Jahangiri L, Hurst T. Assessing the concordance of genomic alterations between circulating-free DNA and tumour tissue in cancer patients. Cancers. 2019;11(12):1938.

    Article  CAS  PubMed Central  Google Scholar 

  108. Taheri ZM, Ziazi LM, Dorudinia A, Nadji SA, Mohammadi F. Clonality of the immunoglobulin heavy chain genes in B cell non-hodgkin lymphoma using semi-nested PCR. Tanaffos. 2011;10(2):25–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kurtz DM, Green MR, Bratman SV, Scherer F, Liu CL, Kunder CA, et al. Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing. Blood. 2015;125(24):3679–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rambaldi A, Lazzari M, Manzoni C, Carlotti E, Arcaini L, Baccarani M, et al. Monitoring of minimal residual disease after CHOP and rituximab in previously untreated patients with follicular lymphoma. Blood. 2002;99(3):856–62.

    Article  CAS  PubMed  Google Scholar 

  111. Vega F, Medeiros LJ. Chromosomal translocations involved in non-Hodgkin lymphomas. Arch Pathol Lab Med. 2003;127(9):1148–60.

    Article  CAS  PubMed  Google Scholar 

  112. Hoster E, Pott C. Minimal residual disease in mantle cell lymphoma: insights into biology and impact on treatment. Hematology Am Soc Hematol Educ Program. 2016;2016(1):437–45.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Dubois S, Viailly PJ, Mareschal S, Bohers E, Bertrand P, Ruminy P, et al. Next-generation sequencing in diffuse large B-cell lymphoma highlights molecular divergence and therapeutic opportunities: a LYSA study. Clin Cancer Res. 2016;22(12):2919–28.

    Article  CAS  PubMed  Google Scholar 

  114. Agarwal R, Chan YC, Tam CS, Hunter T, Vassiliadis D, Teh CE, et al. Dynamic molecular monitoring reveals that SWI-SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma. Nat Med. 2019;25(1):119–29.

    Article  CAS  PubMed  Google Scholar 

  115. Horning SJ, Juweid ME, Schoder H, Wiseman G, McMillan A, Swinnen LJ, et al. Interim positron emission tomography scans in diffuse large B-cell lymphoma: an independent expert nuclear medicine evaluation of the Eastern Cooperative Oncology Group E3404 study. Blood. 2010;115(4):775–7 (quiz 918).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cheah CY, Hofman MS, Dickinson M, Wirth A, Westerman D, Harrison SJ, et al. Limited role for surveillance PET-CT scanning in patients with diffuse large B-cell lymphoma in complete metabolic remission following primary therapy. Br J Cancer. 2013;109(2):312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Thompson CA, Ghesquieres H, Maurer MJ, Cerhan JR, Biron P, Ansell SM, et al. Utility of routine post-therapy surveillance imaging in diffuse large B-cell lymphoma. J Clin Oncol. 2014;32(31):3506–12.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Han HS, Escalon MP, Hsiao B, Serafini A, Lossos IS. High incidence of false-positive PET scans in patients with aggressive non-Hodgkin’s lymphoma treated with rituximab-containing regimens. Ann Oncol. 2009;20(2):309–18.

    Article  CAS  PubMed  Google Scholar 

  119. El-Galaly TC, Jakobsen LH, Hutchings M, de Nully BP, Nilsson-Ehle H, Szekely E, et al. Routine imaging for diffuse large B-cell lymphoma in first complete remission does not improve post-treatment survival: a Danish-Swedish population-based study. J Clin Oncol. 2015;33(34):3993–8.

    Article  CAS  PubMed  Google Scholar 

  120. Cheminant M, Derrieux C, Touzart A, Schmit S, Grenier A, Trinquand A, et al. Minimal residual disease monitoring by 8-color flow cytometry in mantle cell lymphoma: an EU-MCL and LYSA study. Haematologica. 2016;101(3):336–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bottcher S, Ritgen M, Buske S, Gesk S, Klapper W, Hoster E, et al. Minimal residual disease detection in mantle cell lymphoma: methods and significance of four-color flow cytometry compared to consensus IGH-polymerase chain reaction at initial staging and for follow-up examinations. Haematologica. 2008;93(4):551–9.

    Article  PubMed  Google Scholar 

  122. Bottcher S. Flow cytometric MRD detection in selected mature B-cell malignancies. Methods Mol Biol. 2019;1956:157–97.

    Article  CAS  PubMed  Google Scholar 

  123. Sorber L, Zwaenepoel K, Deschoolmeester V, Van Schil PE, Van Meerbeeck J, Lardon F, et al. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer. 2017;107:100–7.

    Article  CAS  PubMed  Google Scholar 

  124. Ferrero S, Drandi D, Mantoan B, Ghione P, Omede P, Ladetto M. Minimal residual disease detection in lymphoma and multiple myeloma: impact on therapeutic paradigms. Hematol Oncol. 2011;29(4):167–76.

    Article  PubMed  Google Scholar 

  125. Goff L, Summers K, Iqbal S, Kuhlmann J, Kunz M, Louton T, et al. Quantitative PCR analysis for Bcl-2/IgH in a phase III study of Yttrium-90 Ibritumomab Tiuxetan as consolidation of first remission in patients with follicular lymphoma. J Clin Oncol. 2009;27(36):6094–100.

    Article  CAS  PubMed  Google Scholar 

  126. Perez-Callejo D, Romero A, Provencio M, Torrente M. Liquid biopsy based biomarkers in non-small cell lung cancer for diagnosis and treatment monitoring. Transl Lung Cancer Res. 2016;5(5):455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Narayan A, Carriero NJ, Gettinger SN, Kluytenaar J, Kozak KR, Yock TI, et al. Ultrasensitive measurement of hotspot mutations in tumor DNA in blood using error-suppressed multiplexed deep sequencing. Cancer Res. 2012;72(14):3492–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, Scherer F, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016;34(5):547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA. 2003;100(15):8817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Alcaide M, Yu S, Bushell K, Fornika D, Nielsen JS, Nelson BH, et al. Multiplex droplet digital PCR quantification of recurrent somatic mutations in diffuse large B-cell and follicular lymphoma. Clin Chem. 2016;62(9):1238–47.

    Article  CAS  PubMed  Google Scholar 

  131. Xu L, Hunter ZR, Yang G, Zhou Y, Cao Y, Liu X, et al. MYD88 L265P in Waldenstrom macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood. 2013;121(11):2051–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jimenez C, Chillon Mdel C, Balanzategui A, Puig N, Sebastian E, Alcoceba M, et al. Detection of MYD88 L265P mutation by real-time allele-specific oligonucleotide polymerase chain reaction. Appl Immunohistochem Mol Morphol. 2014;22(10):768–73.

    Article  CAS  PubMed  Google Scholar 

  133. Drandi D, Genuardi E, Dogliotti I, Ferrante M, Jimenez C, Guerrini F, et al. Highly sensitive MYD88(L265P) mutation detection by droplet digital polymerase chain reaction in Waldenstrom macroglobulinemia. Haematologica. 2018;103(6):1029–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Camus V, Sarafan-Vasseur N, Bohers E, Dubois S, Mareschal S, Bertrand P, et al. Digital PCR for quantification of recurrent and potentially actionable somatic mutations in circulating free DNA from patients with diffuse large B-cell lymphoma. Leuk Lymphoma. 2016;57(9):2171–9.

    Article  CAS  PubMed  Google Scholar 

  135. Ladetto M, Bruggemann M, Monitillo L, Ferrero S, Pepin F, Drandi D, et al. Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia. 2014;28(6):1299–307.

    Article  CAS  PubMed  Google Scholar 

  136. Herrera AF, Kim HT, Kong KA, Faham M, Sun H, Sohani AR, et al. Next-generation sequencing-based detection of circulating tumour DNA after allogeneic stem cell transplantation for lymphoma. Br J Haematol. 2016;175(5):841–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Samorodnitsky E, Jewell BM, Hagopian R, Miya J, Wing MR, Lyon E, et al. Evaluation of hybridization capture versus amplicon-based methods for whole-exome sequencing. Hum Mutat. 2015;36(9):903–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kadri S, Long BC, Mujacic I, Zhen CJ, Wurst MN, Sharma S, et al. Clinical validation of a next-generation sequencing genomic oncology panel via cross-platform benchmarking against established amplicon sequencing assays. J Mol Diagn. 2017;19(1):43–56.

    Article  CAS  PubMed  Google Scholar 

  139. Jiang P, Lo YMD. The long and short of circulating cell-free DNA and the ins and outs of molecular diagnostics. Trends Genetics. 2016;32(6):360–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RG conceptualized the work. She also revised the work critically. SG performed the literature search and drafted the manuscript. AK gave the clinical perspective and revised the work. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to R. Gupta.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, S., Kumar, A. & Gupta, R. Stance of MRD in Non-Hodgkin’s Lymphoma and its upsurge in the novel era of cell-free DNA. Clin Transl Oncol 23, 2206–2219 (2021). https://doi.org/10.1007/s12094-021-02635-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02635-4

Keywords

Navigation