Skip to main content
Log in

Meningeal Multipotent Cells: A Hidden Target for CNS Repair?

  • Mini-reviews
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Traditionally, the primary role of the meninges is thought to be structural, i.e., to act as a surrounding membrane that contains and cushions the brain with cerebrospinal fluid. During development, the meninges is formed by both mesenchymal and neural crest cells. There is now emerging evidence that subsets of undifferentiated stem cells might persist in the adult meninges. In this mini-review, we survey representative studies of brain-meningeal interactions and discuss the hypothesis that the meninges are not just protective membranes, but instead contain multiplex stem cell subsets that may contribute to central nervous system (CNS) homeostasis. Further investigations into meningeal multipotent cells may reveal a “hidden” target for promoting neurovascular remodeling and repair after CNS injury and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2

Similar content being viewed by others

References

  • Achilleos, A., & Trainor, P. A. (2012). Neural crest stem cells: discovery, properties and potential for therapy. Cell Research, 22, 288–304

    Article  CAS  Google Scholar 

  • Arac, A., Grimbaldeston, M. A., Nepomuceno, A. R., Olayiwola, O., Pereira, M. P., Nishiyama, Y., Tsykin, A., Goodall, G.J., Schlecht, U., Vogel, H., & Tsai, M. (2014). Evidence that meningeal mast cells can worsen stroke pathology in mice. American Journal of Pathology, 184, 2493–2504

    Article  CAS  Google Scholar 

  • Biernaskie, J., & Miller, F. D. (2010). White matter repair: skin-derived precursors as a source of myelinating cells. Canadian Journal of Neurological Sciences, 37(Suppl 2), S34-41

    Article  Google Scholar 

  • Bifari, F., Decimo, I., Pino, A., Llorens-Bobadilla, E., Zhao, S., Lange, C., Panuccio, G., Boeckx, B., Thienpont, B., Vinckier, S., & Wyns, S. (2017). Neurogenic radial glia-like cells in meninges migrate and differentiate into functionally integrated neurons in the neonatal cortex. Cell Stem Cell, 20(360–73), e7

    Google Scholar 

  • Cai, R., Pan, C., Ghasemigharagoz, A., Todorov, M. I., Forstera, B., Zhao, S., Bhatia, H.S., Parra-Damas, A., Mrowka, L., Theodorou, D., & Rempfler, M. (2019). Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nature Neuroscience, 22, 317–327

    Article  CAS  Google Scholar 

  • Carmichael, S. T. (2010). Targets for neural repair therapies after stroke. Stroke, 41, S124–S126

    Article  Google Scholar 

  • Chai, Y., Ito, Y., & Han, J. (2003). TGF-beta signaling and its functional significance in regulating the fate of cranial neural crest cells. Critical Reviews in Oral Biology and Medicine, 14, 78–88

    Article  CAS  Google Scholar 

  • Decimo, I., Bifari, F., Rodriguez, F. J., Malpeli, G., Dolci, S., Lavarini, V., Pretto, S., Vasquez, S., Sciancalepore, M., Montalbano, A., & Berton, V. (2011). Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem Cells., 29, 2062–2076

    Article  CAS  Google Scholar 

  • Decimo, I., Fumagalli, G., Berton, V., Krampera, M., & Bifari, F. (2012). Meninges: from protective membrane to stem cell niche. American Journal of Stem Cells, 1, 92–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dupin, E., & Coelho-Aguiar, J. M. (2013). Isolation and differentiation properties of neural crest stem cells. Cytometry. Part A, 83, 38–47

    Article  Google Scholar 

  • Etchevers, H. C., Couly, G., Vincent, C., & Le Douarin, N. M. (1999). Anterior cephalic neural crest is required for forebrain viability. Development, 126, 3533–3543

    Article  CAS  Google Scholar 

  • Etchevers, H. C., Vincent, C., Le Douarin, N. M., & Couly, G. F. (2001). The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development, 128, 1059–1068

    Article  CAS  Google Scholar 

  • Filiano, A. J., Gadani, S. P., & Kipnis, J. (2015). Interactions of innate and adaptive immunity in brain development and function. Brain Research, 1617, 18–27

    Article  CAS  Google Scholar 

  • Hallmann, R., Horn, N., Selg, M., Wendler, O., Pausch, F., & Sorokin, L. M. (2005). Expression and function of laminins in the embryonic and mature vasculature. Physiological Reviews, 85, 979–1000

    Article  CAS  Google Scholar 

  • Hartmann, D., Sievers, J., Pehlemann, F. W., & Berry, M. (1992). Destruction of meningeal cells over the medial cerebral hemisphere of newborn hamsters prevents the formation of the infrapyramidal blade of the dentate gyrus. The Journal of Comparative Neurology, 320, 33–61

    Article  CAS  Google Scholar 

  • Iadecola, C., & Anrather, J. (2011). The immunology of stroke: from mechanisms to translation. Nature Medicine, 17, 796–808

    Article  CAS  Google Scholar 

  • Jacobson, S., & Marcus, E. (2008). Neuroanatomy for the neuroscientist. (pp. 325–331). New York: Springer.

    Book  Google Scholar 

  • Kelly, K. K., MacPherson, A. M., Grewal, H., Strnad, F., Jones, J. W., Yu, J., Pierzchalski, K., Kane, M. A., Herson, P. S., & Siegenthaler, J. A. (2016). Col1a1+ perivascular cells in the brain are a source of retinoic acid following stroke. BMC Neuroscience, 17, 49

    Article  Google Scholar 

  • Lee, G., Kim, H., Elkabetz, Y., Al Shamy, G., Panagiotakos, G., Barberi, T., Tabar, V., & Studer, L. (2007). Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nature Biotechnology, 25, 1468–1475

    Article  CAS  Google Scholar 

  • Mercier, F., & Arikawa-Hirasawa, E. (2012). Heparan sulfate niche for cell proliferation in the adult brain. Neuroscience Letters, 510, 67–72

    Article  CAS  Google Scholar 

  • Morikawa, S., Mabuchi, Y., Niibe, K., Suzuki, S., Nagoshi, N., Sunabori, T., Shimmura, S., Nagai, Y., Nakagawa, T., Okano, H., & Matsuzaki, Y. (2009). Development of mesenchymal stem cells partially originate from the neural crest. Biochemical and Biophysical Research Communications, 379, 1114–1119

    Article  CAS  Google Scholar 

  • Muller, J., Ossig, C., Greiner, J. F., Hauser, S., Fauser, M., Widera, D., Kaltschmidt, C., Storch, A., & Kaltschmidt, B. (2015). Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats. Stem Cells Translational Medicine, 4, 31–43

    Article  Google Scholar 

  • Nakagomi, T., Molnar, Z., Nakano-Doi, A., Taguchi, A., Saino, O., Kubo, S., Clausen, M., Yoshikawa, H., Nakagomi, N., & Matsuyama, T. (2011). Ischemia-induced neural stem/progenitor cells in the pia mater following cortical infarction. Stem Cells Development., 20, 2037–2051

    Article  CAS  Google Scholar 

  • O’Rahilly, R., & Muller, F. (1986). The meninges in human development. Journal of Neuropathology and Experimental Neurology, 45, 588–608

    Article  CAS  Google Scholar 

  • Saadai, P., Wang, A., Nout, Y. S., Downing, T. L., Lofberg, K., Beattie, M. S., Bresnahan, J. C., Li, S., & Farmer, D. L. (2013). Human induced pluripotent stem cell-derived neural crest stem cells integrate into the injured spinal cord in the fetal lamb model of myelomeningocele. Journal of Pediatric Surgery, 48, 158–163

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from NIH.

Author information

Authors and Affiliations

Authors

Contributions

EHL, EYS, and KH contributed to manuscript preparation.

Corresponding author

Correspondence to Kazuhide Hayakawa.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayakawa, K., Snyder, E.Y. & Lo, E.H. Meningeal Multipotent Cells: A Hidden Target for CNS Repair?. Neuromol Med 23, 339–343 (2021). https://doi.org/10.1007/s12017-021-08663-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-021-08663-1

Keywords

Navigation