Skip to main content

Advertisement

Log in

Phenylethanoid Glycosides of Cistanche Improve Learning and Memory Disorders in APP/PS1 Mice by Regulating Glial Cell Activation and Inhibiting TLR4/NF-κB Signaling Pathway

  • Research
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Phenylethanoid Glycosides of Cistanche (PhGs) have a certain curative effect on AD animal model, Echinacea (ECH) and verbascoside (ACT), as the quality control standard of Cistanche deserticola Y. C. Ma and the main representative compounds of PhGs have been proved to have neuroprotective effects, but the specific mechanism needs to be further explored. This study explored the mechanisms of PhGs, ECH, and ACT in the treatment of Alzheimer's disease (AD) from the perspectives of glial cell activation, TLR4/NF-κB signaling pathway, and synaptic protein expression. We used APP/PS1 mice as AD models. After treatment with PhGs, ECH, and ACT, the learning and memory abilities of APP/PS1 mice were enhanced, and the pathological changes in brain tissue were alleviated. The expression of pro-inflammatory M1 microglia markers (CD11b, iNOS, and IL-1β) was decreased; the expression of M2 microglia markers (Arg-1 and TGF-β1) was increased, which promoted the transformation of microglia from M1 pro-inflammatory phenotype to M2 anti-inflammatory phenotype. In addition, PhGs, ECH, and ACT could down-regulate the expression of proteins related to the TLR4/NF-κB signaling pathway and up-regulate the expression of synaptic proteins. The results indicated that PhGs, ECH, and ACT played a neuroprotective role by regulating the activation of glial cells and inhibiting the TLR4/NF-κB inflammatory pathway, and improving the expression levels of synapse-related proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmad, M. H., Fatima, M., & Mondal, A. C. (2019). Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: Rational insights for the therapeutic approaches. Journal of Clinical Neuroscience, 59, 6–11.

    Article  CAS  PubMed  Google Scholar 

  • Baghallab, I., Reyes-Ruiz, J. M., Abulnaja, K., Huwait, E., & Glabe, C. (2018). Epitomic characterization of the specificity of the anti-amyloid Aβ monoclonal antibodies 6E10 and 4G8. Journal of Alzheimer’s Disease: JAD, 66, 1235–1244.

    Article  CAS  PubMed  Google Scholar 

  • Bagyinszky, E., Giau, V. V., Shim, K., Suk, K., An, S. S. A., & Kim, S. (2017). Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. Journal of the Neurological Sciences, 376, 242–254.

    Article  CAS  PubMed  Google Scholar 

  • Beach, T. G., Walker, R., & McGeer, E. G. (1989). Patterns of gliosis in Alzheimer’s disease and aging cerebrum. Glia, 2, 420–436.

    Article  CAS  PubMed  Google Scholar 

  • Brier, M. R., Gordon, B., Friedrichsen, K., McCarthy, J., Stern, A., Christensen, J., Owen, C., Aldea, P., Su, Y., Hassenstab, J., Cairns, N. J., Holtzman, D. M., Fagan, A. M., Morris, J. C., Benzinger, T. L., & Ances, B. M. (2016). Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. Science Translational Medicine, 8, 338ra366.

    Article  Google Scholar 

  • Colton, C. A. (2009). Heterogeneity of microglial activation in the innate immune response in the brain. Journal of Neuroimmune Pharmacology, 4, 399–418.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuthbert, P. C., Stanford, L. E., Coba, M. P., Ainge, J. A., Fink, A. E., Opazo, P., Delgado, J. Y., Komiyama, N. H., O’Dell, T. J., & Grant, S. G. (2007). Synapse-associated protein 102/dlgh3 couples the NMDA receptor to specific plasticity pathways and learning strategies. The Journal of Neuroscience, 27, 2673–2682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dansokho, C., & Heneka, M. T. (2018). Neuroinflammatory responses in Alzheimer’s disease. Journal of Neural Transmission (vienna, Austria: 1996), 125, 771–779.

    Article  CAS  PubMed  Google Scholar 

  • Elgersma, Y., Sweatt, J. D., & Giese, K. P. (2004). Mouse genetic approaches to investigating calcium/calmodulin-dependent protein kinase II function in plasticity and cognition. The Journal of Neuroscience, 24, 8410–8415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giese, K. P., Fedorov, N. B., Filipkowski, R. K., & Silva, A. J. (1998). Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science (new York, N.y.), 279, 870–873.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Q., Wang, C., Xue, X., Hu, B., & Bao, H. (2021). SOCS1 mediates berberine-induced amelioration of microglial activated states in N9 microglia exposed to β amyloid. BioMed Research International, 2021, 9311855.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi, M. K., Tang, C., Verpelli, C., Narayanan, R., Stearns, M. H., Xu, R. M., Li, H., Sala, C., & Hayashi, Y. (2009). The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell, 137, 159–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, G. L., Luo, Z., Shen, T. T., Wang, Z. Z., Li, P., Luo, X., Yang, J., Tan, Y. L., Wang, Y., Gao, P., & Yang, X. S. (2019). TREM2 regulates heat acclimation-induced microglial M2 polarization involving the PI3K-Akt pathway following EMF exposure. Frontiers in Cellular Neuroscience, 13, 591.

    Article  PubMed  Google Scholar 

  • Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., et al. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet. Neurology, 14, 388–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, N. Q., Jin, H., Zhou, S. Y., Shi, J. S., & Jin, F. (2017). TLR4 is a link between diabetes and Alzheimer’s disease. Behavioural Brain Research, 316, 234–244.

    Article  CAS  PubMed  Google Scholar 

  • Jansone, B., Kadish, I., van Groen, T., Beitnere, U., Plotniece, A., Pajuste, K., & Klusa, V. (2016). Memory-enhancing and brain protein expression-stimulating effects of novel calcium antagonist in Alzheimer’s disease transgenic female mice. Pharmacological Research, 113, 781–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, J., Peng, J., Li, Z., Wu, Y., Wu, Q., Tu, W., & Wu, M. (2016). Cannabinoid CB2 receptor mediates nicotine-induced anti-inflammation in N9 microglial cells exposed to β amyloid via protein kinase C. Mediators of Inflammation, 2016, 4854378.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia, J. X., Yan, X. S., Cai, Z. P., Song, W., Huo, D. S., Zhang, B. F., Wang, H., & Yang, Z. J. (2017). The effects of phenylethanoid glycosides, derived from Herba cistanche, on cognitive deficits and antioxidant activities in male SAMP8 mice. Journal of Toxicology and Environmental Health. Part A, 80, 1180–1186.

    Article  CAS  PubMed  Google Scholar 

  • Jia, J. X., Yan, X. S., Song, W., Fang, X., Cai, Z. P., Huo, D. S., Wang, H., & Yang, Z. J. (2018). The protective mechanism underlying phenylethanoid glycosides (PHG) actions on synaptic plasticity in rat Alzheimer’s disease model induced by beta amyloid 1–42. Journal of Toxicology and Environmental Health. Part A, 81, 1098–1107.

    Article  CAS  PubMed  Google Scholar 

  • Jin, X., Liu, M. Y., Zhang, D. F., Zhong, X., Du, K., Qian, P., Yao, W. F., Gao, H., & Wei, M. J. (2019). Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway. CNS Neuroscience & Therapeutics, 25, 575–590.

    Article  CAS  Google Scholar 

  • Li, L., Wu, X. H., Zhao, X. J., Xu, L., Pan, C. L., & Zhang, Z. Y. (2020). Zerumbone ameliorates behavioral impairments and neuropathology in transgenic APP/PS1 mice by suppressing MAPK signaling. Journal of Neuroinflammation, 17, 61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindberg, D. J., Wenger, A., Sundin, E., Wesén, E., Westerlund, F., & Esbjörner, E. K. (2017). Binding of thioflavin-T to amyloid fibrils leads to fluorescence self-quenching and fibril compaction. Biochemistry, 56, 2170–2174.

    Article  CAS  PubMed  Google Scholar 

  • Linnemann, C., & Lang, U. E. (2020). Pathways connecting late-life depression and dementia. Frontiers in Pharmacology, 11, 279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisman, J., Schulman, H., & Cline, H. (2002). The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Reviews. Neuroscience, 3, 175–190.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., Liu, Y., Li, N., Huang, R., Zheng, X., Huang, L., Hou, S., & Yuan, Q. (2020). Multiple inflammatory profiles of microglia and altered neuroimages in APP/PS1 transgenic AD mice. Brain Research Bulletin, 156, 86–104.

    Article  CAS  PubMed  Google Scholar 

  • Mao, S. S., Hua, R., Zhao, X. P., Qin, X., Sun, Z. Q., Zhang, Y., Wu, Y. Q., Jia, M. X., Cao, J. L., & Zhang, Y. M. (2012). Exogenous administration of PACAP alleviates traumatic brain injury in rats through a mechanism involving the TLR4/MyD88/NF-κB pathway. Journal of Neurotrauma, 29, 1941–1959.

    Article  PubMed  Google Scholar 

  • Miyamoto, E. (2006). Molecular mechanism of neuronal plasticity: Induction and maintenance of long-term potentiation in the hippocampus. Journal of Pharmacological Sciences, 100, 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Muhammad, T., Ikram, M., Ullah, R., Rehman, S. U., & Kim, M. O. (2019). Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients, 11, 648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang, J., Hou, J., Zhou, Z., Ren, M., Mo, Y., Yang, G., Qu, Z., & Hu, Y. (2020). Safflower yellow improves synaptic plasticity in APP/PS1 mice by regulating microglia activation phenotypes and BDNF/TrkB/ERK signaling pathway. Neuromolecular Medicine, 22, 341–358.

    Article  CAS  PubMed  Google Scholar 

  • Patel, N. S., Paris, D., Mathura, V., Quadros, A. N., Crawford, F. C., & Mullan, M. J. (2005). Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. Journal of Neuroinflammation, 2, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng, X. M., Gao, L., Huo, S. X., Liu, X. M., & Yan, M. (2015). The mechanism of memory enhancement of acteoside (Verbascoside) in the senescent mouse model induced by a combination of D-gal and AlCl3. Phytotherapy Research: PTR, 29, 1137–1144.

    Article  CAS  PubMed  Google Scholar 

  • Proctor, D. T., Coulson, E. J., & Dodd, P. R. (2010). Reduction in post-synaptic scaffolding PSD-95 and SAP-102 protein levels in the Alzheimer inferior temporal cortex is correlated with disease pathology. Journal of Alzheimer’s Disease: JAD, 21, 795–811.

    Article  CAS  PubMed  Google Scholar 

  • Reese, L. C., Laezza, F., Woltjer, R., & Taglialatela, G. (2011). Dysregulated phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II-α in the hippocampus of subjects with mild cognitive impairment and Alzheimer’s disease. Journal of Neurochemistry, 119, 791–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers, J., Luber-Narod, J., Styren, S. D., & Civin, W. H. (1988). Expression of immune system-associated antigens by cells of the human central nervous system: Relationship to the pathology of Alzheimer’s disease. Neurobiology of Aging, 9, 339–349.

    Article  CAS  PubMed  Google Scholar 

  • Sastre, M., Dewachter, I., Landreth, G. E., Willson, T. M., Klockgether, T., van Leuven, F., & Heneka, M. T. (2003). Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. The Journal of Neuroscience, 23, 9796–9804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sastre, M., Dewachter, I., Rossner, S., Bogdanovic, N., Rosen, E., Borghgraef, P., Evert, B. O., Dumitrescu-Ozimek, L., Thal, D. R., Landreth, G., Walter, J., Klockgether, T., van Leuven, F., & Heneka, M. T. (2006). Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proceedings of the National Academy of Sciences of the United States of America, 103, 443–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shadfar, S., Hwang, C. J., Lim, M. S., Choi, D. Y., & Hong, J. T. (2015). Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents. Archives of Pharmacal Research, 38, 2106–2119.

    Article  CAS  PubMed  Google Scholar 

  • Shi, H., Wang, X. L., Quan, H. F., Yan, L., Pei, X. Y., Wang, R., & Peng, X. D. (2019). Effects of betaine on LPS-stimulated activation of microglial M1/M2 phenotypes by suppressing TLR4/NF-κB pathways in N9 cells. Molecules (basel, Switzerland), 24, 367.

    Article  PubMed  Google Scholar 

  • Shi, X., Cai, X., Di, W., Li, J., Xu, X., Zhang, A., Qi, W., Zhou, Z., & Fang, Y. (2017). MFG-E8 selectively inhibited Aβ-induced microglial M1 polarization via NF-κB and PI3K-Akt pathways. Molecular Neurobiology, 54, 7777–7788.

    Article  CAS  PubMed  Google Scholar 

  • Shi, X. M., Zhang, H., Zhou, Z. J., Ruan, Y. Y., Pang, J., Zhang, L., Zhai, W., & Hu, Y. L. (2018). Effects of safflower yellow on beta-amyloid deposition and activation of astrocytes in the brain of APP/PS1 transgenic mice. Biomedicine & Pharmacotherapy, 98, 553–565.

    Article  CAS  Google Scholar 

  • Shiao, Y. J., Su, M. H., Lin, H. C., & Wu, C. R. (2017). Echinacoside ameliorates the memory impairment and cholinergic deficit induced by amyloid beta peptides via the inhibition of amyloid deposition and toxicology. Food & Function, 8, 2283–2294.

    Article  CAS  Google Scholar 

  • Takemoto-Kimura, S., Suzuki, K., Horigane, S. I., Kamijo, S., Inoue, M., Sakamoto, M., Fujii, H., & Bito, H. (2017). Calmodulin kinases: Essential regulators in health and disease. Journal of Neurochemistry, 141, 808–818.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y., & Le, W. (2016). Differential roles of M1 and M2 microglia in neurodegenerative diseases. Molecular Neurobiology, 53, 1181–1194.

    Article  CAS  PubMed  Google Scholar 

  • Tweedie, D., Ferguson, R. A., Fishman, K., Frankola, K. A., Van Praag, H., Holloway, H. W., Luo, W., Li, Y., Caracciolo, L., Russo, I., Barlati, S., Ray, B., Lahiri, D. K., Bosetti, F., Greig, N. H., & Rosi, S. (2012). Tumor necrosis factor-α synthesis inhibitor 3,6’-dithiothalidomide attenuates markers of inflammation, Alzheimer pathology and behavioral deficits in animal models of neuroinflammation and Alzheimer’s disease. Journal of Neuroinflammation, 9, 106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Xu, Y., Yan, J., Zhao, X., Sun, X., Zhang, Y., Guo, J., & Zhu, C. (2009). Acteoside protects human neuroblastoma SH-SY5Y cells against beta-amyloid-induced cell injury. Brain Research, 1283, 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Zhang, X., Zhai, L., Sheng, X., Zheng, W., Chu, H., & Zhang, G. (2018). Atorvastatin attenuates cognitive deficits and neuroinflammation induced by Aβ(1–42) involving modulation of TLR4/TRAF6/NF-κB pathway. Journal of Molecular Neuroscience: MN, 64, 363–373.

    Article  CAS  PubMed  Google Scholar 

  • Wesson, D. W., & Wilson, D. A. (2011). Age and gene overexpression interact to abolish nesting behavior in Tg2576 amyloid precursor protein (APP) mice. Behavioural Brain Research, 216, 408–413.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y., Gong, Y., Luan, Y., Li, Y., Liu, J., Yue, Z., Yuan, B., Sun, J., Xie, C., Li, L., Zhen, J., Jin, X., Zheng, Y., Wang, X., Xie, L., & Wang, W. (2020). BHBA treatment improves cognitive function by targeting pleiotropic mechanisms in transgenic mouse model of Alzheimer’s disease. FASEB Journal, 34, 1412–1429.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, Q., Yu, W., Tian, Q., Fu, X., Wang, X., Gu, M., & Lü, Y. (2017). Chitinase1 contributed to a potential protection via microglia polarization and Aβ oligomer reduction in D-galactose and aluminum-induced rat model with cognitive impairments. Neuroscience, 355, 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, Y., Ma, B., McElheny, D., Parthasarathy, S., Long, F., Hoshi, M., Nussinov, R., & Ishii, Y. (2015). Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nature Structural & Molecular Biology, 22, 499–505.

    Article  CAS  Google Scholar 

  • Zhang, H., & Zheng, Y. (2019). [β amyloid hypothesis in Alzheimer’s Disease: Pathogenesis, prevention, and management]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao Acta Academiae Medicinae Sinicae, 41, 702–708.

    PubMed  Google Scholar 

  • Zhang, Z. H., Yu, L. J., Hui, X. C., Wu, Z. Z., Yin, K. L., Yang, H., & Xu, Y. (2014). Hydroxy-safflor yellow A attenuates Aβ1-42-induced inflammation by modulating the JAK2/STAT3/NF-κB pathway. Brain Research, 1563, 72–80.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Z., Hou, J., Mo, Y., Ren, M., Yang, G., Qu, Z., & Hu, Y. (2020). Geniposidic acid ameliorates spatial learning and memory deficits and alleviates neuroinflammation via inhibiting HMGB-1 and downregulating TLR4/2 signaling pathway in APP/PS1 mice. European Journal of Pharmacology, 869, 172857.

    Article  CAS  PubMed  Google Scholar 

  • Zotova, E., Bharambe, V., Cheaveau, M., Morgan, W., Holmes, C., Harris, S., Neal, J. W., Love, S., Nicoll, J. A., & Boche, D. (2013). Inflammatory components in human Alzheimer’s disease and after active amyloid-β42 immunization. Brain: A Journal of Neurology, 136, 2677–2696.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CW and YH conceived and designed research. CW conducted experiments. HY, YZ, YQ, and MZ analyzed data. CW wrote the manuscript; YH and YL revised the manuscript. YH acquired the funding and financial support for the project. All authors read and approved the manuscript for publication.

Corresponding author

Correspondence to Yanli Hu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

Research Involving Animals: The animals were treated according to the guidelines of the Animal Management Rules of the Ministry of Health of the People’s Republic of China (documentation Number 55, 2001, Ministry of Health of PR China). The experiments were approved by the Committee of Experimental Animal Administration of Shihezi University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Ye, H., Zheng, Y. et al. Phenylethanoid Glycosides of Cistanche Improve Learning and Memory Disorders in APP/PS1 Mice by Regulating Glial Cell Activation and Inhibiting TLR4/NF-κB Signaling Pathway. Neuromol Med 25, 75–93 (2023). https://doi.org/10.1007/s12017-022-08717-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-022-08717-y

Keywords

Navigation