Skip to main content

Advertisement

Log in

1,25(OH)2D3 inhibits pancreatic stellate cells activation and promotes insulin secretion in T2DM

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the effect and mechanism of 1,25(OH)2D3 on pancreatic stellate cells (PSCs) in type 2 diabetes mellitus (T2DM).

Methods

A mouse model of T2DM was successfully established by high-fat diet (HFD) /streptozotocin (STZ) and administered 1,25(OH)2D3 for 3 weeks. Fasting blood glucose (FBG), glycated hemoglobin A1c (GHbA1c), insulin (INS) and glucose tolerance were measured. Histopathology changes and fibrosis of pancreas were examined by hematoxylin and eosin staining and Masson staining. Mouse PSCs were extracted, co-cultured with mouse insulinoma β cells (MIN6 cells) and treated with 1,25(OH)2D3. ELISA detection of inflammatory factor expression. Tissue reactive oxygen species (ROS) levels were also measured. Immunofluorescence or Western blotting were used to measure fibrosis and inflammation-related protein expression.

Results

PSCs activation and islets fibrosis in T2DM mice. Elevated blood glucose was accompanied by significant increases in serum inflammatory cytokines and tissue ROS levels. 1,25(OH)2D3 attenuated islet fibrosis by reducing hyperglycemia, ROS levels, and inflammatory factors expression. Additionally, the co-culture system confirmed that 1,25(OH)2D3 inhibited PSCs activation, reduced the secretion of pro-inflammatory cytokines, down-regulated the expression of fibrosis and inflammation-related proteins, and promoted insulin secretion.

Conclusion

Our findings identify that PSCs activation contributes to islet fibrosis and β-cell dysfunction. 1,25(OH)2D3 exerts beneficial effects on T2DM potentially by inhibiting PSCs activation and inflammatory response, highlighting promising control strategies of T2DM by vitamin D.

Graphical Abstract

Fig. 7 Molecular mechanism of 1,25(OH)2D3 in β cell damage following PSCs activation in T2DM mice.

Highlights

  • PSCs activation leads to islet fibrosis in T2DM mice.

  • TGF- β, IL-1 β, TNF-α, ROS induce PSCs activation, thereby inhibiting MIN6 cell proliferation and function.

  • 1,25(OH)2D3 inhibits PSCs activation by downregulating the expression of factors such as TGF-β, protecting β cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. T.I.A. Sorensen, S. Metz, T.O. Kilpelainen, Do gene-environment interactions have implications for the precision prevention of type 2 diabetes? Diabetologia 65, 1804–1813 (2022). https://doi.org/10.1007/s00125-021-05639-5

    Article  PubMed  Google Scholar 

  2. N.J. Pillon, R.J.F. Loos, S.M. Marshall, J.R. Zierath, Metabolic consequences of obesity and type 2 diabetes: Balancing genes and environment for personalized care. Cell 184, 1530–1544 (2021). https://doi.org/10.1016/j.cell.2021.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M.A. Nauck, J. Wefers, J.J. Meier, Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol. 9, 525–544 (2021). https://doi.org/10.1016/S2213-8587(21)00113-3

    Article  CAS  PubMed  Google Scholar 

  4. Y. Wu, C. Zhang, K. Jiang, J. Werner, A.V. Bazhin, J.G. D’Haese, The Role of Stellate Cells in Pancreatic Ductal Adenocarcinoma: Targeting Perspectives. Front. Oncol. 10, 621937 (2020). https://doi.org/10.3389/fonc.2020.621937

    Article  PubMed  Google Scholar 

  5. Y. Wu, C. Zhang, M. Guo, W. Hu, Y. Qiu, M. Li, D. Xu, P. Wu, J. Sun, R. Shi, Z. Zhang, K. Jiang, Targeting pancreatic stellate cells in chronic pancreatitis: Focus on therapeutic drugs and natural compounds. Front. Pharmacol. 13, 1042651 (2022). https://doi.org/10.3389/fphar.2022.1042651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. Allam, A.R. Thomsen, M. Gothwal, D. Saha, J. Maurer, T.B. Brunner, Pancreatic stellate cells in pancreatic cancer: In focus. Pancreatology 17, 514–522 (2017). https://doi.org/10.1016/j.pan.2017.05.390

    Article  CAS  PubMed  Google Scholar 

  7. R.R. Bynigeri, A. Jakkampudi, R. Jangala, C. Subramanyam, M. Sasikala, G.V. Rao, D.N. Reddy, R. Talukdar, Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J. Gastroenterol. 23, 382–405 (2017). https://doi.org/10.3748/wjg.v23.i3.382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. E. Lee, G.R. Ryu, S.H. Ko, Y.B. Ahn, K.H. Song, A role of pancreatic stellate cells in islet fibrosis and beta-cell dysfunction in type 2 diabetes mellitus. Biochem. Biophys. Res. Commun. 485, 328–334 (2017). https://doi.org/10.1016/j.bbrc.2017.02.082

    Article  CAS  PubMed  Google Scholar 

  9. P. Hrabak, M. Kalousova, T. Krechler, T. Zima, Pancreatic stellate cells - rising stars in pancreatic pathologies. Physiol. Res. 70, S597–S616 (2021). https://doi.org/10.33549/physiolres.934783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Y. Yang, J.W. Kim, H.S. Park, E.Y. Lee, K.H. Yoon, Pancreatic stellate cells in the islets as a novel target to preserve the pancreatic beta-cell mass and function. J. Diabetes Investig. 11, 268–280 (2020). https://doi.org/10.1111/jdi.13202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. Hanel, C. Carlberg, Vitamin D and evolution: Pharmacologic implications. Biochem. Pharmacol. 173, 113595 (2020). https://doi.org/10.1016/j.bcp.2019.07.024

    Article  CAS  PubMed  Google Scholar 

  12. M.E. de Albuquerque Borborema, D.C. Oliveira, J. de Azevedo Silva, Down regulation of VDR gene expression in metabolic syndrome and atherosclerosis’ patients: Cause or consequence? Gene 771, 145341 (2021). https://doi.org/10.1016/j.gene.2020.145341

    Article  CAS  PubMed  Google Scholar 

  13. M. Zheng, R. Gao, Vitamin D: A Potential Star for Treating Chronic Pancreatitis. Front. Pharmacol. 13, 902639 (2022). https://doi.org/10.3389/fphar.2022.902639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. A. Sacerdote, P. Dave, V. Lokshin, G. Bahtiyar, Type 2 Diabetes Mellitus, Insulin Resistance, and Vitamin D. Curr. Diab. Rep. 19, 101 (2019). https://doi.org/10.1007/s11892-019-1201-y

    Article  PubMed  Google Scholar 

  15. H. Lim, H. Lee, Y. Lim, Effect of vitamin D(3) supplementation on hepatic lipid dysregulation associated with autophagy regulatory AMPK/Akt-mTOR signaling in type 2 diabetic mice. Exp. Biol. Med. (Maywood) 246, 1139–1147 (2021). https://doi.org/10.1177/1535370220987524

    Article  CAS  PubMed  Google Scholar 

  16. H.L. Zhao, F.M. Lai, P.C. Tong, D.R. Zhong, D. Yang, B. Tomlinson, J.C. Chan, Prevalence and clinicopathological characteristics of islet amyloid in Chinese patients with type 2 diabetes. Diabetes 52, 2759–2766 (2003). https://doi.org/10.2337/diabetes.52.11.2759

    Article  CAS  PubMed  Google Scholar 

  17. H. Lee, Y. Lim, Tocotrienol-rich fraction supplementation reduces hyperglycemia-induced skeletal muscle damage through regulation of insulin signaling and oxidative stress in type 2 diabetic mice. J. Nutr. Biochem. 57, 77–85 (2018). https://doi.org/10.1016/j.jnutbio.2018.03.016

    Article  CAS  PubMed  Google Scholar 

  18. W. Luo, Y. Jiang, Z. Yi, Y. Wu, P. Gong, Y. Xiong, 1ɑ,25-Dihydroxyvitamin D(3) promotes osteogenesis by down-regulating FGF23 in diabetic mice. J. Cell Mol. Med. 25, 4148–4156 (2021). https://doi.org/10.1111/jcmm.16384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S.A. Blaine, K.C. Ray, K.M. Branch, P.S. Robinson, R.H. Whitehead, A.L. Means, Epidermal growth factor receptor regulates pancreatic fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G434–441 (2009). https://doi.org/10.1152/ajpgi.00152.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. I. Tuleta, N.G. Frangogiannis, Diabetic fibrosis. Biochim. Biophys. Acta. Mol. Basis Dis. 1867, 166044 (2021). https://doi.org/10.1016/j.bbadis.2020.166044

    Article  CAS  PubMed  Google Scholar 

  21. A. Rojas, C. Añazco, I. González, P. Araya, n: a missing piece in the puzzle of the association between diabetes and cancer. Carcinogenesis 39, 515–521 (2018). https://doi.org/10.1093/carcin/bgy012

    Article  CAS  PubMed  Google Scholar 

  22. Y. Jin, K. Ratnam, P.Y. Chuang, Y. Fan, Y. Zhong, Y. Dai, A.R. Mazloom, E.Y. Chen, V. D’Agati, H. Xiong, M.J. Ross, N. Chen, A. Ma’ayan, J.C. He, A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nat. Med. 18, 580–588 (2012). https://doi.org/10.1038/nm.2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M.S. Shah, M. Brownlee, Molecular and Cellular Mechanisms of Cardiovascular Disorders in Diabetes. Circ. Res. 118, 1808–1829 (2016). https://doi.org/10.1161/CIRCRESAHA.116.306923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y. An, H. Zhang, C. Wang, F. Jiao, H. Xu, X. Wang, W. Luan, F. Ma, L. Ni, X. Tang, M. Liu, W. Guo, L. Yu, Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. Faseb J. 33, 12515–12527 (2019). https://doi.org/10.1096/fj.201802805RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. L. Mateus Gonçalves, E. Pereira, J.P. Werneck de Castro, E. Bernal-Mizrachi, J. Almaça, Islet pericytes convert into profibrotic myofibroblasts in a mouse model of islet vascular fibrosis. Diabetologia 63, 1564–1575 (2020). https://doi.org/10.1007/s00125-020-05168-7

    Article  CAS  PubMed  Google Scholar 

  26. L. Tian, Z.P. Lu, B.B. Cai, L.T. Zhao, D. Qian, Q.C. Xu, P.F. Wu, Y. Zhu, J.J. Zhang, Q. Du, Y. Miao, K.R. Jiang, Activation of pancreatic stellate cells involves an EMT-like process. Int. J. Oncol. 48, 783–792 (2016). https://doi.org/10.3892/ijo.2015.3282

    Article  CAS  PubMed  Google Scholar 

  27. H.J. Maier, U. Schmidt-Strassburger, M.A. Huber, E.M. Wiedemann, H. Beug, T. Wirth, NF-kappaB promotes epithelial-mesenchymal transition, migration and invasion of pancreatic carcinoma cells. Cancer Lett. 295, 214–228 (2010). https://doi.org/10.1016/j.canlet.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  28. B. Sutariya, D. Jhonsa, M.N. Saraf, TGF-β: the connecting link between nephropathy and fibrosis. Immunopharmacol. Immunotoxicol. 38, 39–49 (2016). https://doi.org/10.3109/08923973.2015.1127382

    Article  CAS  PubMed  Google Scholar 

  29. J. Zhang, J. Bai, Q. Zhou, Y. Hu, Q. Wang, L. Yang, H. Chen, H. An, C. Zhou, Y. Wang, X. Chen, M. Li, Glutathione prevents high glucose-induced pancreatic fibrosis by suppressing pancreatic stellate cell activation via the ROS/TGFβ/SMAD pathway. Cell Death Dis. 13, 440 (2022). https://doi.org/10.1038/s41419-022-04894-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. X.F. Xu, F. Liu, J.Q. Xin, J.W. Fan, N. Wu, L.J. Zhu, L.F. Duan, Y.Y. Li, H. Zhang, Respective roles of the mitogen-activated protein kinase (MAPK) family members in pancreatic stellate cell activation induced by transforming growth factor-β1 (TGF-β1). Biochem. Biophys. Res. Commun. 501, 365–373 (2018). https://doi.org/10.1016/j.bbrc.2018.04.176

    Article  CAS  PubMed  Google Scholar 

  31. S Ding, S. Xu, Y. Ma, G. Liu, H. Jang, J. Fang, Modulatory Mechanisms of the NLRP3 Inflammasomes in Diabetes. Biomolecules 9 (2019). https://doi.org/10.3390/biom9120850.

  32. D. He, Y. Wang, R. Liu, A. He, S. Li, X. Fu, Z. Zhou, 1,25(OH)(2)D(3) Activates Autophagy to Protect against Oxidative Damage of INS-1 Pancreatic Beta Cells. Biol. Pharm. Bull. 42, 561–567 (2019). https://doi.org/10.1248/bpb.b18-00395

    Article  CAS  PubMed  Google Scholar 

  33. S. Jiang, H. Zhang, X. Li, B. Yi, L. Huang, Z. Hu, A. Li, J. Du, Y. Li, W. Zhang, Vitamin D/VDR attenuate cisplatin-induced AKI by down-regulating NLRP3/Caspase-1/GSDMD pyroptosis pathway. J. Steroid. Biochem. Mol. Biol. 206, 105789 (2021). https://doi.org/10.1016/j.jsbmb.2020.105789

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding from the National Natural Science Foundation of China (grant numbers 31970505) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Z.Z.; Data curation, X.W.; Formal analysis, X.W.; A.W.; Funding acquisition, Z.Z.; Investigation, L.Z., X.W. and Y.Z.; Methodology, X.W. and Z.Z.; Project administration, Z.Z.; Resources, X.W., Z.Z., and A.W.; Software, X.W.; Supervision, Z.Z.; Validation, L.Z., X.W., A.W., and Y.Z.; Visualization, L.Z., X.W. and A.W.; Writing – original draft, L.Z., X.W., Y.H., M.X., and Y.Z.; Writing – review & editing, L.Z., Y.H., M.X. A.W., and Z.Z. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhengyu Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All of the experimental procedures involving animals were conducted in accordance with the Institutional Animal Care guidelines of Soochow University, China and approved by the Ethics Committee of Soochow University, Jiangsu Province, China.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhang, L., Wei, X. et al. 1,25(OH)2D3 inhibits pancreatic stellate cells activation and promotes insulin secretion in T2DM. Endocrine (2024). https://doi.org/10.1007/s12020-024-03833-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-024-03833-0

Keywords

Navigation