Skip to main content

Advertisement

Log in

Hes1 Controls Proliferation and Apoptosis in Chronic Lymphoblastic Leukemia Cells by Modulating PTEN Expression

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Hairy and enhancer of split homolog-1 (HES1), regulated by the Notch, has been reported to play important roles in the immune response and cancers, such as leukemia. In this study, we aim to explore the effect of HES1-mediated Notch1 signaling pathway in chronic lymphocytic leukemia (CLL). Reverse transcription quantitative polymerase chain reaction and Western blot assay were conducted to determine the expression of HES1, Notch1, and PTEN in B lymphocytes of peripheral blood samples of 60 CLL patients. We used lentivirus-mediated overexpression or silencing of HES1 and the Notch1 signaling pathway inhibitor, MW167, to detect the interaction among HES1, Notch1, and PTEN in CLL MEC1 and HG3 cells. MTT assay and flow cytometry were employed for detection of biological behaviors of CLL cells. HES1 and Notch1 showed high expression, but PTEN displayed low expression in B lymphocytes of peripheral blood samples of patients with CLL in association with poor prognosis. HES1 bound to the promoter region of PTEN and reduced PTEN expression. Overexpression of HES1 activated the Notch1 signaling pathway, thus promoting the proliferation of CLL cells, increasing the proportion of cells arrested at the S phase and limiting the apoptosis of CLL cells. Collectively, HES1 can promote activation of the Notch1 signaling pathway to cause PTEN transcription inhibition and the subsequent expression reduction, thereby promoting the proliferation and inhibiting the apoptosis of CLL cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Savvopoulos, S., Misener, R., Panoskaltsis, N., Pistikopoulos, E. N., & Mantalaris, A. (2016). A personalized framework for dynamic modeling of disease trajectories in chronic lymphocytic leukemia. IEEE Transactions on Biomedical Engineering, 63, 2396–2404.

    Article  PubMed  Google Scholar 

  2. Wiestner, A. (2012). Emerging role of kinase-targeted strategies in chronic lymphocytic leukemia. Blood, 120, 4684–4691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hus, I., Salomon-Perzynski, A., & Robak, T. (2020). The up-to-date role of biologics for the treatment of chronic lymphocytic leukemia. Expert Opinion on Biological Therapy, 20, 799–812.

    Article  PubMed  CAS  Google Scholar 

  4. Stauder, R., Eichhorst, B., Hamaker, M. E., Kaplanov, K., Morrison, V. A., Osterborg, A., Poddubnaya, I., Woyach, J. A., Shanafelt, T., Smolej, L., Ysebaert, L., & Goede, V. (2017). Management of chronic lymphocytic leukemia (CLL) in the elderly: A position paper from an international Society of Geriatric Oncology (SIOG) Task Force. Annals of Oncology, 28, 218–227.

    Article  PubMed  CAS  Google Scholar 

  5. Eichhorst, B., Cramer, P., & Hallek, M. (2016). Initial therapy of chronic lymphocytic leukemia. Seminars in Oncology, 43, 241–250.

    Article  PubMed  CAS  Google Scholar 

  6. Lee, J. C., & Lamanna, N. (2020). Is there a role for chemotherapy in the era of targeted therapies? Current Hematologic Malignancy Reports, 15, 72–82.

    Article  PubMed  Google Scholar 

  7. Wu, Y., Gong, L., Xu, J., Mou, Y., Xu, X., & Qian, Z. (2017). The clinicopathological significance of HES1 promoter hypomethylation in patients with colorectal cancer. Oncotargets and Therapy, 10, 5827–5834.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nakahara, F., Sakata-Yanagimoto, M., Komeno, Y., Kato, N., Uchida, T., Haraguchi, K., Kumano, K., Harada, Y., Harada, H., Kitaura, J., Ogawa, S., Kurokawa, M., Kitamura, T., & Chiba, S. (2010). Hes1 immortalizes committed progenitors and plays a role in blast crisis transition in chronic myelogenous leukemia. Blood, 115, 2872–2881.

    Article  PubMed  CAS  Google Scholar 

  9. Monahan, P., Rybak, S., & Raetzman, L. T. (2009). The notch target gene HES1 regulates cell cycle inhibitor expression in the developing pituitary. Endocrinology, 150, 4386–4394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ferrante, F., Giaimo, B. D., Bartkuhn, M., Zimmermann, T., Close, V., Mertens, D., Nist, A., Stiewe, T., Meier-Soelch, J., Kracht, M., Just, S., Kloble, P., Oswald, F., & Borggrefe, T. (2020). HDAC3 functions as a positive regulator in Notch signal transduction. Nucleic Acids Research, 48, 3496–3512.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Close, V., Close, W., Kugler, S. J., Reichenzeller, M., Yosifov, D. Y., Bloehdorn, J., Pan, L., Tausch, E., Westhoff, M. A., Dohner, H., Stilgenbauer, S., Oswald, F., & Mertens, D. (2019). FBXW7 mutations reduce binding of NOTCH1, leading to cleaved NOTCH1 accumulation and target gene activation in CLL. Blood, 133, 830–839.

    Article  PubMed  CAS  Google Scholar 

  12. Gianfelici, V. (2012). Activation of the NOTCH1 pathway in chronic lymphocytic leukemia. Haematologica, 97, 328–330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zou, Z. J., Fan, L., Wang, L., Xu, J., Zhang, R., Tian, T., Li, J. Y., & Xu, W. (2015). miR-26a and miR-214 down-regulate expression of the PTEN gene in chronic lymphocytic leukemia, but not PTEN mutation or promoter methylation. Oncotarget, 6, 1276–1285.

    Article  PubMed  Google Scholar 

  14. Zou, Z. J., Zhang, R., Fan, L., Wang, L., Fang, C., Zhang, L. N., Yang, S., Li, Y. Y., Li, J. Y., & Xu, W. (2013). Low expression level of phosphatase and tensin homolog deleted on chromosome ten predicts poor prognosis in chronic lymphocytic leukemia. Leukaemia & Lymphoma, 54, 1159–1164.

    Article  CAS  Google Scholar 

  15. Del Papa, B., Baldoni, S., Dorillo, E., De Falco, F., Rompietti, C., Cecchini, D., Cantelmi, M. G., Sorcini, D., Nogarotto, M., Adamo, F. M., Mezzasoma, F., Silva Barcelos, E. C., Albi, E., Iacucci Ostini, R., Di Tommaso, A., Marra, A., Montanaro, G., Martelli, M. P., Falzetti, F., … Sportoletti, P. (2019). Decreased NOTCH1 activation correlates with response to ibrutinib in chronic lymphocytic leukemia. Clinical Cancer Research, 25, 7540–7553.

    Article  PubMed  Google Scholar 

  16. Rosati, E., Sabatini, R., Rampino, G., Tabilio, A., Di Ianni, M., Fettucciari, K., Bartoli, A., Coaccioli, S., Screpanti, I., & Marconi, P. (2009). Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood, 113, 856–865.

    Article  PubMed  CAS  Google Scholar 

  17. Weng, A. P., Millholland, J. M., Yashiro-Ohtani, Y., Arcangeli, M. L., Lau, A., Wai, C., Del Bianco, C., Rodriguez, C. G., Sai, H., Tobias, J., Li, Y., Wolfe, M. S., Shachaf, C., Felsher, D., Blacklow, S. C., Pear, W. S., & Aster, J. C. (2006). c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes & Development., 20, 2096–2109.

    Article  CAS  Google Scholar 

  18. Tottone, L., Zhdanovskaya, N., Carmona Pestana, A., Zampieri, M., Simeoni, F., Lazzari, S., Ruocco, V., Pelullo, M., Caiafa, P., Felli, M. P., Checquolo, S., Bellavia, D., Talora, C., Screpanti, I., & Palermo, R. (2019). Histone modifications drive aberrant notch3 expression/activity and growth in T-ALL. Frontiers in Oncology, 9, 198.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Palomero, T., Dominguez, M., & Ferrando, A. A. (2008). The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. Cell Cycle, 7, 965–970.

    Article  PubMed  CAS  Google Scholar 

  20. Hwang, K. K., Chen, X., Kozink, D. M., Gustilo, M., Marshall, D. J., Whitesides, J. F., Liao, H. X., Catera, R., Chu, C. C., & Yan, X. J. (2012). Enhanced outgrowth of EBV-transformed chronic lymphocytic leukemia B cells mediated by coculture with macrophage feeder cells. Blood, 119(7), e35-44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yan, P., Xue, Z., Li, D., Ni, S., Wang, C., Jin, X., Zhou, D., Li, X., Zhao, X., & Chen, X. (2021). Dysregulated CRTC1-BDNF signaling pathway in the hippocampus contributes to Abeta oligomer-induced long-term synaptic plasticity and memory impairment. Experimental Neurology, 345, 113812.

    Article  PubMed  CAS  Google Scholar 

  22. Nelson, J. D., Denisenko, O., Sova, P., & Bomsztyk, K. (2006). Fast chromatin immunoprecipitation assay. Nucleic Acids Research, 34(1), e2. https://doi.org/10.1093/nar/gnj004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wirth, M., Doescher, J., Jira, D., Meier, M. A., Piontek, G., Reiter, R., Schlegel, J., & Pickhard, A. (2016). HES1 mRNA expression is associated with survival in sinonasal squamous cell carcinoma. Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology, 122, 491–499.

    Article  Google Scholar 

  24. Ahadi, M., Andrici, J., Sioson, L., Sheen, A., Clarkson, A., & Gill, A. J. (2016). Loss of Hes1 expression is associated with poor prognosis in colorectal adenocarcinoma. Human Pathology, 57, 91–97.

    Article  PubMed  CAS  Google Scholar 

  25. Liu, Z., Fu, Q., Fu, H., Wang, Z., Xu, L., An, H., Li, Y., & Xu, J. (2016). A three-molecule score based on Notch pathway predicts poor prognosis in non-metastasis clear cell renal cell carcinoma. Oncotarget, 7, 68559–68570.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fonseka, L. N., & Tirado, C. A. (2015). C-myc involvement in chronic lymphocytic leukemia (CLL): A molecular and cytogenetic update. Journal of the Association of Genetic Technologists, 41, 176–183.

    PubMed  Google Scholar 

  27. Bhattacharya, M., Sharma, A. R., Sharma, G., Patra, B. C., Lee, S. S., & Chakraborty, C. (2020). Interaction between miRNAs and signaling cascades of Wnt pathway in chronic lymphocytic leukemia. Journal of Cellular Biochemistry, 121, 4654–4666.

    Article  PubMed  CAS  Google Scholar 

  28. Aljedai, A., Buckle, A. M., Hiwarkar, P., & Syed, F. (2015). Potential role of Notch signalling in CD34+ chronic myeloid leukaemia cells: Cross-talk between Notch and BCR-ABL. PLoS ONE, 10, e0123016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Nakahara, F., Kitaura, J., Uchida, T., Nishida, C., Togami, K., Inoue, D., Matsukawa, T., Kagiyama, Y., Enomoto, Y., Kawabata, K. C., Chen-Yi, L., Komeno, Y., Izawa, K., Oki, T., Nagae, G., Harada, Y., Harada, H., Otsu, M., Aburatani, H., … Kitamura, T. (2014). Hes1 promotes blast crisis in chronic myelogenous leukemia through MMP-9 upregulation in leukemic cells. Blood, 123, 3932–3942.

    Article  PubMed  CAS  Google Scholar 

  30. Baldoni, S., Sportoletti, P., Del Papa, B., Aureli, P., Dorillo, E., Rosati, E., Ciurnelli, R., Marconi, P., Falzetti, F., & Di Ianni, M. (2013). NOTCH and NF-kappaB interplay in chronic lymphocytic leukemia is independent of genetic lesion. International Journal of Hematology, 98, 153–157.

    Article  PubMed  CAS  Google Scholar 

  31. Baldoni, S., Del Papa, B., Dorillo, E., Aureli, P., De Falco, F., Rompietti, C., Sorcini, D., Varasano, E., Cecchini, D., Zei, T., Di Tommaso, A., Rosati, E., Alexe, G., Roti, G., Stegmaier, K., Di Ianni, M., Falzetti, F., & Sportoletti, P. (2018). Bepridil exhibits anti-leukemic activity associated with NOTCH1 pathway inhibition in chronic lymphocytic leukemia. International Journal of Cancer, 143, 958–970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kapoor, I., Li, Y., Sharma, A., Zhu, H., Bodo, J., Xu, W., Hsi, E. D., Hill, B. T., & Almasan, A. (2019). Resistance to BTK inhibition by ibrutinib can be overcome by preventing FOXO3a nuclear export and PI3K/AKT activation in B-cell lymphoid malignancies. Cell Death & Disease, 10, 924.

    Article  CAS  Google Scholar 

  33. Bailon, E., Ugarte-Berzal, E., Amigo-Jimenez, I., Van den Steen, P., Opdenakker, G., Garcia-Marco, J. A., & Garcia-Pardo, A. (2014). Overexpression of progelatinase B/proMMP-9 affects migration regulatory pathways and impairs chronic lymphocytic leukemia cell homing to bone marrow and spleen. Journal of Leukocyte Biology, 96, 185–199.

    Article  PubMed  CAS  Google Scholar 

  34. D’Altri, T., Gonzalez, J., Aifantis, I., Espinosa, L., & Bigas, A. (2011). Hes1 expression and CYLD repression are essential events downstream of Notch1 in T-cell leukemia. Cell Cycle, 10, 1031–1036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Suresh, S., McCallum, L., Crawford, L. J., Lu, W. H., Sharpe, D. J., & Irvine, A. E. (2013). The matricellular protein CCN3 regulates NOTCH1 signalling in chronic myeloid leukaemia. The Journal of Pathology, 231, 378–387.

    Article  PubMed  CAS  Google Scholar 

  36. Saito, N., Hirai, N., Aoki, K., Suzuki, R., Fujita, S., Nakayama, H., Hayashi, M., Ito, K., Sakurai, T., & Iwabuchi, S. (2019). The oncogene addiction switch from NOTCH to PI3K requires simultaneous targeting of NOTCH and PI3K pathway inhibition in glioblastoma. Cancers, 11, 121.

    Article  PubMed Central  CAS  Google Scholar 

  37. Guo, J., Fu, W., Xiang, M., Zhang, Y., Zhou, K., Xu, C. R., Li, L., Kuang, D., & Ye, F. (2019). Notch1 drives the formation and proliferation of intrahepatic cholangiocarcinoma. Current Medical Science, 39, 929–937.

    Article  PubMed  CAS  Google Scholar 

  38. Hales, E. C., Orr, S. M., Larson Gedman, A., Taub, J. W., & Matherly, L. H. (2013). Notch1 receptor regulates AKT protein activation loop (Thr308) dephosphorylation through modulation of the PP2A phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell acute lymphoblastic leukemia cells. Journal of Biological Chemistry, 288, 22836–22848.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gao, F., Huang, W., Zhang, Y., Tang, S., Zheng, L., Ma, F., Wang, Y., Tang, H., & Li, X. (2015). Hes1 promotes cell proliferation and migration by activating Bmi-1 and PTEN/Akt/GSK3beta pathway in human colon cancer. Oncotarget, 6, 38667–38680.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Arya, D., Sachithanandan, S. P., Ross, C., Palakodeti, D., Li, S., & Krishna, S. (2017). MiRNA182 regulates percentage of myeloid and erythroid cells in chronic myeloid leukemia. Cell Death Disease, 8, e2547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Simutis, F. J., Sanderson, T. P., Pilcher, G. D., & Graziano, M. J. (2018). Nonclinical safety assessment of the gamma-secretase inhibitor avagacestat. Toxicological Sciences, 163, 525–542.

    Article  PubMed  CAS  Google Scholar 

  42. Fabbri, G., Holmes, A. B., Viganotti, M., Scuoppo, C., Belver, L., Herranz, D., Yan, X. J., Kieso, Y., Rossi, D., Gaidano, G., Chiorazzi, N., Ferrando, A. A., & Dalla-Favera, R. (2017). Common nonmutational NOTCH1 activation in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the USA, 114, E2911–E2919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Carra, G., Panuzzo, C., Torti, D., Parvis, G., Crivellaro, S., Familiari, U., Volante, M., Morena, D., Lingua, M. F., Brancaccio, M., Guerrasio, A., Pandolfi, P. P., Saglio, G., Taulli, R., & Morotti, A. (2017). Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: A strategy to overcome TP53 mutated/deleted clones. Oncotarget, 8, 35508–35522.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Palacios, F., Prieto, D., Abreu, C., Ruiz, S., Morande, P., Fernandez-Calero, T., Libisch, G., Landoni, A. I., & Oppezzo, P. (2015). Dissecting chronic lymphocytic leukemia microenvironment signals in patients with unmutated disease: MicroRNA-22 regulates phosphatase and tensin homolog/AKT/FOXO1 pathway in proliferative leukemic cells. Leukaemia & Lymphoma, 56, 1560–1565.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the General items of Health Department of Zhejiang Province (2021KY1078), the Zhejiang Provincial Health Science and Technology Plan in 2022 (Clinical Research Application Project) (2022KY350), and the Wenzhou Science and Technology Bureau (Y20210155).

Author information

Authors and Affiliations

Authors

Contributions

CZ and WZ conceived and designed research. WY performed experiments. BL interpreted results of experiments. SW analyzed data. YC prepared figures. QZ performed the bioinformatics analysis and drafted paper. JG, ZZ, and YH edited and revised the manuscript. All authors read and approved final version of manuscript.

Corresponding author

Correspondence to Cuiping Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12033_2022_476_MOESM1_ESM.jpg

Supplementary file1 (DOCX 1499 KB). Supplementary Figure 1. Bioinformatics prediction of HES1-related signaling pathways in CLL. A, HES1-related signaling pathways predicted by the Wikipathways website. B, Protein–protein interaction network of the top 30 differentially expressed genes in the GSE26725 dataset analyzed on STRING.

12033_2022_476_MOESM2_ESM.jpg

Supplementary file2 (DOCX 429 KB). Supplementary Figure 2. The highest expression of HES1 in the MEC1 cell line and the lowest in the HG3 cell line. A, HES1 mRNA expression in CLL-AAT, MEC2, 183-E95, MEC1, and HG3 cell lines determined by RT-qPCR. B, NOTCH1 and PTEN mRNA expression in MEC1 and HG3 cell lines determined by RT-qPCR. *p < 0.05 vs. CLL-AAT cells. #p < 0.05 vs. MEC1 cell line. The experiment was repeated 3 times independently.

Supplementary file3 (DOCX 20 KB)

Supplementary file4 (XLS 30 KB)

Supplementary file5 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhu, Z., Guan, J. et al. Hes1 Controls Proliferation and Apoptosis in Chronic Lymphoblastic Leukemia Cells by Modulating PTEN Expression. Mol Biotechnol 64, 1419–1430 (2022). https://doi.org/10.1007/s12033-022-00476-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00476-2

Keywords

Navigation