Skip to main content

Advertisement

Log in

Characterization of a xenograft model for anti-CD19 CAR T cell studies

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Chimeric antigen receptor (CAR) T cell development for B cell malignancies treatment has triggered a paradigm shift in oncology. The development of anti-CD19 CAR T cells relies primarily on a panel of cell line-derived xenograft models, including Raji cells; however, the behavior of this model is under debate. We attempted to characterize this lymphoma model and propose outcome measures for CAR T cell studies

Methods

Raji cell line was inoculated into NOG mice via intra-venous (IV), intra-peritoneal (IP), and subcutaneous (SC) routes with different inoculum sizes, and consequent clinical and histopathological outcomes were assessed.

Results

Inoculum sizes of 105–106 resulted in a complete take rate. The mice with IV and SC-inoculated Raji cells presented the shortest and longest survival among lymphoma-bearing mice, respectively (P < 0.01). The IP group had the highest number of both infiltrated organs (P < 0.05; compared to SC) and involvement of lymphatic sites (P < 0.05; compared to IV). The number of lymphoma lesions on the liver was higher in the IV compared to IP (P < 0.001) and SC (P < 0.05).

Conclusion

We demonstrate that the Raji cell line inoculation route could determine the xenograft model system behavior in terms of survival, tumor burden, and dissemination pattern and gives the model the specific features suitable for testing the specific hypothesis in CAR T cell therapy. We also conclude outcome measures for CAR T cell studies that do not require imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Available on request.

References

  1. Srivastava S, Riddell SR, Alerts E. Chimeric antigen receptor T cell therapy: challenges to bench-to-bedside efficacy. J Immunol. 2018;200(2):459–68. https://doi.org/10.4049/jimmunol.1701155.

    Article  CAS  PubMed  Google Scholar 

  2. Martinez M. Moon E K (2019) CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 2019;10:128. https://doi.org/10.3389/fimmu.2019.00128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miranda A, Marion F, Ariana P, Rafael Z, Gragera M, Steliarova E, et al. Global patterns and trends in the incidence of non-Hodgkin lymphoma. Cancer Causes Control. 2019;30(5):489–99. https://doi.org/10.1007/s10552-019-01155-5.

    Article  Google Scholar 

  4. Hopfinger G, Jäger U, Worel N, Worel CN. CAR-T cell therapy in diffuse large B cell lymphoma: hype and hope. Hemasphere. 2019;3(2):e185. https://doi.org/10.1097/HS9.0000000000000185.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kalaitsidou M, Gilham DE. CAR T-cell therapy : toxicity and the relevance of preclinical models. Immunotherapy. 2015;7(5):487–97. https://doi.org/10.2217/imt.14.123.

    Article  CAS  PubMed  Google Scholar 

  6. Wang Z, Wu Z, Liu Y, Han W. New development in CAR-T cell therapy. J Hematol Oncol. 2017. https://doi.org/10.1186/s13045-017-0423-1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kuhnken R, Porcu P, Mishra A. Overview of the use of murine models in leukemia and lymphoma. Front Oncol. 2017;7:22. https://doi.org/10.3389/fonc.2017.00022.

    Article  Google Scholar 

  8. Ito R, Katano I, Hirata H, Ogura T, Kamisako T, Eto T, et al. Highly sensitive model for xenogenic GVHD using severe immunodeficient NOG mice. Transplantation. 2009;87(11):1654–8. https://doi.org/10.1097/TP.0b013e3181a5cb07.

    Article  CAS  PubMed  Google Scholar 

  9. Karpova MB, Schoumans J, Ernberg I, Henter JI, Nordenskjöld M, Fadeel B. Raji revisited: cytogenetics of the original Burkitt’s lymphoma cell line. Leukemia. 2005;19(1):159–61. https://doi.org/10.1038/sj.leu.2403534.

    Article  CAS  PubMed  Google Scholar 

  10. Workman P, A boagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010;102(11):1555–77. https://doi.org/10.1038/sj.bjc.6605642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Charan J, Kantharia ND. How to calculate sample size in animal studies? Educ Forum. 2013;4(4):303–6. https://doi.org/10.4103/0976-500X.119726.

    Article  Google Scholar 

  12. Ullman-culleré MH, Foltz CJ. Body condition scoring: a rapid and accurate method for assessing health status in mice. Lab Anim Sci. 1999;49(3):319–23.

    PubMed  Google Scholar 

  13. Braendstrup P, Levine BL, Ruella M. The long road to the first FDA-approved gene therapy: chimeric antigen receptor T cells targeting CD19. Cytotherapy. 2020;22(2):57–69. https://doi.org/10.1016/j.jcyt.2019.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sakemura R, Terakura S, Watanabe K, Julamanee J, Takagi E, Miyao K, et al. A tet-on inducible system for controlling cd19-chimeric antigen receptor expression upon drug administration. Cancer Immunol Res. 2016;4(8):658–68. https://doi.org/10.1158/2326-6066.CIR-16-0043.

    Article  CAS  PubMed  Google Scholar 

  15. Zah E, Lin M, Silva-benedict A, Jensen MC, Chen YY. T cells expressing CD19/CD20 Bispeci fi c chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res. 2016;4(6):498–508. https://doi.org/10.1158/2326-6066.CIR-15-0231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu L, Sommermeyer D, Cabanov A, Kosasih P, Hill T, Riddell SR. Inclusion of strep-tag II in design of antigen receptors for T cell immunotherapy. Nat Biotechnol. 2016;34(4):430–4. https://doi.org/10.1038/nbt.3461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sommermeyer D, Hill T, Shamah SM, Salter AI, Chen Y, Mohler KM, et al. Fully human CD19-specific chimeric antigen receptors for T cell therapy. Leukemia. 2017;31(10):2191–9. https://doi.org/10.1038/leu.2017.57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rafiq S, Yeku OO, Jackson HJ, Purdon TJ, Van LDG, Drakes DJ, et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Publ Gr. 2018;36(9):847–56. https://doi.org/10.1038/nbt.4195.

    Article  CAS  Google Scholar 

  19. Ying Z, Huang XF, Xiang X, Liu Y, Kang X, Song Y, et al. A safe and potent anti-CD19 CAR T cell therapy. Nat Med. 2019;25(6):947–53. https://doi.org/10.1038/s41591-019-0421-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Petersen CC, Petersen MS, Agger R, Hokland ME. Accumulatiomulation in tumor tissue of adoptively transferred T cells: a comparison between intravenous and intraperitoneal injection. J Immunother. 2006;29(3):241–9. https://doi.org/10.1097/01.cji.0000203078.97493.c3.

    Article  PubMed  Google Scholar 

  21. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumour formation by single human melanoma cells. Nature. 2008;456(7222):593–8. https://doi.org/10.1038/nature07567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Agliano A, Martin-padura I, Mancuso P, Marighetti P, Rabascio C, Pruneri G, et al. Human acute leukemia cells injected in NOD/LtSz-scid/IL-2R c null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int J Cancer. 2008;123:2222. https://doi.org/10.1002/ijc.23772.

    Article  CAS  PubMed  Google Scholar 

  23. Miyakawa Y, Ohnishi Y, Tomisawa M, Monnai M, Kohmura K, Ueyama Y, et al. Establishment of a new model of human multiple myeloma using (NOG) mice NOD/SCID. Biochem Biophys Res Commun. 2004;313(2):258–62. https://doi.org/10.1016/j.bbrc.2003.11.120.

    Article  CAS  PubMed  Google Scholar 

  24. Kalisz K, Alessandrino F, Beck R, Smith D, Kikano E, Ramaiya NH, et al. An update on Burkitt lymphoma : a review of pathogenesis and multimodality imaging assessment of disease presentation, treatment response, and recurrence. Insights Imaging. 2019;10(1):56. https://doi.org/10.1186/s13244-019-0733-7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hollingshead M. Intraperitoneal and subcutaneous tumor models for assessing anti-neoplastic agents. Curr Protoc Pharmacol. 2002. https://doi.org/10.1002/0471141755.ph0528s18.

    Article  PubMed  Google Scholar 

  26. Perry MC, Doll DC. The Chemotherapy Source Book. 5th ed. Kindle Edition; 2012.

    Google Scholar 

  27. Wong E, Davis JE, Grigg A, Szer J. Strategies to enhance the graft versus tumour effect after allogeneic haematopoietic stem cell transplantation. Bone Marrow Transplant. 2019;54(2):175–89. https://doi.org/10.1038/s41409-018-0244-z.

    Article  CAS  PubMed  Google Scholar 

  28. Rezvani AR, Storb R. Separation of graft-vs-tumor effects from graft-vs-host disease in allogeneic hematopoietic cell transplantation. J Autoimmun. 2009;30(3):172–9. https://doi.org/10.1016/j.jaut.2007.12.002.

    Article  CAS  Google Scholar 

  29. Alcantar-orozco EM, Gornall H, Baldan V, Hawkins RE, Gilham DE. Potential limitations of the NSG humanized mouse as a model system to optimize engineered human T cell therapy for cancer. Hum Gene Ther Methods. 2013;24(5):310–20. https://doi.org/10.1089/hgtb.2013.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sakka V, Tsiodras S, Giamarellos-bourboulis EJ, Giamarellou H. An update on the etiology and diagnostic evaluation of a leukemoid reaction. Eur J Intern Med. 2006;17(6):394–8. https://doi.org/10.1016/j.ejim.2006.04.004.

    Article  CAS  PubMed  Google Scholar 

  31. Paster EV, Villines KA, Hickman DL. Endpoints for mouse abdominal tumor models: refinement of current criteria. Comp Med. 2009;59(3):234–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Laajala TD, Jumppanen M, Huhtaniemi R, Fey V, Kaur A, Knuuttila M, et al. Optimized design and analysis of preclinical intervention studies in vivo. Sci Rep Article number: 30723. 2016. https://doi.org/10.1038/srep30723.

    Article  Google Scholar 

  33. Belzung C, Lemoine M. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol Mood Anxiety Disord. 2011;1(1):1–14.

    Article  Google Scholar 

Download references

Funding

This research was supported by a research grant from Tehran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muhammadnejad.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Ethical approval

Animal experimentation was conducted under a protocol approved by the Ethical Committee of Tehran University of Medical Sciences.

Informed consent

This work was a preclinical study. Therefore, informed consent was not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13003 KB)

Supplementary file2 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadbeigi, N., Alatab, S., Vasei, M. et al. Characterization of a xenograft model for anti-CD19 CAR T cell studies. Clin Transl Oncol 23, 2181–2190 (2021). https://doi.org/10.1007/s12094-021-02626-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02626-5

Keywords

Navigation