Skip to main content

Advertisement

Log in

Neural Stem Cells Secretome Increased Neurogenesis and Behavioral Performance and the Activation of Wnt/β-Catenin Signaling Pathway in Mouse Model of Alzheimer’s Disease

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is a progressive and age-related neurodegenerative disorder that is manifested by neuropathological changes and clinical symptoms. Recently, cell-based therapeutic interventions have been considered as the promising and effective strategies in this field. Herein, we investigated therapeutic effects of neural stem cell secretome on Alzheimer’s disease-like model by triggering of Wnt/β-catenin signaling pathway. In this study, mice were randomly allocated into three different groups as follows: Control, AD + Vehicle, and AD + NSCs-CM groups. To induce mouse model of AD, Aβ1-42 was injected into intracerebroventricular region. Following AD-like confirmation through thioflavin S staining and Passive avoidance test, about 5 µl mouse NSCs-CM was injected into the target areas 21 days after AD induction. For evaluation of endogenous proliferation rate (BrdU/Nestin+ cells), 50 µg/kbW BrdU was intraperitoneally injected for 5 consecutive days. To track NSC differentiation, percent of BrdU/NeuN+ cells were monitored via immunofluorescence staining. Histological Nissl staining was done to neurotoxicity and cell death in AD mice after NSCs-CM injection. Morris Water maze test was performed to assess learning and memory performance. Data showed that NSCs-CM could reverse the learning and memory deficits associated with Aβ pathology. The reduced expression of Wnt/β-catenin-related genes such as PI3K, Akt, MAPK, and ERK in AD mice was increased. Along with these changes, NSCs-CM suppressed overactivity of GSK3β activity induced by Aβ deposition. Besides, NSCs increased BrdU/Nestin+ and BrdU/NeuN+ cells in a paracrine manner, indicating proliferation and neural differentiation of NSCs. Moreover, neurotoxicity rate and cell loss were deceased after NSCs-CM injection. In summary, NSCs can regulate adult neurogenesis through modulating of Wnt/β-catenin signaling pathway and enhance the behavioral performance in the AD mice. These data present the alternative and effective approach in the management of AD and other cognitive impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets presented/analyzed during the current study are available.

Abbreviations

DAPI:

4,6-diamidino-2-phenylindole

BrdU:

5-Bromo-20-deoxyuridine

AD:

Alzheimer’s disease

Aβ:

Amyloid β

FGF-2:

Basic fibroblast growth factor-2

BDNF:

Brain-derived neurotrophic factor

ICV:

Cerebroventricular

DMEM/F-12:

Dulbecco’s modified eagle medium/nutrient mixture

ELISA:

Enzyme-linked immunosorbent assay

EGF:

Epidermal growth factor

GSK-3β:

Glycogen synthase kinase-3β

IF:

Immunofluorescence

MWM:

Morris water maze

NGF:

Nerve growth factor

NSCs-CM:

Neural stem cell condition medium

References

  • Abrous, D. N., & Wojtowicz, J. M. (2015). Interaction between neurogenesis and hippocampal memory system: New vistas. Cold Spring Harbor Perspectives in Biology, 7(6), a018952.

    PubMed  PubMed Central  Google Scholar 

  • Adachi, K., Mirzadeh, Z., Sakaguchi, M., Yamashita, T., Nikolcheva, T., Gotoh, Y., et al. (2007). β-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells, 25(11), 2827–2836. https://doi.org/10.1634/stemcells.2007-0177

    Article  CAS  PubMed  Google Scholar 

  • Alonso, A. D. C., Grundke-Iqbal, I., Barra, H. S., & Iqbal, K. (1997). Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: Sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proceedings of the National Academy of Sciences, 94(1), 298–303.

    CAS  Google Scholar 

  • Alzheimer’s Association. (2016). 2016 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 12(4), 459–509.

    Google Scholar 

  • Ameri, M., Shabaninejad, Z., Movahedpour, A., Sahebkar, A., Mohammadi, S., Hosseindoost, S., et al. (2020). Biosensors for detection of Tau protein as an Alzheimer’s disease marker. International Journal of Biological Macromolecules, 162, 1100–1108.

    CAS  PubMed  Google Scholar 

  • Azari, H. (2013). Isolation and enrichment of defined neural cell populations from heterogeneous neural stem cell progeny. Neural progenitor cells (pp. 95–106). Springer.

    Google Scholar 

  • Azari, H., Sharififar, S., Rahman, M., Ansari, S., & Reynolds, B. A. (2011). Establishing embryonic mouse neural stem cell culture using the neurosphere assay. Journal of Visualized Experiments. https://doi.org/10.3791/2457

    Article  PubMed  PubMed Central  Google Scholar 

  • Baptista, P., & Andrade, J. P. (2018). Adult hippocampal neurogenesis: Regulation and possible functional and clinical correlates. Frontiers in Neuroanatomy, 12, 44.

    PubMed  PubMed Central  Google Scholar 

  • Berdugo-Vega, G., Arias-Gil, G., López-Fernández, A., Artegiani, B., Wasielewska, J. M., Lee, C.-C., et al. (2020). Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life. Nature Communications, 11(1), 1–12.

    Google Scholar 

  • Binder, L. I., Guillozet-Bongaarts, A. L., Garcia-Sierra, F., & Berry, R. W. (2005). Tau, tangles, and Alzheimer’s disease. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1739(2–3), 216–223.

    CAS  PubMed  Google Scholar 

  • Bosiacki, M., Gąssowska-Dobrowolska, M., Kojder, K., Fabiańska, M., Jeżewski, D., Gutowska, I., et al. (2019). Perineuronal nets and their role in synaptic homeostasis. International Journal of Molecular Sciences, 20(17), 4108.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, B. Y., Wang, X., Wang, Z. Y., Wang, Y. Z., Chen, L. W., & Luo, Z. J. (2013). Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/β-catenin signaling pathway. Journal of Neuroscience Research, 91(1), 30–41.

    CAS  PubMed  Google Scholar 

  • Chen, X.-Q., & Mobley, W. C. (2019). Alzheimer disease pathogenesis: Insights from molecular and cellular biology studies of oligomeric Aβ and tau species. Frontiers in Neuroscience, 13, 659.

    PubMed  PubMed Central  Google Scholar 

  • Cho, J. W., Jung, S. Y., Kim, D. Y., Chung, Y. R., Choi, H. H., Jeon, J. W., et al. (2018). PI3K-Akt-Wnt pathway is implicated in exercise-induced improvement of short-term memory in cerebral palsy rats. International Neurourology Journal, 22(Suppl 3), S156-164. https://doi.org/10.5213/inj.1836224.112

    Article  PubMed  PubMed Central  Google Scholar 

  • Clevers, H., & Nusse, R. (2012). Wnt/β-catenin signaling and disease. Cell, 149(6), 1192–1205.

    CAS  PubMed  Google Scholar 

  • Crapser, J. D., Spangenberg, E. E., Barahona, R. A., Arreola, M. A., Hohsfield, L. A., & Green, K. N. (2020). Microglia facilitate loss of perineuronal nets in the Alzheimer’s disease brain. EBioMedicine, 58, 102919.

    PubMed  PubMed Central  Google Scholar 

  • de la Torre-Ubieta, L., & Bonni, A. (2011). Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain. Neuron, 72(1), 22–40.

    PubMed  PubMed Central  Google Scholar 

  • Deng, Y., Wang, Z., Wang, R., Zhang, X., Zhang, S., Wu, Y., et al. (2013). Amyloid-β protein (Aβ) Glu11 is the major β-secretase site of β-site amyloid-β precursor protein-cleaving enzyme 1 (BACE1), and shifting the cleavage site to Aβ Asp1 contributes to Alzheimer pathogenesis. European Journal of Neuroscience, 37(12), 1962–1969.

    PubMed  Google Scholar 

  • Diaz Brinton, R., & Ming Wang, J. (2006). Therapeutic potential of neurogenesis for prevention and recovery from Alzheimer’s disease: Allopregnanolone as a proof of concept neurogenic agent. Current Alzheimer Research, 3(3), 185–190.

    Google Scholar 

  • Drubin, D. G., & Kirschner, M. W. (1986). Tau protein function in living cells. Journal of Cell Biology, 103(6), 2739–2746.

    CAS  PubMed  Google Scholar 

  • Ebneth, A., Godemann, R., Stamer, K., Illenberger, S., Trinczek, B., Mandelkow, E.-M., et al. (1998). Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: Implications for Alzheimer’s disease. The Journal of Cell Biology, 143(3), 777–794.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., et al. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313–1317.

    CAS  PubMed  Google Scholar 

  • Esfandiary, E., Abdolali, Z., Omranifard, V., Ghanadian, M., Bagherian-Sararoud, R., Karimipour, M., et al. (2018). Novel effects of Rosa damascena extract on patients with neurocognitive disorder and depression: A clinical trial study. International Journal of Preventive Medicine, 9, 57.

    PubMed  PubMed Central  Google Scholar 

  • Esfandiary, E., Karimipour, M., Mardani, M., Alaei, H., Ghannadian, M., Kazemi, M., et al. (2014). Novel effects of Rosa damascena extract on memory and neurogenesis in a rat model of Alzheimer’s disease. Journal of Neuroscience Research, 92(4), 517–530.

    CAS  PubMed  Google Scholar 

  • Esfandiary, E., Karimipour, M., Mardani, M., Ghanadian, M., Alaei, H. A., Mohammadnejad, D., et al. (2015). Neuroprotective effects of Rosa damascena extract on learning and memory in a rat model of amyloid-β-induced Alzheimer’s disease. Advanced Biomedical Research, 4, 131.

    PubMed  PubMed Central  Google Scholar 

  • Faigle, R., & Song, H. (2013). Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochimica et Biophysica Acta (BBA), 1830(2), 2435–2448.

    CAS  PubMed  Google Scholar 

  • Gage, F. H. (2019). Adult neurogenesis in mammals. Science, 364(6443), 827–828.

    CAS  PubMed  Google Scholar 

  • Gonçalves, J. T., Schafer, S. T., & Gage, F. H. (2016). Adult neurogenesis in the hippocampus: From stem cells to behavior. Cell, 167(4), 897–914.

    PubMed  Google Scholar 

  • Gould, E. (2007). How widespread is adult neurogenesis in mammals? Nature Reviews Neuroscience, 8(6), 481–488.

    CAS  PubMed  Google Scholar 

  • Gouras, G. K., Tsai, J., Naslund, J., Vincent, B., Edgar, M., Checler, F., et al. (2000). Intraneuronal Aβ42 accumulation in human brain. The American Journal of Pathology, 156(1), 15–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grundke-Iqbal, I., Iqbal, K., Tung, Y.-C., Quinlan, M., Wisniewski, H. M., & Binder, L. I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences, 83(13), 4913–4917.

    CAS  Google Scholar 

  • Gundersen, H., Bendtsen, T. F., Korbo, L., Marcussen, N., Møller, A., Nielsen, K., et al. (1988). Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Apmis, 96(1–6), 379–394.

    CAS  PubMed  Google Scholar 

  • Guo, M., Yin, Z., Chen, F., & Lei, P. (2020). Mesenchymal stem cell-derived exosome: A promising alternative in the therapy of Alzheimer’s disease. Alzheimer’s Research & Therapy, 12(1), 109. https://doi.org/10.1186/s13195-020-00670-x

    Article  Google Scholar 

  • Harland, M., Torres, S., Liu, J., & Wang, X. (2020). Neuronal mitochondria modulation of LPS-induced neuroinflammation. Journal of Neuroscience, 40(8), 1756–1765.

    CAS  PubMed  Google Scholar 

  • Harris, K. M., & Weinberg, R. J. (2012). Ultrastructure of synapses in the mammalian brain. Cold Spring Harbor Perspectives in Biology, 4(5), a005587.

    PubMed  PubMed Central  Google Scholar 

  • Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet Neurology, 14(4), 388–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández, F., de Barreda, E. G., Fuster-Matanzo, A., Lucas, J. J., & Avila, J. (2010). GSK3: A possible link between beta amyloid peptide and tau protein. Experimental Neurology, 223(2), 322–325.

    PubMed  Google Scholar 

  • Hooper, C., Killick, R., & Lovestone, S. (2008). The GSK3 hypothesis of Alzheimer’s disease. Journal of Neurochemistry, 104(6), 1433–1439.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoover, B. R., Reed, M. N., Su, J., Penrod, R. D., Kotilinek, L. A., Grant, M. K., et al. (2010). Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron, 68(6), 1067–1081.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal, K., Liu, F., & Gong, C.-X. (2016). Tau and neurodegenerative disease: The story so far. Nature Reviews Neurology, 12(1), 15.

    CAS  PubMed  Google Scholar 

  • Ittner, A., Chua, S. W., Bertz, J., Volkerling, A., van der Hoven, J., Gladbach, A., et al. (2016). Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer’s mice. Science, 354(6314), 904–908.

    CAS  PubMed  Google Scholar 

  • Jahed, F. J., Rahbarghazi, R., Shafaei, H., Rezabakhsh, A., & Karimipour, M. (2021). Application of neurotrophic factor-secreting cells (astrocyte-Like cells) in the in-vitro Alzheimer’s disease-like pathology on the human neuroblastoma cells. Brain Research Bulletin, 172, 180–189.

    CAS  PubMed  Google Scholar 

  • Karimipour, M., Rahbarghazi, R., Tayefi, H., Shimia, M., Ghanadian, M., Mahmoudi, J., et al. (2019). Quercetin promotes learning and memory performance concomitantly with neural stem/progenitor cell proliferation and neurogenesis in the adult rat dentate gyrus. International Journal of Developmental Neuroscience, 74, 18–26.

    CAS  PubMed  Google Scholar 

  • Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386(6624), 493–495.

    CAS  PubMed  Google Scholar 

  • Kim, H. Y., Lee, D. K., Chung, B.-R., Kim, H. V., & Kim, Y. (2016). Intracerebroventricular injection of amyloid-β peptides in normal mice to acutely induce Alzheimer-like cognitive deficits. Journal of Visualized Experiments: JoVE, 109, e53308.

    Google Scholar 

  • Kwak, Y.-D., Hendrix, B. J., & Sugaya, K. (2014). Secreted type of amyloid precursor protein induces glial differentiation by stimulating the BMP/Smad signaling pathway. Biochemical and Biophysical Research Communications, 447(3), 394–399.

    CAS  PubMed  Google Scholar 

  • Lassmann, H., Bancher, C., Breitschopf, H., Wegiel, J., Bobinski, M., Jellinger, K., et al. (1995). Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathologica, 89(1), 35–41.

    CAS  PubMed  Google Scholar 

  • Lee, H. J., Lee, D. Y., Kim, H. L., & Yang, S. H. (2020). Scrophularia buergeriana extract improves memory impairment via inhibition of the apoptosis pathway in the mouse hippocampus. Applied Sciences, 10(22), 7987.

    CAS  Google Scholar 

  • Leeson, H. C., Kasherman, M. A., Chan-Ling, T., Lovelace, M. D., Brownlie, J. C., Toppinen, K. M., et al. (2018). P2X7 receptors regulate phagocytosis and proliferation in adult hippocampal and SVZ neural progenitor cells: Implications for inflammation in neurogenesis. Stem Cells, 36(11), 1764–1777.

    CAS  PubMed  Google Scholar 

  • Lempriere, S. (2019). Birth of hippocampal neurons declines in Alzheimer disease. Nature Reviews Neurology, 15(5), 245–245.

    PubMed  Google Scholar 

  • Lu, P., Jones, L., Snyder, E., & Tuszynski, M. (2003). Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Experimental Neurology, 181(2), 115–129.

    CAS  PubMed  Google Scholar 

  • Ly, P. T., Cai, F., & Song, W. (2011). Detection of neuritic plaques in Alzheimer’s disease mouse model. JoVE (Journal of Visualized Experiments), 53, e2831.

    Google Scholar 

  • Magdesian, M. H., Carvalho, M. M., Mendes, F. A., Saraiva, L. M., Juliano, M. A., Juliano, L., et al. (2008). Amyloid-β binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/β-catenin signaling. Journal of Biological Chemistry, 283(14), 9359–9368.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McInnes, J., Wierda, K., Snellinx, A., Bounti, L., Wang, Y.-C., Stancu, I.-C., et al. (2018). Synaptogyrin-3 mediates presynaptic dysfunction induced by tau. Neuron, 97(4), 823-835.e828.

    CAS  PubMed  Google Scholar 

  • Ming, G.-L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 70(4), 687–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Jiménez, E. P., Flor-García, M., Terreros-Roncal, J., Rábano, A., Cafini, F., Pallas-Bazarra, N., et al. (2019). Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nature Medicine, 25(4), 554–560.

    PubMed  Google Scholar 

  • Nakano, M., Kubota, K., Kobayashi, E., Chikenji, T. S., Saito, Y., Konari, N., et al. (2020). Bone marrow-derived mesenchymal stem cells improve cognitive impairment in an Alzheimer’s disease model by increasing the expression of microRNA-146a in hippocampus. Scientific Reports, 10(1), 1–15.

    Google Scholar 

  • Nakano, M., Nagaishi, K., Konari, N., Saito, Y., Chikenji, T., Mizue, Y., et al. (2016). Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes. Scientific Reports, 6(1), 1–14.

    Google Scholar 

  • Patapoutian, A., & Reichardt, L. F. (2000). Roles of Wnt proteins in neural development and maintenance. Current Opinion in Neurobiology, 10(3), 392–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson, C. (2018). The state of the art of dementia research: New frontiers. World Alzheimer Report, 2018.

  • Pirbhoy, P. S., Rais, M., Lovelace, J. W., Woodard, W., Razak, K. A., Binder, D. K., et al. (2020). Acute pharmacological inhibition of matrix metalloproteinase-9 activity during development restores perineuronal net formation and normalizes auditory processing in Fmr1 KO mice. Journal of neurochemistry, 155(5), 538–558.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plassman, B. L., Langa, K. M., Fisher, G. G., Heeringa, S. G., Weir, D. R., Ofstedal, M. B., et al. (2007). Prevalence of dementia in the United States: The aging, demographics, and memory study. Neuroepidemiology, 29(1–2), 125–132.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajamohamedsait, H. B., & Sigurdsson, E. M. (2012). Histological staining of amyloid and pre-amyloid peptides and proteins in mouse tissue. Amyloid proteins (pp. 411–424). Springer.

    Google Scholar 

  • Rehman, I. U., Ahmad, R., Khan, I., Lee, H. J., Park, J., Ullah, R., et al. (2021). Nicotinamide ameliorates amyloid beta-induced oxidative stress-mediated neuroinflammation and neurodegeneration in adult mouse brain. Biomedicines, 9(4), 408.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reichelt, A. C., Hare, D. J., Bussey, T. J., & Saksida, L. M. (2019). Perineuronal nets: Plasticity, protection, and therapeutic potential. Trends in Neurosciences, 42(7), 458–470.

    CAS  PubMed  Google Scholar 

  • Rhee, Y.-H., Yi, S.-H., Kim, J. Y., Chang, M.-Y., Jo, A.-Y., Kim, J., et al. (2016). Neural stem cells secrete factors facilitating brain regeneration upon constitutive Raf-Erk activation. Scientific Reports, 6(1), 1–16.

    CAS  Google Scholar 

  • Rosso, S. B., & Inestrosa, N. C. (2013). WNT signaling in neuronal maturation and synaptogenesis. Frontiers in Cellular Neuroscience, 7, 103.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheltens, P., Blennow, K., Breteler, M., de Strooper, B., Frisoni, G., Salloway, S., et al. (2016). Alzheimer’s disease. Lancet (London, England), 388, 505–517.

    CAS  PubMed  Google Scholar 

  • Schmid, S., Jungwirth, B., Gehlert, V., Blobner, M., Schneider, G., Kratzer, S., et al. (2017). Intracerebroventricular injection of beta-amyloid in mice is associated with long-term cognitive impairment in the modified hole-board test. Behavioural Brain Research, 324, 15–20.

    CAS  PubMed  Google Scholar 

  • Schwarz, T. J., Ebert, B., & Lie, D. C. (2012). Stem cell maintenance in the adult mammalian hippocampus: A matter of signal integration? Developmental Neurobiology, 72(7), 1006–1015.

    CAS  PubMed  Google Scholar 

  • Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano-Pozo, A., Frosch, M., Masliah, E., & Hyman, B. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1(1), a006189.

    PubMed  PubMed Central  Google Scholar 

  • Song, J., Zhong, C., Bonaguidi, M. A., Sun, G. J., Hsu, D., Gu, Y., et al. (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 489(7414), 150–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stuchlik, A. (2014). Dynamic learning and memory, synaptic plasticity and neurogenesis: An update. Frontiers in Behavioral Neuroscience, 8, 106.

    PubMed  PubMed Central  Google Scholar 

  • Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., et al. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 30(4), 572–580.

    CAS  Google Scholar 

  • Thuret, S., Toni, N., Aigner, S., Yeo, G. W., & Gage, F. H. (2009). Hippocampus-dependent learning is associated with adult neurogenesis in MRL/MpJ mice. Hippocampus, 19(7), 658–669.

    CAS  PubMed  Google Scholar 

  • Vafaei, A., Rahbarghazi, R., Kharaziha, M., Avval, N. A., Rezabakhsh, A., & Karimipour, M. (2021). Polycaprolactone fumarate acts as an artificial neural network to promote the biological behavior of neural stem cells. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109(2), 246–256.

    CAS  PubMed  Google Scholar 

  • Walsh, D. M., & Selkoe, D. J. (2004). Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron, 44(1), 181–193.

    CAS  PubMed  Google Scholar 

  • Wan, W., Xia, S., Kalionis, B., Liu, L., & Li, Y. (2014). The role of Wnt signaling in the development of alzheimer’s disease: a potential therapeutic target? BioMed Research International, 2014, 1–9.

    Google Scholar 

  • Wang, P., Luo, Q., Qiao, H., Ding, H., Cao, Y., Yu, J., et al. (2017). The neuroprotective effects of carvacrol on ethanol-induced hippocampal neurons impairment via the antioxidative and antiapoptotic pathways. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2017/4079425

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Xu, Q., Cai, F., Liu, X., Wu, Y., & Song, W. (2019). BACE2, a conditional β-secretase, contributes to Alzheimer’s disease pathogenesis. JCI Insight. https://doi.org/10.1172/jci.insight.123431

    Article  PubMed  PubMed Central  Google Scholar 

  • Weingarten, M. D., Lockwood, A. H., Hwo, S.-Y., & Kirschner, M. W. (1975). A protein factor essential for microtubule assembly. Proceedings of the National Academy of Sciences, 72(5), 1858–1862.

    CAS  Google Scholar 

  • Williams, R. W., & Rakic, P. (1988). Elimination of neurons from the rhesus monkey’s lateral geniculate nucleus during development. Journal of Comparative Neurology, 272(3), 424–436.

    CAS  PubMed  Google Scholar 

  • Wodarz, A., & Nusse, R. (1998). Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology, 14(1), 59–88.

    CAS  PubMed  Google Scholar 

  • Xie, M., Zhang, G., Yin, W., Hei, X.-X., & Liu, T. (2018). Cognitive enhancing and antioxidant effects of tetrahydroxystilbene glucoside in Aβ1-42-induced neurodegeneration in mice. Journal of Integrative Neuroscience, 17(3–4), 355–365.

    PubMed  Google Scholar 

  • Yeung, J. H., Palpagama, T. H., Tate, W. P., Peppercorn, K., Waldvogel, H. J., Faull, R. L., et al. (2020). The acute effects of amyloid-beta1–42 on glutamatergic receptor and transporter expression in the mouse hippocampus. Frontiers in Neuroscience, 13, 1427.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, C., Deng, W., & Gage, F. H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4), 645–660.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors wish to thank the personnel of Neuroscience Research Center for help and guidance.

Funding

This study was supported by a Grant from Tabriz University of Medical Sciences (63595).

Author information

Authors and Affiliations

Authors

Contributions

FH, RR, SSE, GB, MH, and MS performed different analyses. MK supervised the study.

Corresponding author

Correspondence to Mohammad Karimipour.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical Approval

All phases of this study were approved by Local Ethics Committee of Tabriz University of Medical Sciences (IR.TBZMED.VCR.REC.1397.239).

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 860 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hijroudi, F., Rahbarghazi, R., Sadigh-Eteghad, S. et al. Neural Stem Cells Secretome Increased Neurogenesis and Behavioral Performance and the Activation of Wnt/β-Catenin Signaling Pathway in Mouse Model of Alzheimer’s Disease. Neuromol Med 24, 424–436 (2022). https://doi.org/10.1007/s12017-022-08708-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-022-08708-z

Keywords

Navigation