Skip to main content

Advertisement

Log in

Exosomal circCNOT6L Regulates Astrocyte Apoptotic Signals Induced by Hypoxia Exposure Through miR99a-5p/SERPINE1 and Alleviates Ischemic Stroke Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Circular RNAs are involved in intervention strategies for treating ischemic stroke (IS). However, circCNOT6L (hsa_circ_0006168) has not yet been reported in IS. Thus, we aimed to explore the potential role of circCNOT6L and its molecular mechanism in IS. In this study, we first found that the expression of both exosomal circCNOT6L (P = 0.0006) and plasma circCNOT6L (P = 0.0054) was down-regulated in IS patients compared with controls. Clinically, a negative correlation was observed between the relative expression level of circCNOT6L and the National Institutes of Health Stroke Scale (NIHSS) score and infarct volume of the brain. Simultaneously, the relative expression level of circCNOT6L was negatively associated with multiple risk factors for IS, such as mean platelet volume (MPV), red cell distribution width (RDW), very low-density lipoprotein (VLDL), and serum potassium, whereas it was positively correlated with high-density lipoprotein (HDL). In vitro, circCNOT6L silencing blocked cell viability and proliferation, while it promoted cell apoptosis of astrocytes undergoing oxygen–glucose deprivation/reperfusion (OGD/R) treatment. Mechanistically, the RNA antisense purification (RAP) assay and luciferase reporter assay revealed that circCNOT6L acts as a miRNA sponge to absorb miR-99a-5p and then regulates the expression of serine proteinase inhibitor (SERPINE1). In the further rescue experiment, overexpressing SERPINE1 could rescue the cell apoptotic signals due to circCNOT6L depletion. In conclusion, CircCNOT6L attenuated the cell apoptotic signal of astrocytes via the miR99a-5p/SERPINE1 axis and then alleviated injury after hypoxia induced by ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data used in the current study available from the corresponding author on reasonable request.

References

  1. Owolabi MO, Thrift AG, Mahal A et al (2022) Primary stroke prevention worldwide: translating evidence into action. Lancet Public Health 7:e74–e85

    Article  PubMed  Google Scholar 

  2. Diseases GBD, Injuries C (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet 396:1204–1222

    Article  Google Scholar 

  3. Hu X, De Silva TM, Chen J, Faraci FM (2017) Cerebral vascular disease and neurovascular injury in ischemic stroke. Circ Res 120:449–471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Zhou M, Wang H, Zeng X et al (2019) Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 394:1145–1158

    Article  PubMed  PubMed Central  Google Scholar 

  5. Krishnamurthi RV, Ikeda T, Feigin VL (2020) Global, regional and country-specific burden of ischaemic stroke, intracerebral haemorrhage and subarachnoid haemorrhage: a systematic analysis of the global burden of disease study 2017. Neuroepidemiology 54:171–179

    Article  PubMed  Google Scholar 

  6. Beal CC (2010) Gender and stroke symptoms: a review of the current literature. J Neurosci Nurs 42:80–87

    Article  PubMed  Google Scholar 

  7. Saini V, Guada L, Yavagal DR (2021) Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology 97:S6–S16

    Article  PubMed  Google Scholar 

  8. Gokool A, Loy CT, Halliday GM, Voineagu I (2020) Circular RNAs: the brain transcriptome comes full circle. Trends Neurosci 43:752–766

    Article  PubMed  CAS  Google Scholar 

  9. Chen LL (2020) The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21:475–490

    Article  PubMed  CAS  Google Scholar 

  10. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691

    Article  PubMed  CAS  Google Scholar 

  11. Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in cancer. Cancer Res 73:5609–5612

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Z, He J, Wang B (2021) Circular RNA circ_HECTD1 regulates cell injury after cerebral infarction by miR-27a-3p/FSTL1 axis. Cell Cycle 20:914–926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Han B, Zhang Y, Zhang Y et al (2018) Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy 14:1164–1184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dai Q, Ma Y, Xu Z et al (2021) Downregulation of circular RNA HECTD1 induces neuroprotection against ischemic stroke through the microRNA-133b/TRAF3 pathway. Life Sci 264:118626

    Article  PubMed  CAS  Google Scholar 

  15. Wang T, Mao P, Feng Y et al (2021) Blocking hsa_circ_0006168 suppresses cell proliferation and motility of human glioblastoma cells by regulating hsa_circ_0006168/miR-628-5p/IGF1R ceRNA axis. Cell Cycle 20:1181–1194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Huang Y, Jiang L, Wei G (2021) Circ_0006168 promotes the migration, invasion and proliferation of esophageal squamous cell carcinoma cells via mir-516b-5p-dependent regulation of XBP1. Onco Targets Ther 14:2475–2488

    Article  PubMed  PubMed Central  Google Scholar 

  17. Qu F, Wang L, Wang C, Yu L, Zhao K, Zhong H (2021) Circular RNA circ_0006168 enhances Taxol resistance in esophageal squamous cell carcinoma by regulating miR-194-5p/JMJD1C axis. Cancer Cell Int 21:273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhang Y, Tang Q, Huang XM, Liao DZ (2020) Circular RNA circCNOT6L regulates cell development through modulating miR-384/FN1 axis in esophageal squamous cell carcinoma. Eur Rev Med Pharmacol Sci 24:3674–3685

    PubMed  CAS  Google Scholar 

  19. Xie ZF, Li HT, Xie SH, Ma M (2020) Circular RNA hsa_circ_0006168 contributes to cell proliferation, migration and invasion in esophageal cancer by regulating miR-384/RBBP7 axis via activation of S6K/S6 pathway. Eur Rev Med Pharmacol Sci 24:151–163

    PubMed  Google Scholar 

  20. Shi Y, Guo Z, Fang N et al (2019) hsa_circ_0006168 sponges miR-100 and regulates mTOR to promote the proliferation, migration and invasion of esophageal squamous cell carcinoma. Biomed Pharmacother 117:109151

    Article  PubMed  CAS  Google Scholar 

  21. Zhao H, Li G, Ma Q et al (2017) MicroRNA-99a-5p in circulating immune cells as a potential biomarker for the early diagnosis of ischemic stroke. Brain Circ 3:21–28

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eniafe J, Jiang S (2021) MicroRNA-99 family in cancer and immunity. Wiley Interdiscip Rev RNA 12:e1635

    Article  PubMed  CAS  Google Scholar 

  23. Arai T, Okato A, Yamada Y et al (2018) Regulation of NCAPG by miR-99a-3p (passenger strand) inhibits cancer cell aggressiveness and is involved in CRPC. Cancer Med 7:1988–2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Okada R, Koshizuka K, Yamada Y et al (2019) Regulation of oncogenic targets by miR-99a-3p (Passenger Strand of miR-99a-Duplex) in head and neck squamous cell carcinoma. Cells 8:1535

  25. Qin H, Liu W (2019) MicroRNA-99a-5p suppresses breast cancer progression and cell-cycle pathway through downregulating CDC25A. J Cell Physiol 234:3526–3537

    Article  PubMed  CAS  Google Scholar 

  26. Valiente M, Obenauf AC, Jin X et al (2014) Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156:1002–1016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bajou K, Masson V, Gerard RD et al (2001) The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J Cell Biol 152:777–784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhao C, Liu Z (2021) MicroRNA 617 Targeting SERPINE1 Inhibited the Progression of Oral Squamous Cell Carcinoma. Mol Cell Biol 41:e0056520

    Article  PubMed  Google Scholar 

  29. Wang W, Li Z, Feng J (2018) The potential role of exosomes in the diagnosis and therapy of ischemic diseases. Cytotherapy 20:1204–1219

    Article  PubMed  CAS  Google Scholar 

  30. Chen W, Wang H, Zhu Z, Feng J, Chen L (2020) Exosome-shuttled circSHOC2 from IPASs regulates neuronal autophagy and ameliorates ischemic brain injury via the miR-7670-3p/SIRT1 axis. Mol Ther Nucleic Acids 22:657–672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chioccarelli T, Falco G, Cappetta D et al (2021) FUS driven circCNOT6L biogenesis in mouse and human spermatozoa supports zygote development. Cell Mol Life Sci 79:50

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chinese Society of Neurology, Chinese Stroke Society (2019) Diagnostic criteria of cerebrovascular diseases in China (version 2019). Chin J Neurol 52:710–715

  33. Li S, Chen L, Xu C et al (2020) Expression profile and bioinformatics analysis of circular RNAs in acute ischemic stroke in a South Chinese Han population. Sci Rep 10:10138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yang J, He W, Gu L et al (2022) CircUSP36 attenuates ischemic stroke injury through the miR-139-3p/SMAD3/Bcl2 signal axis. Clin Sci (Lond) 136:953–971

    Article  PubMed  CAS  Google Scholar 

  35. Pan Z, Ma G, Kong L, Du G (2021) Hypoxia-inducible factor-1: Regulatory mechanisms and drug development in stroke. Pharmacol Res 170:105742

    Article  PubMed  CAS  Google Scholar 

  36. Liu M, Liu X, Zhou M, Guo S, Sun K (2022) Impact of CircRNAs on ischemic stroke. Aging Dis 13:329–339

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zuo L, Zhang L, Zu J et al (2020) Circulating circular RNAs as biomarkers for the diagnosis and prediction of outcomes in acute ischemic stroke. Stroke 51:319–323

    Article  PubMed  CAS  Google Scholar 

  38. Younas N, Fernandez Flores LC, Hopfner F, Hoglinger GU, Zerr I (2022) A new paradigm for diagnosis of neurodegenerative diseases: peripheral exosomes of brain origin. Transl Neurodegener 11:28

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bashyal S, Thapa C, Lee S (2022) Recent progresses in exosome-based systems for targeted drug delivery to the brain. J Control Release 348:723–744

    Article  PubMed  CAS  Google Scholar 

  40. Li JY, Li QQ, Sheng R (2021) The role and therapeutic potential of exosomes in ischemic stroke. Neurochem Int 151:105194

    Article  PubMed  CAS  Google Scholar 

  41. Xu B, Huang X, Yan Y et al (2022) Analysis of expression profiles and bioinformatics suggests that plasma exosomal circular RNAs may be involved in ischemic stroke in the Chinese Han population. Metab Brain Dis 37:665–676

    Article  PubMed  Google Scholar 

  42. Yang L, Han B, Zhang Z et al (2020) Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models. Circulation 142:556–574

    Article  PubMed  CAS  Google Scholar 

  43. Kim J, Kim YD, Song TJ et al (2012) Red blood cell distribution width is associated with poor clinical outcome in acute cerebral infarction. Thromb Haemost 108:349–356

    Article  PubMed  CAS  Google Scholar 

  44. O’Malley T, Langhorne P, Elton RA, Stewart C (1995) Platelet size in stroke patients. Stroke 26:995–999

    Article  PubMed  Google Scholar 

  45. Miller MM, Henninger N, Slowik A (2020) Mean platelet volume and its genetic variants relate to stroke severity and 1-year mortality. Neurology 95:e1153–e1162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Braekkan SK, Mathiesen EB, Njolstad I, Wilsgaard T, Stormer J, Hansen JB (2010) Mean platelet volume is a risk factor for venous thromboembolism: the Tromso Study, Tromso, Norway. J Thromb Haemost 8:157–162

    Article  PubMed  CAS  Google Scholar 

  47. Zhang Y, Tuomilehto J, Jousilahti P, Wang Y, Antikainen R, Hu G (2012) Total and high-density lipoprotein cholesterol and stroke risk. Stroke 43:1768–1774

    Article  PubMed  Google Scholar 

  48. Tziomalos K, Giampatzis V, Bouziana SD et al (2017) Prognostic significance of major lipids in patients with acute ischemic stroke. Metab Brain Dis 32:395–400

    Article  PubMed  CAS  Google Scholar 

  49. Paterno R, Ruocco A, Postiglione A, Hubsch A, Andresen I, Lang MG (2004) Reconstituted high-density lipoprotein exhibits neuroprotection in two rat models of stroke. Cerebrovasc Dis 17:204–211

    Article  PubMed  CAS  Google Scholar 

  50. Johnson LS, Mattsson N, Sajadieh A, Wollmer P, Soderholm M (2017) Serum potassium is positively associated with stroke and mortality in the large. Population-based malmo preventive project cohort. Stroke 48:2973–2978

    Article  PubMed  CAS  Google Scholar 

  51. Liu Z, Chopp M (2016) Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 144:103–120

    Article  PubMed  CAS  Google Scholar 

  52. Zhou M, Zhang T, Zhang X et al (2022) Effect of tetrahedral framework nucleic acids on neurological recovery via ameliorating apoptosis and regulating the activation and polarization of astrocytes in ischemic stroke. ACS Appl Mater Interfaces 14:37478–37492

    Article  PubMed  CAS  Google Scholar 

  53. Zhou D, Huang Z, Zhu X, Hong T, Zhao Y (2021) Circular RNA 0025984 ameliorates ischemic stroke injury and protects astrocytes through miR-143-3p/TET1/ORP150 pathway. Mol Neurobiol 58:5937–5953

    Article  PubMed  CAS  Google Scholar 

  54. Chen C, Chang X, Zhang S, Zhao Q, Lei C (2022) CircRNA CTNNB1 (circCTNNB1) ameliorates cerebral ischemia/reperfusion injury by sponging miR-96-5p to up-regulate scavenger receptor class B type 1 (SRB1) expression. Bioengineered 13:10258–10273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science. 367:eaau6977

  56. Li X, Yang L, Chen LL (2018) The Biogenesis, Functions, and Challenges of Circular RNAs. Mol Cell 71:428–442

    Article  PubMed  CAS  Google Scholar 

  57. Yen YC, Shiah SG, Chu HC et al (2014) Reciprocal regulation of microRNA-99a and insulin-like growth factor I receptor signaling in oral squamous cell carcinoma cells. Mol Cancer 13:6

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yepes M, Sandkvist M, Wong MK et al (2000) Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood 96:569–576

    Article  PubMed  CAS  Google Scholar 

  59. Wang YF, Tsirka SE, Strickland S, Stieg PE, Soriano SG, Lipton SA (1998) Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med 4:228–231

    Article  PubMed  CAS  Google Scholar 

  60. Buisson A, Nicole O, Docagne F, Sartelet H, Mackenzie ET, Vivien D (1998) Up-regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor beta1. FASEB J 12:1683–1691

    Article  PubMed  CAS  Google Scholar 

  61. Xi Y, Shen Y, Wu D et al (2022) CircBCAR3 accelerates esophageal cancer tumorigenesis and metastasis via sponging miR-27a-3p. Mol Cancer 21:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Yang J, He W, Gu L et al (2023) CircFOXP1 alleviates brain injury after acute ischemic stroke by regulating STAT3/apoptotic signaling. Transl Res 257:15-29

  63. Errichelli L, Dini Modigliani S, Laneve P et al (2017) FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun 8:14741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China, for critical technical support. We thank Xiaofei Li, Haotian Xu, Sixian Chen, Qingyun Zhao and Jiaxi Wu for experimental support.

Funding

This work was supported by the Natural Science Foundation of China (NSFC81874395 and NSFC81860822) and Natural Science Foundation of Guangxi (2018GXNSFAA281224).

Author information

Authors and Affiliations

Authors

Contributions

Li Su and Aruo Nan conceived this study. Wanting He, Jialei Yang, Ruirui Zhang, Wenyi Peng, Baoyun Liang performed the experiments. Lian Gu, Jianxiong Long, Lulu Zhu and Miao Lv collected clinical samples. Wanting He, Lian Gu and Jianxiong Long analyzed the data. Wanting He, Jialei Yang and Ruirui Zhang wrote this paper. Li Su and Aruo Nan revised the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Aruo Nan or Li Su.

Ethics declarations

Ethics Statement and Consent to Participate

All participants included in the study were informed of the purpose of this research and informed consent was obtained from them. In addition, this project was approved by the Medical Ethics Committee of Guangxi University of Chinese Medicine.

Consent for Publication

All authors consent to the publication of this manuscript.

Conflicts of Interest

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wanting He, Lian Gu, and Jialei Yang contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1865 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Gu, L., Yang, J. et al. Exosomal circCNOT6L Regulates Astrocyte Apoptotic Signals Induced by Hypoxia Exposure Through miR99a-5p/SERPINE1 and Alleviates Ischemic Stroke Injury. Mol Neurobiol 60, 7118–7135 (2023). https://doi.org/10.1007/s12035-023-03518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03518-1

Keywords

Navigation