Skip to main content
Log in

Application and Comparison of Different Regression Models in Iodine Balance Experiment on Women of Childbearing Age and Pregnant Women

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The iodine balance experiment is a traditional approach to evaluate the physiological requirement for iodine, while the simple linear regression model (SLM) and the mixed effects model (MEM) are two primary methods used to analyze iodine balance experiments. In the present study, we aimed to compare the effects of these two regression models on the evaluation of iodine balance experiments to investigate appropriate valuation methods. By constructing SLM and MEM, zero iodine balance values (IBV) were determined, and the evaluation effects were compared. No changes were made to the experimental data for women of childbearing age, and cutoff values of 600 µg/day and 1000 µg/day, respectively, were chosen for further processing of the experimental data for pregnant women. Equation combinations 1–3 (EC1-3) were obtained by fitting SLM, and zero IBV were calculated as 110.26 µg/day, 333.06 µg/day, and 434.84 µg/day, respectively. EC4-6 were obtained by fitting MEM, and zero IBV were calculated as 110.44 µg/day, 335.79 µg/day, and 418.06 µg/day, respectively. The inclusion of inter-measurement variation as a random factor in the MEM yielded EC7-8, which reduced the test power of the iodine balance experiment on women of childbearing age. Our study suggested that when experimental conditions were tightly controlled, with fewer uncertainties or significant influences, computationally straightforward and well-understood SLM was preferred. If some uncertain factors might cause large changes in the experimental results, it was advised to use a more “conservative” MEM to calculate the zero IBV. ClinicalTrials.gov Identifier: Registered at Clinicaltrials.gov, NCT03279315 (17th September 2017, retrospectively registered), NCT03710148 (18th October 2018, retrospectively registered).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

B1 :

Inhaled iodine

B2 :

Exhaled iodine

CSCN:

China Nutrition Science Congress

D:

Dietary iodine

DRIs:

Dietary reference intakes

EC:

Equation combination

F:

Fecal iodine

FT3:

Free triiodothyronine

FT4:

Free thyroxine

IBV:

Iodine balance values

IDD:

Iodine deficiency disease

MEM:

Mixed effects model

U:

Urinary iodine

UIC:

Urinary iodine concentration

UL:

Upper tolerable iodine intake

W:

Water iodine

WHO:

World Health Organization

S:

Sweat iodine

SLM:

Simple linear regression model

T3:

Triiodothyronine

T4:

Thyroxine

TE:

Total iodine excretion

Tg:

Thyroglobulin

TI:

Total iodine intake

TRH:

Thyrotropin-releasing hormone

TSH:

Thyroid-stimulating hormone

Tvol:

Thyroid volume

References

  1. Sorrenti S, Baldini E, Pironi D, Lauro A, D’Orazi V, Tartaglia F, Tripodi D, Lori E, Gagliardi F, Praticò M, Illuminati G, D’Andrea V, Palumbo P, Ulisse S (2021) Iodine: its role in thyroid hormone biosynthesis and beyond. Nutrients 13:12. https://doi.org/10.3390/nu13124469

    Article  CAS  Google Scholar 

  2. Wang B, He W, Li Q, Jia X, Yao Q, Song R, Qin Q, Zhang JA (2019) U-shaped relationship between iodine status and thyroid autoimmunity risk in adults. Eur J Endocrinol 181(3):255–266. https://doi.org/10.1530/eje-19-0212

    Article  CAS  PubMed  Google Scholar 

  3. Woeber KA (1991) Iodine and thyroid disease. Med Clin North Am 75(1):169–178. https://doi.org/10.1016/s0025-7125(16)30477-1

    Article  CAS  PubMed  Google Scholar 

  4. Markou K, Georgopoulos N, Kyriazopoulou V, Vagenakis AG (2001) Iodine-induced hypothyroidism. Thyroid 11(5):501–510. https://doi.org/10.1089/105072501300176462

    Article  CAS  PubMed  Google Scholar 

  5. Zhao J, van der Haar F (2004) Progress in salt iodization and improved iodine nutrition in China, 1995–99. Food Nutr Bull 25(4):337–343. https://doi.org/10.1177/156482650402500403

    Article  PubMed  Google Scholar 

  6. Sun D, Codling K, Chang S, Zhang S, Shen H, Su X, Chen Z, Scherpbier RW, Yan J (2017) Eliminating iodine deficiency in China: achievements, challenges and global implications. Nutrients 9:4. https://doi.org/10.3390/nu9040361

    Article  Google Scholar 

  7. Liu T, Li Y, Teng D, Shi X, Yan L, Yang J, Yao Y, Ye Z, Ba J, Chen B, Du J, He L, Lai X, Teng X, Li Y, Chi H, Liao E, Liu C, Liu L, Qin G, Qin Y, Quan H, Shi B, Sun H, Tang X, Tong N, Wang G, Zhang JA, Wang Y, Xue Y, Yang L, Zhang Q, Zhang L, Zhu J, Zhu M, Shan Z, Teng W (2021) The characteristics of iodine nutrition status in China after 20 years of universal salt iodization: an epidemiology study covering 31 provinces. Thyroid 31(12):1858–1867. https://doi.org/10.1089/thy.2021.0301

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Teng D, Ba J, Chen B, Du J, He L, Lai X, Teng X, Shi X, Li Y, Chi H, Liao E, Liu C, Liu L, Qin G, Qin Y, Quan H, Shi B, Sun H, Tang X, Tong N, Wang G, Zhang JA, Wang Y, Xue Y, Yan L, Yang J, Yang L, Yao Y, Ye Z, Zhang Q, Zhang L, Zhu J, Zhu M, Ning G, Mu Y, Zhao J, Shan Z, Teng W (2020) Efficacy and safety of long-term universal salt iodization on thyroid disorders: epidemiological evidence from 31 provinces of Mainland China. Thyroid 30(4):568–579. https://doi.org/10.1089/thy.2019.0067

    Article  CAS  PubMed  Google Scholar 

  9. Wang C, Li Y, Teng D, Shi X, Ba J, Chen B, Du J, He L, Lai X, Li Y, Chi H, Liao E, Liu C, Liu L, Qin G, Qin Y, Quan H, Shi B, Sun H, Tang X, Tong N, Wang G, Zhang JA, Wang Y, Xue Y, Yan L, Yang J, Yang L, Yao Y, Ye Z, Zhang Q, Zhang L, Zhu J, Zhu M, Shan Z, Teng W (2021) Hyperthyroidism prevalence in China after universal salt iodization. Frontiers Endocrinol 12:651534. https://doi.org/10.3389/fendo.2021.651534

    Article  Google Scholar 

  10. Dworkin HJ, Jacquez JA, Beierwaltes WH (1966) Relationship of iodine ingestion to iodine excretion in pregnancy. J Clin Endocrinol Metab 26(12):1329–1342. https://doi.org/10.1210/jcem-26-12-1329

    Article  CAS  PubMed  Google Scholar 

  11. Fisher DA, Oddie TH (1969) Thyroid iodine content and turnover in euthyroid subjects: validity of estimation of thyroid iodine accumulation from short-term clearance studies. J Clin Endocrinol Metab 29(5):721–727. https://doi.org/10.1210/jcem-29-5-721

    Article  CAS  PubMed  Google Scholar 

  12. Costa A, Bacci R, Campagnoli C, Cottino F, Lombardi M, Scorta A, Zoppetti G (1969) Iodine balance studies in pregnancy. Folia Endocrinol 22(4):364–372

    CAS  PubMed  Google Scholar 

  13. Vought RL, London WT (1967) Iodine intake, excretion and thyroidal accumulation in healthy subjects. J Clin Endocrinol Metab 27(7):913–919. https://doi.org/10.1210/jcem-27-7-913

    Article  CAS  PubMed  Google Scholar 

  14. Malamos B, Koutras DA, Marketos SG, Rigopoulos GA, Yataganas XA, Binopoulos D, Sfontouris J, Pharmakiotis AD, Vought RL, London WT (1967) Endemic goiter in Greece: an iodine balance study in the field. J Clin Endocrinol Metab 27(10):1372–1380. https://doi.org/10.1210/jcem-27-10-1372

    Article  CAS  PubMed  Google Scholar 

  15. Harrison MT, Harden RM, Alexander WD, Wayne E (1965) Iodine balance studies in patients with normal and abnormal thyroid function. J Clin Endocrinol Metab 25:1077–1084. https://doi.org/10.1210/jcem-25-8-1077

    Article  CAS  PubMed  Google Scholar 

  16. Harrison MT (1968) Iodine balance in man. Postgrad Med J 44(507):69–71. https://doi.org/10.1136/pgmj.44.507.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ares S, Quero J, de Escobar GM (2008) Iodine balance, iatrogenic excess, and thyroid dysfunction in premature newborns. Semin Perinatol 32(6):407–412. https://doi.org/10.1053/j.semperi.2008.09.006

    Article  PubMed  Google Scholar 

  18. Jahreis G, Hausmann W, Kiessling G, Franke K, Leiterer M (2001) Bioavailability of iodine from normal diets rich in dairy products–results of balance studies in women. Exp Clin Endocrinol Diabetes 109(3):163–167. https://doi.org/10.1055/s-2001-14840

    Article  CAS  PubMed  Google Scholar 

  19. Bakker B, Vulsma T, de Randamie J, Achterhuis AM, Wiedijk B, Oosting H, Glas C, de Vijlder JJ (1999) A negative iodine balance is found in healthy neonates compared with neonates with thyroid agenesis. J Endocrinol 161(1):115–120. https://doi.org/10.1677/joe.0.1610115

    Article  CAS  PubMed  Google Scholar 

  20. Tan L, Tian X, Wang W, Guo X, Sang Z, Li X, Zhang P, Sun Y, Tang C, Xu Z, Shen J, Zhang W (2019) Exploration of the appropriate recommended nutrient intake of iodine in healthy Chinese women: an iodine balance experiment. Br J Nutr 121(5):519–528. https://doi.org/10.1017/s0007114518003653

    Article  CAS  PubMed  Google Scholar 

  21. Yang L, Wang J, Yang J, Zhang H, Liu X, Mao D, Lu J, Gu Y, Li X, Wang H, Xu J, Tan H, Zhang H, Yu W, Tao X, Fan Y, Cai Q, Liu X, Yang X (2020) An iodine balance study to explore the recommended nutrient intake of iodine in Chinese young adults. Br J Nutr 124(11):1156–1165. https://doi.org/10.1017/s0007114520002196

    Article  CAS  PubMed  Google Scholar 

  22. Dold S, Zimmermann MB, Baumgartner J, Davaz T, Galetti V, Braegger C, Andersson M (2016) A dose-response crossover iodine balance study to determine iodine requirements in early infancy. Am J Clin Nutr 104(3):620–628. https://doi.org/10.3945/ajcn.116.134049

    Article  CAS  PubMed  Google Scholar 

  23. Skovlund E (2020) Simple linear regression. Tidsskrift for den Norske laegeforening 140:15. https://doi.org/10.4045/tidsskr.20.0494

    Article  Google Scholar 

  24. Altman N, Krzywinski M (2015) Simple linear regression. Nat Methods 12(11):999–1000. https://doi.org/10.1038/nmeth.3627

    Article  CAS  PubMed  Google Scholar 

  25. Bangdiwala SI (2018) Regression: simple linear. Int J Inj Contr Saf Promot 25(1):113–115. https://doi.org/10.1080/17457300.2018.1426702

    Article  PubMed  Google Scholar 

  26. Malvaux P, Beckers C, De Visscher M (1969) Iodine balance studies in nongoitrous children and in adolescents on low iodine intake. J Clin Endocrinol Metab 29(1):79–84. https://doi.org/10.1210/jcem-29-1-79

    Article  CAS  PubMed  Google Scholar 

  27. Marill KA (2004) Advanced statistics: linear regression, part II: multiple linear regression. Acad Emerg Med Off J Soc Acad Emerg Med 11(1):94–102. https://doi.org/10.1197/j.aem.2003.09.006

    Article  Google Scholar 

  28. Wang N, Liu W (2014) A distribution-free approach in statistical modelling with repeated measurements and missing values. Commun Stat Theory Methods 43(8):1686–1697. https://doi.org/10.1080/03610926.2012.673678

    Article  Google Scholar 

  29. Chen Z, Dunson DB (2003) Random effects selection in linear mixed models. Biometrics 59(4):762–769. https://doi.org/10.1111/j.0006-341x.2003.00089.x

    Article  PubMed  Google Scholar 

  30. Sang Z, Wang PP, Yao Z, Shen J, Halfyard B, Tan L, Zhao N, Wu Y, Gao S, Tan J, Liu J, Chen Z, Zhang W (2012) Exploration of the safe upper level of iodine intake in euthyroid Chinese adults: a randomized double-blind trial. Am J Clin Nutr 95(2):367–373. https://doi.org/10.3945/ajcn.111.028001

    Article  CAS  PubMed  Google Scholar 

  31. Muller S, Scealy JL, Welsh AH (2013) Model selection in linear mixed models. Stat Sci 28(2):135–167. https://doi.org/10.1214/12-sts410

    Article  Google Scholar 

  32. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest Package: tests in linear mixed effects models. J Stat Softw 82(13):1–26. https://doi.org/10.18637/jss.v082.i13

    Article  Google Scholar 

  33. Brauer M, Curtin JJ (2018) Linear mixed-effects models and the analysis of nonindependent data: a unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychol Methods 23(3):389–411. https://doi.org/10.1037/met0000159

    Article  PubMed  Google Scholar 

  34. Burger HG, Patel YC (1977) Thyrotrophin releasing hormone–TSH. Clin Endocrinol Metab 6(1):83–100. https://doi.org/10.1016/s0300-595x(77)80057-1

    Article  CAS  PubMed  Google Scholar 

  35. Zhao L, Teng D, Shi X, Li Y, Ba J, Chen B, Du J, He L, Lai X, Li Y, Chi H, Liao E, Liu C, Liu L, Qin G, Qin Y, Quan H, Shi B, Sun H, Tang X, Tong N, Wang G, Zhang JA, Wang Y, Xue Y, Yan L, Yang J, Yang L, Yao Y, Ye Z, Zhang Q, Zhang L, Zhu J, Zhu M, Shan Z, Teng W (2020) The effect of increased iodine intake on serum thyrotropin: a cross-sectional, Chinese Nationwide Study. Thyroid 30(12):1810–1819. https://doi.org/10.1089/thy.2019.0842

    Article  CAS  PubMed  Google Scholar 

  36. Yang XF, Hou XH, Xu J, Guo HL, Yinq CJ, Chen XY, Sun XF (2006) Effect of selenium supplementation on activity and mRNA expression of type 1 deiodinase in mice with excessive iodine intake. Biomed Environ Sci 19(4):302–308

    CAS  PubMed  Google Scholar 

  37. Chen W, Li X, Wu Y, Bian J, Shen J, Jiang W, Tan L, Wang X, Wang W, Pearce EN, Zimmermann MB, Carriquiry AL, Zhang W (2017) Associations between iodine intake, thyroid volume, and goiter rate in school-aged Chinese children from areas with high iodine drinking water concentrations. Am J Clin Nutr 105(1):228–233. https://doi.org/10.3945/ajcn.116.139725

    Article  CAS  PubMed  Google Scholar 

  38. Zimmermann MB, Ito Y, Hess SY, Fujieda K, Molinari L (2005) High thyroid volume in children with excess dietary iodine intakes. Am J Clin Nutr 81(4):840–844. https://doi.org/10.1093/ajcn/81.4.840

    Article  CAS  PubMed  Google Scholar 

  39. Kinney SK, Dunson DB (2007) Fixed and random effects selection in linear and logistic models. Biometrics 63(3):690–698. https://doi.org/10.1111/j.1541-0420.2007.00771.x

    Article  PubMed  Google Scholar 

  40. Gunasekara FI, Richardson K, Carter K, Blakely T (2014) Fixed effects analysis of repeated measures data. Int J Epidemiol 43(1):264–269. https://doi.org/10.1093/ije/dyt221

    Article  PubMed  Google Scholar 

  41. Gurka MJ, Edwards LJ, Muller KE (2011) Avoiding bias in mixed model inference for fixed effects. Stat Med 30(22):2696–2707. https://doi.org/10.1002/sim.4293

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang J, Zhang HM, Mao DQ, Tan HX, Yu W, Xu J, Hong WX, Piao JH, Yang LC, Liu XB, Lu JX, Li WD, Li YJ, Liu XL, Yang XG (2022) Exploration of the lower threshold of iodine intake in Southern Chinese young adults based on “overflow theory” in an iodine balance study. Nutr J 21:1. https://doi.org/10.1186/s12937-022-00775-z

    Article  CAS  Google Scholar 

  43. Nath SK, Moinier B, Thuillier F, Rongier M, Desjeux JF (1992) Urinary excretion of iodide and fluoride from supplemented food grade salt. International J Vitam Nutr Res Int Z Vitam Ernahrungsforschung J Int Vitaminologie Nutr 62(1):66–72

    CAS  Google Scholar 

  44. Wolters B, Lass N, Reinehr T (2013) TSH and free triiodothyronine concentrations are associated with weight loss in a lifestyle intervention and weight regain afterwards in obese children. Eur J Endocrinol 168(3):323–329. https://doi.org/10.1530/eje-12-0981

    Article  CAS  PubMed  Google Scholar 

  45. Moura Souza A, Sichieri R (2011) Association between serum TSH concentration within the normal range and adiposity. Eur J Endocrinol 165(1):11–15. https://doi.org/10.1530/eje-11-0261

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are particularly grateful to the participants from Tianjin Medical University, Tianjin Tanggu Maternity Hospital, and Gaocheng County Maternity and Child Health Hospital in Shandong Province for their contributions and support. We also thank the Tianjin Key Laboratory of Environment, Nutrition and Public Health, and the Center for International Cooperation and Research on Environment, Nutrition and Public Health for providing the experimental platform for this study.

Funding

This work was supported by grants from the National Natural Science Foundation of China (grant numbers 31340033, 81330064, and 82073549).

Author information

Authors and Affiliations

Authors

Contributions

W.Z. and L.T. designed the study. X.T., W.W., X.G., Q.S., and T.C. collected the information and collated the data. Y. C. and L.T. provided guidance on statistical methods. W.C. and Z.P. collated and analyzed the data. W.Y. wrote the manuscript and visualized the data. All authors reviewed the manuscript.

Corresponding author

Correspondence to Long Tan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

Ethics approval was obtained from the Ethics Committee of Tianjin Medical University (TMUhMEC2020033). Written informed consent was obtained from each participant. This information on the research has been registered on ClinicalTrials.gov (ID: NCT03279315; NCT03710148).

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tian, X., Song, Q. et al. Application and Comparison of Different Regression Models in Iodine Balance Experiment on Women of Childbearing Age and Pregnant Women. Biol Trace Elem Res 202, 2474–2487 (2024). https://doi.org/10.1007/s12011-023-03867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03867-x

Keywords

Navigation