Skip to main content

Advertisement

Log in

Delphinidin diminishes in vitro interferon-γ and interleukin-17 producing cells in patients with psoriatic disease

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The anthocyanidin delphinidin reduces psoriasiform lesions and inflammatory mediators in human cell culture systems. Its role in psoriatic disease has not yet been investigated. We assessed delphinidin’s in vitro immunomodulatory effect on ex vivo stimulated peripheral blood mononuclear cells (PBMCs) from 50 individuals [26 with psoriasis, 10 with psoriatic arthritis (PsA) and 14 healthy controls (HCs)]. Cells were either left untreated or stimulated with PMA plus ionomycin in the presence or absence of delphinidin. Intracellular production of interferon-γ (IFNγ), interleukin-17A (IL-17A), and interleukin-10 (IL-10) was measured flow cytometrically. Delphinidin dose-dependently reduced IFNγ+ T cells from patients and HCs. The mean IFNγ decrease in CD4+ T subpopulations was 42.5 ± 28% for psoriasis patients, 51.8 ± 21.5% for PsA patients and 49 ± 17% for HCs (p < 0.001 for all). Similarly, IFNγ reduction in CD8+ T cells was 34 ± 21.6% for psoriasis patients, 47.1 ± 22.8% for PsA and 44.8 ± 14.3% for HCs (P < 0.001 for all). An inhibitory effect of delphinidin was also noted in IFNγ producing NKs and NKTs from psoriasis individuals. Delphinidin also significantly decreased IL-17+ CD4+ T cells in all tested subjects, with marginal effect on the increase of IL-10-producing T regulatory subsets. In conclusion, delphinidin exerts a profound in vitro anti-inflammatory effect in psoriasis and psoriatic arthritis by inhibiting IFNγ+ innate and adaptive cells and T helper (Th) 17 cells. If this effect is also exerted in vivo, delphinidin may be regarded as a nutraceutical with immunosuppressive potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Raw data are available by the corresponding author upon justified request.

Code availability

Not applicable.

References

  1. Chen Z, Zhang R, Shi W, Li L, Liu H, Liu Z, et al. The Multifunctional Benefits of Naturally Occurring Delphinidin and Its Glycosides. J Agric Food Chem. 2019;67(41):11288–306. https://doi.org/10.1021/acs.jafc.9b05079.

    Article  CAS  PubMed  Google Scholar 

  2. Noda Y, Kaneyuki T, Mori A, Packer L. Antioxidant activities of pomegranate fruit extract and its anthocyanidins: delphinidin, cyanidin, and pelargonidin. J Agric Food Chem. 2002;50(1):166–71. https://doi.org/10.1021/jf0108765.

    Article  CAS  PubMed  Google Scholar 

  3. Lee DY, Park YJ, Song MG, Kim DR, Zada S, Kim DH. Cytoprotective Effects of Delphinidin for Human Chondrocytes against Oxidative Stress through Activation of Autophagy. Antioxidants (Basel). 2020;9(1). doi:https://doi.org/10.3390/antiox9010083.

  4. Kelepouri D, Mavropoulos A, Bogdanos DP, Sakkas LI. The Role of Flavonoids in Inhibiting Th17 Responses in Inflammatory Arthritis. J Immunol Res. 2018;2018:9324357. https://doi.org/10.1155/2018/9324357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang CH, Zhu LL, Ju KF, Liu JL, Li KP. Anti-inflammatory effect of delphinidin on intramedullary spinal pressure in a spinal cord injury rat model. Exp Ther Med. 2017;14(6):5583–8. https://doi.org/10.3892/etm.2017.5206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chamcheu JC, Adhami VM, Esnault S, Sechi M, Siddiqui IA, Satyshur KA, et al. Dual Inhibition of PI3K/Akt and mTOR by the Dietary Antioxidant, Delphinidin, Ameliorates Psoriatic Features In Vitro and in an Imiquimod-Induced Psoriasis-Like Disease in Mice. Antioxid Redox Signal. 2017;26(2):49–69. https://doi.org/10.1089/ars.2016.6769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Im NK, Jang WJ, Jeong CH, Jeong GS. Delphinidin suppresses PMA-induced MMP-9 expression by blocking the NF-kappaB activation through MAPK signaling pathways in MCF-7 human breast carcinoma cells. J Med Food. 2014;17(8):855–61. https://doi.org/10.1089/jmf.2013.3077.

    Article  CAS  PubMed  Google Scholar 

  8. Seong AR, Yoo JY, Choi K, Lee MH, Lee YH, Lee J, et al. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-kappaB acetylation in fibroblast-like synoviocyte MH7A cells. Biochem Biophys Res Commun. 2011;410(3):581–6. https://doi.org/10.1016/j.bbrc.2011.06.029.

    Article  CAS  PubMed  Google Scholar 

  9. Haseeb A, Chen D, Haqqi TM. Delphinidin inhibits IL-1beta-induced activation of NF-kappaB by modulating the phosphorylation of IRAK-1(Ser376) in human articular chondrocytes. Rheumatology (Oxford). 2013;52(6):998–1008. https://doi.org/10.1093/rheumatology/kes363.

    Article  CAS  Google Scholar 

  10. Chamcheu JC, Afaq F, Syed DN, Siddiqui IA, Adhami VM, Khan N, et al. Delphinidin, a dietary antioxidant, induces human epidermal keratinocyte differentiation but not apoptosis: studies in submerged and three-dimensional epidermal equivalent models. Exp Dermatol. 2013;22(5):342–8. https://doi.org/10.1111/exd.12140.

    Article  CAS  PubMed  Google Scholar 

  11. Dayoub O, Le Lay S, Soleti R, Clere N, Hilairet G, Dubois S, et al. Estrogen receptor alpha/HDAC/NFAT axis for delphinidin effects on proliferation and differentiation of T lymphocytes from patients with cardiovascular risks. Sci Rep. 2017;7(1):9378. https://doi.org/10.1038/s41598-017-09933-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sogo T, Terahara N, Hisanaga A, Kumamoto T, Yamashiro T, Wu S, et al. Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin. BioFactors. 2015;41(1):58–65. https://doi.org/10.1002/biof.1201.

    Article  CAS  PubMed  Google Scholar 

  13. Jara E, Hidalgo MA, Hancke JL, Hidalgo AI, Brauchi S, Nunez L, et al. Delphinidin activates NFAT and induces IL-2 production through SOCE in T cells. Cell Biochem Biophys. 2014;68(3):497–509. https://doi.org/10.1007/s12013-013-9728-z.

    Article  CAS  PubMed  Google Scholar 

  14. Griffiths CEM, Armstrong AW, Gudjonsson JE, Barker J. Psoriasis Lancet. 2021;397(10281):1301–15. https://doi.org/10.1016/S0140-6736(20)32549-6.

    Article  CAS  PubMed  Google Scholar 

  15. Rendon A, Schakel K. Psoriasis Pathogenesis and Treatment. Int J Mol Sci. 2019;20(6). doi:https://doi.org/10.3390/ijms20061475.

  16. Kryczek I, Bruce AT, Gudjonsson JE, Johnston A, Aphale A, Vatan L, et al. Induction of IL-17+ T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J Immunol. 2008;181(7):4733–41. https://doi.org/10.4049/jimmunol.181.7.4733.

    Article  CAS  PubMed  Google Scholar 

  17. Chamcheu JC, Pal HC, Siddiqui IA, Adhami VM, Ayehunie S, Boylan BT, et al. Prodifferentiation, anti-inflammatory and antiproliferative effects of delphinidin, a dietary anthocyanidin, in a full-thickness three-dimensional reconstituted human skin model of psoriasis. Skin Pharmacol Physiol. 2015;28(4):177–88. https://doi.org/10.1159/000368445.

    Article  CAS  PubMed  Google Scholar 

  18. Pal HC, Chamcheu JC, Adhami VM, Wood GS, Elmets CA, Mukhtar H, et al. Topical application of delphinidin reduces psoriasiform lesions in the flaky skin mouse model by inducing epidermal differentiation and inhibiting inflammation. Br J Dermatol. 2015;172(2):354–64. https://doi.org/10.1111/bjd.13513.

    Article  CAS  PubMed  Google Scholar 

  19. Hyun KH, Gil KC, Kim SG, Park SY, Hwang KW. Delphinidin Chloride and Its Hydrolytic Metabolite Gallic Acid Promote Differentiation of Regulatory T cells and Have an Anti-inflammatory Effect on the Allograft Model. J Food Sci. 2019;84(4):920–30. https://doi.org/10.1111/1750-3841.14490.

    Article  CAS  PubMed  Google Scholar 

  20. Chen F, Ye X, Yang Y, Teng T, Li X, Xu S, et al. Proanthocyanidins from the bark of Metasequoia glyptostroboides ameliorate allergic contact dermatitis through directly inhibiting T cells activation and Th1/Th17 responses. Phytomedicine. 2015;22(4):510–5. https://doi.org/10.1016/j.phymed.2015.03.006.

    Article  CAS  PubMed  Google Scholar 

  21. Lai R, Xian D, Xiong X, Yang L, Song J, Zhong J. Proanthocyanidins: novel treatment for psoriasis that reduces oxidative stress and modulates Th17 and Treg cells. Redox Rep. 2018;23(1):130–5. https://doi.org/10.1080/13510002.2018.1462027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu C, Zhu L, Fukuda K, Ouyang S, Chen X, Wang C et al. The flavonoid cyanidin blocks binding of the cytokine interleukin-17A to the IL-17RA subunit to alleviate inflammation in vivo. Sci Signal. 2017;10(467). doi:https://doi.org/10.1126/scisignal.aaf8823.

  23. Langley RG, Ellis CN. Evaluating psoriasis with Psoriasis Area and Severity Index, Psoriasis Global Assessment, and Lattice System Physician’s Global Assessment. J Am Acad Dermatol. 2004;51(4):563–9. https://doi.org/10.1016/j.jaad.2004.04.012.

    Article  PubMed  Google Scholar 

  24. Tucker LJ, Coates LC, Helliwell PS. Assessing Disease Activity in Psoriatic Arthritis: A Literature Review. Rheumatol Ther. 2019;6(1):23–32. https://doi.org/10.1007/s40744-018-0132-4.

    Article  PubMed  Google Scholar 

  25. Riedhammer C, Halbritter D, Weissert R. Peripheral Blood Mononuclear Cells: Isolation, Freezing, Thawing, and Culture. Methods Mol Biol. 2016;1304:53–61. https://doi.org/10.1007/7651_2014_99.

    Article  PubMed  Google Scholar 

  26. Perdomo-Celis F, Salgado DM, Castaneda DM, Narvaez CF. Viability and Functionality of Cryopreserved Peripheral Blood Mononuclear Cells in Pediatric Dengue. Clin Vaccine Immunol. 2016;23(5):417–26. https://doi.org/10.1128/CVI.00038-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsumoto H, Inaba H, Kishi M, Tominaga S, Hirayama M, Tsuda T. Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. J Agric Food Chem. 2001;49(3):1546–51. https://doi.org/10.1021/jf001246q.

    Article  CAS  PubMed  Google Scholar 

  28. Frank T, Netzel M, Strass G, Bitsch R, Bitsch I. Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. Can J Physiol Pharmacol. 2003;81(5):423–35. https://doi.org/10.1139/y03-038.

    Article  CAS  PubMed  Google Scholar 

  29. Kuntz S, Rudloff S, Asseburg H, Borsch C, Frohling B, Unger F, et al. Uptake and bioavailability of anthocyanins and phenolic acids from grape/blueberry juice and smoothie in vitro and in vivo. Br J Nutr. 2015;113(7):1044–55. https://doi.org/10.1017/S0007114515000161.

    Article  CAS  PubMed  Google Scholar 

  30. Goszcz K, Deakin SJ, Duthie GG, Stewart D, Megson IL. Bioavailable Concentrations of Delphinidin and Its Metabolite, Gallic Acid, Induce Antioxidant Protection Associated with Increased Intracellular Glutathione in Cultured Endothelial Cells. Oxid Med Cell Longev. 2017;2017:9260701. https://doi.org/10.1155/2017/9260701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schon C, Wacker R, Micka A, Steudle J, Lang S, Bonnlander B. Bioavailability Study of Maqui Berry Extract in Healthy Subjects. Nutrients. 2018;10(11). doi:https://doi.org/10.3390/nu10111720.

  32. Skyvalidas D, Mavropoulos A, Tsiogkas S, Dardiotis E, Liaskos C, Mamuris Z, et al. Curcumin mediates attenuation of pro-inflammatory interferon gamma and interleukin 17 cytokine responses in psoriatic disease, strengthening its role as a dietary immunosuppressant. Nutr Res. 2020;75:95–108. https://doi.org/10.1016/j.nutres.2020.01.005.

    Article  CAS  PubMed  Google Scholar 

  33. Mavropoulos A, Zafiriou E, Simopoulou T, Brotis AG, Liaskos C, Roussaki-Schulze A, et al. Apremilast increases IL-10-producing regulatory B cells and decreases proinflammatory T cells and innate cells in psoriatic arthritis and psoriasis. Rheumatology (Oxford). 2019;58(12):2240–50. https://doi.org/10.1093/rheumatology/kez204.

    Article  CAS  Google Scholar 

  34. Baran J, Kowalczyk D, Ozog M, Zembala M. Three-color flow cytometry detection of intracellular cytokines in peripheral blood mononuclear cells: comparative analysis of phorbol myristate acetate-ionomycin and phytohemagglutinin stimulation. Clin Diagn Lab Immunol. 2001;8(2):303–13. https://doi.org/10.1128/CDLI.8.2.303-313.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mavropoulos A, Varna A, Zafiriou E, Liaskos C, Alexiou I, Roussaki-Schulze A, et al. IL-10 producing Bregs are impaired in psoriatic arthritis and psoriasis and inversely correlate with IL-17- and IFNgamma-producing T cells. Clin Immunol. 2017;184:33–41. https://doi.org/10.1016/j.clim.2017.04.010.

    Article  CAS  PubMed  Google Scholar 

  36. Hsu P, Santner-Nanan B, Hu M, Skarratt K, Lee CH, Stormon M, et al. IL-10 Potentiates Differentiation of Human Induced Regulatory T Cells via STAT3 and Foxo1. J Immunol. 2015;195(8):3665–74. https://doi.org/10.4049/jimmunol.1402898.

    Article  CAS  PubMed  Google Scholar 

  37. Martin S, Giannone G, Andriantsitohaina R, Martinez MC. Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. Br J Pharmacol. 2003;139(6):1095–102. https://doi.org/10.1038/sj.bjp.0705347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alvarado J, Schoenlau F, Leschot A, Salgad AM, Vigil PP. Delphinol(R) standardized maqui berry extract significantly lowers blood glucose and improves blood lipid profile in prediabetic individuals in three-month clinical trial. Panminerva Med. 2016;58(3 Suppl 1):1–6.

    PubMed  Google Scholar 

  39. Hwang MK, Kang NJ, Heo YS, Lee KW, Lee HJ. Fyn kinase is a direct molecular target of delphinidin for the inhibition of cyclooxygenase-2 expression induced by tumor necrosis factor-alpha. Biochem Pharmacol. 2009;77(7):1213–22. https://doi.org/10.1016/j.bcp.2008.12.021.

    Article  CAS  PubMed  Google Scholar 

  40. Chalopin M, Tesse A, Martinez MC, Rognan D, Arnal JF, Andriantsitohaina R. Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium. PLoS ONE. 2010;5(1): e8554. https://doi.org/10.1371/journal.pone.0008554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lelu K, Laffont S, Delpy L, Paulet PE, Perinat T, Tschanz SA, et al. Estrogen receptor alpha signaling in T lymphocytes is required for estradiol-mediated inhibition of Th1 and Th17 cell differentiation and protection against experimental autoimmune encephalomyelitis. J Immunol. 2011;187(5):2386–93. https://doi.org/10.4049/jimmunol.1101578.

    Article  CAS  PubMed  Google Scholar 

  42. Kwon JY, Lee KW, Kim JE, Jung SK, Kang NJ, Hwang MK, et al. Delphinidin suppresses ultraviolet B-induced cyclooxygenases-2 expression through inhibition of MAPKK4 and PI-3 kinase. Carcinogenesis. 2009;30(11):1932–40. https://doi.org/10.1093/carcin/bgp216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Talavera S, Felgines C, Texier O, Besson C, Manach C, Lamaison JL, et al. Anthocyanins are efficiently absorbed from the small intestine in rats. J Nutr. 2004;134(9):2275–9. https://doi.org/10.1093/jn/134.9.2275.

    Article  CAS  PubMed  Google Scholar 

  44. Sakkas LI, Bogdanos DP. Are psoriasis and psoriatic arthritis the same disease? The IL-23/IL-17 axis data. Autoimmun Rev. 2017;16(1):10–5. https://doi.org/10.1016/j.autrev.2016.09.015.

    Article  CAS  PubMed  Google Scholar 

  45. Doodes PD, Cao Y, Hamel KM, Wang Y, Rodeghero RL, Mikecz K, et al. IFN-gamma regulates the requirement for IL-17 in proteoglycan-induced arthritis. J Immunol. 2010;184(3):1552–9. https://doi.org/10.4049/jimmunol.0902907.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof Eirini Rigopoulou for critical reading of the manuscript and those participating in the study, patients as well as healthy controls.

Funding

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Development of a predictive response algorithm in patients with psoriasis and psoriatic arthritis based on clinical, serological, immunological, and genetic biomarkers” (MIS 5048946).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios P. Bogdanos.

Ethics declarations

Ethics approval

This study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Review Board/Ethics committee of the university General Hospital of Larissa, University of Thessaly ECA #19/14–11-2019.

Informed consent statement

Informed consent was obtained from all subjects involved in the study.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12026_2021_9251_MOESM1_ESM.pdf

Supplementary file1. Representative gating strategy of lymphocytes in untreated, PMA/ionomycin and PMA/ionomycin/delphinidin treated cells. Cell viability was maintained and equal percentages of lymphocytes were gated in all experimental conditions. (PDF 485 KB)

12026_2021_9251_MOESM2_ESM.pdf

Supplementary file2. Representative gating strategy in untreated, PMA/ionomycin and PMA/ionomycin/delphinidin treated cells. Individual cell subsets were sub-gated according to the expression of CD3, CD4, CD8 and CD56 surface markers. All surface epitopes were sufficiently maintained and detected following cell activation with PMA/ionomycin in the presence of delphinidin. (PDF 288 KB)

12026_2021_9251_MOESM3_ESM.pdf

Supplementary file3. Representative flow cytometric analysis of IL-10 producing CD4+ T cells and CD4+CD25hi Tregs following delphinidin pre-treatment and LPS activation of PBMCs from a psoriasis patient naïve to biological therapy. (PDF 267 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiogkas, S.G., Mavropoulos, Α., Skyvalidas, D.N. et al. Delphinidin diminishes in vitro interferon-γ and interleukin-17 producing cells in patients with psoriatic disease. Immunol Res 70, 161–173 (2022). https://doi.org/10.1007/s12026-021-09251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-021-09251-y

Keywords

Navigation