Skip to main content

Advertisement

Log in

Quantitative evaluation of citrullinated fibrinogen for detection of neutrophil extracellular traps

  • ORIGINAL ARTICLE
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Activated neutrophils release neutrophil extracellular traps (NETs) composed of chromatin filaments containing bactericidal proteins and enzymes. This process, known as NETosis, is an innate host defense mechanism. However, NET accumulation can lead to uncontrolled inflammation and organ damage. Therefore, NET detection provides clinically important information for the assessment of inflammatory conditions. We investigated whether quantification of citrullinated fibrinogen (C-Fbg), which is catalyzed by peptidylarginine deiminase (PAD) released during NETosis, can be used to detect NETs. Human neutrophils were stimulated with fibrinogen using phorbol 12-myristate 13-acetate (PMA). The myeloperoxidase (MPO)-DNA complex and C-Fbg concentrations in the culture supernatants were quantified using an enzyme-linked immunosorbent assay. The protein levels of peptidylarginine deiminase 2 and 4 in culture supernatants and mRNA levels in PMA-stimulated neutrophils were also assessed. The levels of the MPO-DNA complex in the supernatants of PMA-stimulated neutrophils increased, indicating NETosis. C-Fbg level also increased, which was suppressed by both NETosis and PAD inhibitors. PAD2 was detected in the culture supernatant; however, PAD4, but not PAD2, mRNA levels increased in PMA-stimulated neutrophils. This study quantitatively demonstrates that fibrinogen is citrullinated by PAD derived from PMA-stimulated neutrophils upon NETosis. Although further studies are needed for clinical application, quantification of C-Fbg in blood may help detect the presence of NETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available by the corresponding author upon reasonable request.

References

  1. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–75.

    Article  CAS  PubMed  Google Scholar 

  2. Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin Rev Allergy Immunol. 2021;61(2):194–211.

    Article  CAS  PubMed  Google Scholar 

  3. Steinberg BE, Grinstein S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Sci STKE. 2007;379:pe11.

    Google Scholar 

  4. Masucci MT, Minopoli M, Del Vecchio S, Carriero MV. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis. Front Immunol. 2020;11:1749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moschonas IC, Tselepis AD. The pathway of neutrophil extracellular traps towards atherosclerosis and thrombosis. Atherosclerosis. 2019;288:9–16.

    Article  CAS  PubMed  Google Scholar 

  6. Bonaventura A, Vecchié A, Abbate A, Montecucco F. Neutrophil extracellular traps and cardiovascular diseases: an update. Cells. 2020;9:1.

    Article  Google Scholar 

  7. Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015;21(7):815–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee KH, Kronbichler A, Park DD, Park Y, Moon H, Kim H, et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review. Autoimmun Rev. 2017;16(11):1160–73.

    Article  CAS  PubMed  Google Scholar 

  9. Yang L, Liu Q, Zhang X, Liu X, Zhou B, Chen J, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature. 2020;583(7814):133–8.

    Article  CAS  PubMed  Google Scholar 

  10. Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A. 2010;107(21):9813–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.

    Article  CAS  PubMed  Google Scholar 

  12. Spengler J, Lugonja B, Ytterberg AJ, Zubarev RA, Creese AJ, Pearson MJ, et al. Release of active peptidyl arginine deiminases by neutrophils can explain production of extracellular citrullinated autoantigens in rheumatoid arthritis synovial fluid. Arthritis Rheumatol. 2015;67(12):3135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Masuda S, Nakazawa D, Shida H, Miyoshi A, Kusunoki Y, Tomaru U, et al. NETosis markers: quest for specific, objective, and quantitative markers. Clin Chim Acta. 2016;459:89–93.

    Article  CAS  PubMed  Google Scholar 

  14. Thålin C, Aguilera K, Hall NW, Marunde MR, Burg JM, Rosell A, et al. Quantification of citrullinated histones: development of an improved assay to reliably quantify nucleosomal H3Cit in human plasma. J Thromb Haemost. 2020;18(10):2732–43.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bronkhorst AJ, Aucamp J, Pretorius PJ. Cell-free DNA: preanalytical variables. Clin Chim Acta. 2015;450:243–53.

    Article  CAS  PubMed  Google Scholar 

  16. Hayden H, Ibrahim N, Klopf J, Zagrapan B, Mauracher LM, Hell L, et al. ELISA detection of MPO-DNA complexes in human plasma is error-prone and yields limited information on neutrophil extracellular traps formed in vivo. PLoS ONE. 2021;16(4):e0250265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood. 2019;133(6):511–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doolittle RF. Fibrinogen and fibrin. Sci Am. 1981;245(6):126–35.

    Article  CAS  PubMed  Google Scholar 

  19. Nakayama-Hamada M, Suzuki A, Kubota K, Takazawa T, Ohsaka M, Kawaida R, et al. Comparison of enzymatic properties between hPADI2 and hPADI4. Biochem Biophys Res Commun. 2005;327(1):192–200.

    Article  CAS  PubMed  Google Scholar 

  20. Darrah E, Rosen A, Giles JT, Andrade F. Peptidylarginine deiminase 2, 3 and 4 have distinct specificities against cellular substrates: novel insights into autoantigen selection in rheumatoid arthritis. Ann Rheum. 2012;71(1):92–8.

  21. Remijsen Q, Kuijpers TW, Wirawan E, Lippens S, Vandenabeele P, Vanden BT. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 2011;18(4):581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mastronardi FG, Wood DD, Mei J, Raijmakers R, Tseveleki V, Dosch HM, et al. Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor–induced peptidylarginine deiminase 4 translocation. J Neurosci. 2006;26(44):11387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019;133(20):2178–85.

    Article  CAS  PubMed  Google Scholar 

  24. Blachère NE, Parveen S, Fak J, Frank MO, Orange DE. Inflammatory but not apoptotic death of granulocytes citrullinates fibrinogen. Arthritis Res Ther. 2015;17:369.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5(178):178ra40.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thieblemont N, Wright HL, Edwards SW, Witko-Sarsat V. Human neutrophils in auto-immunity. Semin Immunol. 2016;28(2):159–73.

    Article  CAS  PubMed  Google Scholar 

  27. Corsiero E, Bombardieri M, Carlotti E, Pratesi F, Robinson W, Migliorini P, et al. Single cell cloning and recombinant monoclonal antibodies generation from RA synovial B cells reveal frequent targeting of citrullinated histones of NETs. Ann Rheum Dis. 2016;75(10):1866–75.

    Article  CAS  PubMed  Google Scholar 

  28. van de Stadt LA, de Koning MH, van de Stadt RJ, Wolbink G, Dijkmans BA, Hamann D, et al. Development of the anti-citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum. 2011;63(11):3226–33.

    Article  PubMed  Google Scholar 

  29. Wu CY, Yang HY, Lai JH. Anti-Citrullinated Protein Antibodies in Patients with Rheumatoid Arthritis: Biological Effects and Mechanisms of Immunopathogenesis. Int J Mol Sci. 2020;21:11.

    Google Scholar 

  30. Muller S, Radic M. Citrullinated autoantigens: from diagnostic markers to pathogenetic mechanisms. Clin Rev Allergy Immunol. 2015;49(2):232–9.

    Article  CAS  PubMed  Google Scholar 

  31. Raijmakers R, van Beers JJ, El-Azzouny M, Visser NF, Božič B, Pruijn GJ, et al. Elevated levels of fibrinogen-derived endogenous citrullinated peptides in synovial fluid of rheumatoid arthritis patients. Arthritis Res Ther. 2012;14(3):R114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Terasawa F, Higuchi Y, Arai S, Okumura N. Measurement of the serum levels of citrullinated fibrinogen and its antibodies in rheumatoid arthritis patients. J Analytic Bio-Sci. 2016;39:263–70 ((In Japanease)).

    CAS  Google Scholar 

  33. Demoruelle MK, Bowers E, Lahey LJ, Sokolove J, Purmalek M, Seto NL, et al. Antibody responses to citrullinated and noncitrullinated antigens in the sputum of subjects with rheumatoid arthritis and subjects at risk for development of rheumatoid arthritis. Arthritis Rheumatol. 2018;70(4):516–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hirota-Kawadobora M, Kani S, Terasawa F, Fujihara N, Yamauchi K, Tozuka M, et al. Functional analysis of recombinant Bbeta15C and Bbeta15A fibrinogens demonstrates that Bbeta15G residue plays important roles in FPB release and in lateral aggregation of protofibrils. J Thromb Haemost. 2005;3(5):983–90.

    Article  CAS  PubMed  Google Scholar 

  35. Okumura N, Haneishi A, Terasawa F. Citrullinated fibrinogen shows defects in FPA and FPB release and fibrin polymerization catalyzed by thrombin. Clin Chim Acta. 2009;401(1–2):119–23.

    Article  CAS  PubMed  Google Scholar 

  36. Fujimura S, Higuchi Y, Usami Y, Yamaura M, Higuchi T, Terasawa F, et al. Changes in serum citrullinated fibrinogen concentration associated with the phase of bacteremia patients. Clin Chim Acta. 2021;512:127–34.

    Article  CAS  PubMed  Google Scholar 

  37. Sil P, Yoo DG, Floyd M, Gingerich A, Rada B. High throughput measurement of extracellular DNA release and quantitative NET formation in human neutrophils in vitro. J Vis Exp. 2016;112:52779.

    Google Scholar 

  38. Yoo DG, Floyd M, Winn M, Moskowitz SM, Rada B. NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase–DNA and neutrophil elastase–DNA complexes. Immunol Lett. 2014;160(2):186–94.

    Article  CAS  PubMed  Google Scholar 

  39. Rada B. Neutrophil extracellular traps. Methods Mol Biol. 1982;2019:517–28.

    Google Scholar 

  40. Kenny EF, Herzig A, Krüger R, Muth A, Mondal S, Thompson PR, et al. Diverse stimuli engage different neutrophil extracellular trap pathways. Elife. 2017;6:e24437.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hawez A, Al-Haidari A, Madhi R, Rahman M, Thorlacius H. MiR-155 Regulates PAD4–dependent formation of neutrophil extracellular traps. Front Immunol. 2019;10:2462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Causey CP, Jones JE, Slack JL, Kamei D, Jones LE, Subramanian V, et al. The development of N-α-(2-carboxyl)benzoyl-N(5)-(2-fluoro-1-iminoethyl)-l-ornithine amide (o-F-amidine) and N-α-(2-carboxyl)benzoyl-N(5)-(2-chloro-1-iminoethyl)-l-ornithine amide (o-Cl-amidine) as second generation protein arginine deiminase (PAD) inhibitors. J Med Chem. 2011;54(19):6919–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lewis HD, Liddle J, Coote JE, Atkinson SJ, Barker MD, Bax BD, et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol. 2015;11(3):189–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Czaikoski PG, Mota JM, Nascimento DC, Sônego F, Castanheira FV, Melo PH, et al. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS ONE. 2016;11(2):e0148142.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhou Y, Chen B, Mittereder N, Chaerkady R, Strain M, An LL, et al. Spontaneous secretion of the citrullination Enzyme PAD2 and cell surface exposure of PAD4 by neutrophils. Front Immunol. 2017;8:1200.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhou Y, An LL, Chaerkady R, Mittereder N, Clarke L, Cohen TS, et al. Evidence for a direct link between PAD4-mediated citrullination and the oxidative burst in human neutrophils. Sci Rep. 2018;8(1):15228.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoppenbrouwers T, Autar ASA, Sultan AR, Abraham TE, van Cappellen WA, Houtsmuller AB, et al. In vitro induction of NETosis: comprehensive live imaging comparison and systematic review. PLoS ONE. 2017;12(5):e0176472.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang Z, Niu R, Zhao L, Wang Y, Liu G. Mechanisms of neutrophil extracellular trap formation and regulation in cancers. Int J Mol Sci. 2023;24(12):10265. 

  50. Huang Y, Ding Y, Wang B, Ji Q, Peng C, Tan Q. Neutrophils extracellular traps and ferroptosis in diabetic wounds. Int Wound J. 2023;20(9):3840–54.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All figures used in this study were originally prepared by the authors and have not been published elsewhere.

Funding

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant No. JP20K07822).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TS, TH, NO, and YH. Writing—original draft: TS, TH, NO, and YH. Investigation: TS, TI, SH, HO, SF, and YH. Data curation—formal analysis: TS, TI, SH, HO, SF, and YH. All the authors have read and approved the final version of this manuscript.

Corresponding author

Correspondence to Yumiko Higuchi.

Ethics declarations

Research involving human participants

This study was conducted in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) and approved by the Ethical Review Board of Shinshu University School of Medicine (approval number 5342).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sue, T., Ichikawa, T., Hattori, S. et al. Quantitative evaluation of citrullinated fibrinogen for detection of neutrophil extracellular traps. Immunol Res (2023). https://doi.org/10.1007/s12026-023-09446-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12026-023-09446-5

Keywords

Navigation