Skip to main content

Advertisement

Log in

Current Approaches in Cardiac Repair: Somatic and Stem Cell Exosomes

  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

Myocardial infarction, which is the most important clinical sign of coronary artery disease, is one of the leading causes of global mortality, despite current treatment methods. Stem cell transplantation, which fastens on the regeneration of damaged tissue, has been suggested as an alternative approach in cardiac regenerative medicine; however, complications such as low survival in ischemic conditions, immune rejection, and teratoma formation have limited the routine use of stem cells in clinical treatments.

Recent Findings

Exosomes, which have been shown to play an essential role in intracellular communication and carry protein, lipid, and nucleic acid-based rich cargo content, have emerged as a new potential in the diagnosis and treatment of many diseases such as neurodegenerative diseases, cancer, and cardiovascular diseases in recent years. First findings have brought into the open that the exosomes secreted by local cells in the myocardium layer and stem cells have an essential role in the repair of cardiac damage because they involve pro-angiogenic, pro-survival, anti-fibrotic, or anti-apoptotic molecules.

Conclusion

This review has comprehensively discussed the rich cargo content of somatic and stem cell-derived exosomes, their regulatory mechanisms in amelioration of the pathophysiology of coronary artery disease, molecular interactions of exosomal cargo contents, strengths, and limitations of exosomal strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lindstrom M, DeCleene N, Dorsey H et al. Global burden of cardiovascular diseases and risks collaboration, 1990–2021.

  2. Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The global burden of cardiovascular diseases and risk: a compass for future health: American College of Cardiology Foundation Washington DC, 2022:2361–71.

  3. Alpert JS, Thygesen K, Antman E, Bassand J. Myocardial infarction redefined–a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol. 2000;36(3):959–69.

    Article  CAS  PubMed  Google Scholar 

  4. Singla DK. Embryonic stem cells in cardiac repair and regeneration. Antioxid Redox Signal. 2009;11(8):1857–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aslan A, Allahverdiyev AM, Bagirova M, Abamor ES. Problems in stem cell therapy for cardiac repair and tissue engineering approaches based on graphene and its derivatives. Curr Stem Cell Res Ther. 2018;13(6):447–57. https://doi.org/10.2174/1574888X13666180510110055.

    Article  CAS  PubMed  Google Scholar 

  6. Barile L, Lionetti V, Cervio E, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res. 2014;103(4):530–41.

    Article  CAS  PubMed  Google Scholar 

  7. Ailawadi S, Wang X, Gu H, Fan G-C. Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis. 2015;1852(1):1–11.

  8. Mayourian J, Ceholski DK, Gorski P et al. Exosomal microRNA-21–5p mediates mesenchymal stem cell paracrine effects on human cardiac tissue contractility. Circ Res. 2018;118.312420.

  9. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balaj L, Lessard R, Dai L, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180.

    Article  PubMed  Google Scholar 

  11. Cossetti C, Iraci N, Mercer TR, et al. Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells. Mol Cell. 2014;56(2):193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nature Rev Mol Cell Biol. 2018.

  13. Meldolesi J. Ectosomes and exosomes-two extracellular vesicles that differ only in some details. Biochem Mol Biol J. 2016;2(1).

  14. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bronson DL, Fraley EE, Fogh J, Kalter S. Induction of retrovirus particles in human testicular tumor (Tera-1) cell cultures: an electron microscopic study. J Natl Cancer Inst. 1979;63(2):337–9.

    CAS  PubMed  Google Scholar 

  16. Edgar JR. Q&A: What are exosomes, exactly? BMC Biol. 2016;14(1):46.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97(2):329–39.

    Article  CAS  PubMed  Google Scholar 

  18. Pan B-T, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985;101(3):942–8.

    Article  CAS  PubMed  Google Scholar 

  19. Johnstone RM, Adam M, Hammond J, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–20.

  20. Le Pecq J-B. Dexosomes as a therapeutic cancer vaccine: from bench to bedside. Blood Cells Mol Dis. 2005;35(2):129–35.

    Article  PubMed  Google Scholar 

  21. Hosseini HM, Soleimanirad J, Aghdam EM, Amin M, Fooladi AAI. Texosome-anchored superantigen triggers apoptosis in original ovarian cancer cells. Med Oncol. 2015;32(1):409.

    Article  Google Scholar 

  22. Kelly R, Holland P, Skibinski G, et al. Extracellular organelles (prostasomes) are immunosuppressive components of human semen. Clin Exp Immunol. 1991;86(3):550–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Simpson R, Mathivanan S. Extracellular microvesicles: the need for internationally recognised nomenclature and stringent purification criteria. 2012.

  24. Théry C, Boussac M, Véron P, et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol. 2001;166(12):7309–18.

    Article  PubMed  Google Scholar 

  25. Schorey JS, Bhatnagar S. Exosome function: from tumor immunology to pathogen biology. Traffic. 2008;9(6):871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32(3–4):623–42.

    Article  CAS  PubMed  Google Scholar 

  27. Clayton A, Turkes A, Dewitt S, Steadman R, Mason MD, Hallett MB. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J. 2004;18(9):977–9.

    Article  CAS  PubMed  Google Scholar 

  28. Feng D, Zhao WL, Ye YY, et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic. 2010;11(5):675–87.

    Article  CAS  PubMed  Google Scholar 

  29. Blanchard N, Lankar D, Faure F, et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/ζ complex. J Immunol. 2002;168(7):3235–41.

    Article  CAS  PubMed  Google Scholar 

  30. Ieda M. Heart development and regeneration via cellular interaction and reprogramming. Keio J Med. 2013;62(4):99–106.

    Article  CAS  PubMed  Google Scholar 

  31. Barile L, Gherghiceanu M, Popescu LM, Moccetti T, Vassalli G. Ultrastructural evidence of exosome secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres. BioMed Res Int. 2012;2012.

  32. Giricz Z, Varga ZV, Baranyai T, et al. Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J Mol Cell Cardiol. 2014;68:75–8.

    Article  CAS  PubMed  Google Scholar 

  33. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569.

    Article  PubMed  Google Scholar 

  34. Waldenström A, Gennebäck N, Hellman U, Ronquist G. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS ONE. 2012;7(4): e34653.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gupta S, Knowlton AA. HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol. 2007;292(6):H3052–6. https://doi.org/10.1152/ajpheart.01355.2006.

    Article  CAS  PubMed  Google Scholar 

  36. Yu X, Deng L, Wang D, et al. Mechanism of TNF-α autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1α, presented by exosomes. J Mol Cell Cardiol. 2012;53(6):848–57.

    Article  CAS  PubMed  Google Scholar 

  37. Malik ZA, Kott KS, Poe AJ, et al. Cardiac myocyte exosomes: stability, HSP60, and proteomics. Am J Physiol Heart Circ Physiol. 2013;304(7):H954–65. https://doi.org/10.1152/ajpheart.00835.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ribeiro-Rodrigues TM, Laundos TL, Pereira-Carvalho R, et al. Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovasc Res. 2017;113(11):1338–50. https://doi.org/10.1093/cvr/cvx118.

    Article  CAS  PubMed  Google Scholar 

  39. Garcia NA, Ontoria-Oviedo I, González-King H, Diez-Juan A, Sepúlveda P. Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells. PLoS ONE. 2015;10(9): e0138849.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hsieh PC, Davis ME, Lisowski LK, Lee RT. Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu Rev Physiol. 2006;68:51–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ottaviani LM, Juni RP, Sansonetti M et al. Cardiomyocyte-derived Mir-200c-3p in exosomes affects endothelial angiogenic capacity and impairs cardiac function. Circ Res. 2019;125(Suppl_1):A896-A96.

  42. Gou L, Xue C, Tang X, Fang Z. Inhibition of Exo-miR-19a-3p derived from cardiomyocytes promotes angiogenesis and improves heart function in mice with myocardial infarction via targeting HIF-1α. Aging (Albany NY). 2020;12(23):23609.

    Article  CAS  PubMed  Google Scholar 

  43. Li G, Qiu Z, Li C, et al. Exosomal MiR-29a in cardiomyocytes induced by angiotensin II regulates cardiac microvascular endothelial cell proliferation, migration and angiogenesis by targeting VEGFA. Curr Gene Ther. 2022;22(4):331–41. https://doi.org/10.2174/1566523222666220303102951.

    Article  CAS  PubMed  Google Scholar 

  44. Bonauer A, Carmona G, Iwasaki M, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009;324(5935):1710–3. https://doi.org/10.1126/science.1174381.

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Zhao R, Liu W, et al. Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway. Oxid Med Cell Longev. 2019;2019:7954657. https://doi.org/10.1155/2019/7954657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Y, Zhao R, Shen C, et al. Exosomal CircHIPK3 released from hypoxia-induced cardiomyocytes regulates cardiac angiogenesis after myocardial infarction. Oxid Med Cell Longev. 2020;2020:8418407. https://doi.org/10.1155/2020/8418407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ye J, Huang Y, Que B, et al. Interleukin-12p35 knock out aggravates doxorubicin-induced cardiac injury and dysfunction by aggravating the inflammatory response, oxidative stress, apoptosis and autophagy in mice. EBioMedicine. 2018;35:29–39. https://doi.org/10.1016/j.ebiom.2018.06.009.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kim SC, Stice JP, Chen L, et al. Extracellular heat shock protein 60, cardiac myocytes, and apoptosis. Circ Res. 2009;105(12):1186–95. https://doi.org/10.1161/CIRCRESAHA.109.209643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tian J, Guo X, Liu X-M, et al. Extracellular HSP60 induces inflammation through activating and up-regulating TLRs in cardiomyocytes. Cardiovasc Res. 2013;98(3):391–401.

    Article  CAS  PubMed  Google Scholar 

  50. Yu DW, Ge PP, Liu AL, Yu XY, Liu TT. HSP20-mediated cardiomyocyte exosomes improve cardiac function in mice with myocardial infarction by activating Akt signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(11):4873–81. https://doi.org/10.26355/eurrev_201906_18075.

    Article  PubMed  Google Scholar 

  51. Yang Y, Li Y, Chen X, Cheng X, Liao Y, Yu X. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. J Mol Med. 2016;94:711–24.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang C, Gan X, Liang R, Jian J. Exosomes derived from epigallocatechin gallate-treated cardiomyocytes attenuated acute myocardial infarction by modulating microRNA-30a. Front Pharmacol. 2020;11:126. https://doi.org/10.3389/fphar.2020.00126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang X, Gu H, Huang W, et al. Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes. 2016;65(10):3111–28. https://doi.org/10.2337/db15-1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang X, Gu H, Huang W, Wang Y, Fan G-C. Hsp20-reprogrammed exosomes derived from cardiomyocytes provide protection against diabetic cardiomyopathy in mice. Circulation 2014;130(suppl_2):A12638-A38.

  55. Yang J, Yu X, Xue F, Li Y, Liu W, Zhang S. Exosomes derived from cardiomyocytes promote cardiac fibrosis via myocyte-fibroblast cross-talk. Am J Transl Res. 2018;10(12):4350–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nie X, Fan J, Li H, et al. miR-217 promotes cardiac hypertrophy and dysfunction by targeting PTEN. Mol Ther Nucleic Acids. 2018;12:254–66. https://doi.org/10.1016/j.omtn.2018.05.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guo J, Chen LW, Huang ZQ, et al. Suppression of the inhibitory effect of circ_0036176-translated Myo9a-208 on cardiac fibroblast proliferation by miR-218-5p. J Cardiovasc Transl Res. 2022;15(3):548–59. https://doi.org/10.1007/s12265-022-10228-x.

    Article  PubMed  Google Scholar 

  58. Poon IK, Lucas CD, Rossi AG, Ravichandran KS. Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol. 2014;14(3):166–80. https://doi.org/10.1038/nri3607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang Z, Xu Y, Cao C, et al. Exosomes as a messager to regulate the crosstalk between macrophages and cardiomyocytes under hypoxia conditions. J Cell Mol Med. 2022;26(5):1486–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sun S, Wu Y, Maimaitijiang A, Huang Q, Chen Q. Ferroptotic cardiomyocyte-derived exosomes promote cardiac macrophage M1 polarization during myocardial infarction. PeerJ. 2022;10: e13717. https://doi.org/10.7717/peerj.13717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen C, Cai S, Wu M, et al. Role of cardiomyocyte-derived exosomal microRNA-146a-5p in macrophage polarization and activation. Dis Markers. 2022;2022:2948578. https://doi.org/10.1155/2022/2948578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu H, Qin L, Peng Y, Bai W, Wang Z. Exosomes derived from hypertrophic cardiomyocytes induce inflammation in macrophages via miR-155 mediated MAPK pathway. Front Immunol. 2020;11: 606045. https://doi.org/10.3389/fimmu.2020.606045.

    Article  CAS  PubMed  Google Scholar 

  63. Zheng Y, Vicencio JM, Yellon DM, Davidson SM. 27 exosomes released from endothelial cells are cardioprotective. Heart. 2014;100(Suppl 1):A10–A10.

    Article  Google Scholar 

  64. Liu W, Feng Y, Wang X, et al. Human umbilical vein endothelial cells-derived exosomes enhance cardiac function after acute myocardial infarction by activating the PI3K/AKT signaling pathway. Bioengineered. 2022;13(4):8850–65. https://doi.org/10.1080/21655979.2022.2056317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang B, Sun C, Liu Y, Bai F, Tu T, Liu Q. Exosomal miR-27b-3p derived from hypoxic cardiac microvascular endothelial cells alleviates rat myocardial ischemia/reperfusion injury through inhibiting oxidative stress-induced pyroptosis via Foxo1/GSDMD signaling. Oxid Med Cell Longev. 2022;2022.

  66. Dabravolski SA, Sukhorukov VN, Kalmykov VA, Grechko AV, Shakhpazyan NK, Orekhov AN. The role of KLF2 in the regulation of atherosclerosis development and potential use of KLF2-targeted therapy. Biomedicines. 2022;10(2):254. https://doi.org/10.3390/biomedicines10020254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hergenreider E, Heydt S, Tréguer K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14(3):249–56.

    Article  CAS  PubMed  Google Scholar 

  68. He S, Wu C, Xiao J, Li D, Sun Z, Li M. Endothelial extracellular vesicles modulate the macrophage phenotype: Potential implications in atherosclerosis. Scand J Immunol. 2018;87(4): e12648. https://doi.org/10.1111/sji.12648.

    Article  CAS  PubMed  Google Scholar 

  69. Gollmann-Tepeköylü C, Pölzl L, Graber M, et al. miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy. Cardiovasc Res. 2020;116(6):1226–36.

    Article  PubMed  Google Scholar 

  70. Halkein J, Tabruyn SP, Ricke-Hoch M, et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Investig. 2013;123(5):2143–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ranjan P, Kumari R, Krishnamurthy P, Kishore R, Verma SK. Cardiac fibroblast-derived exosomes mediate endothelial dysfunction and heart failure. Circ Res. 2019;125(Suppl_1):A256-A56.

  72. Ranjan P, Kumari R, Goswami SK, et al. Myofibroblast-derived exosome induce cardiac endothelial cell dysfunction. Front Cardiovasc Med. 2021;8: 676267. https://doi.org/10.3389/fcvm.2021.676267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li Q, Shen X, Wen S, Li Y, Xie D-M. Transplantation of exosomes derived from CD90 positive fibroblasts reduce apoptosis of cardiomyocytes in mice after acute myocardial infarction. 2021.

  74. Liu N, Xie L, Xiao P, et al. Cardiac fibroblasts secrete exosome microRNA to suppress cardiomyocyte pyroptosis in myocardial ischemia/reperfusion injury. Mol Cell Biochem. 2022;477(4):1249–60. https://doi.org/10.1007/s11010-021-04343-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu X, Li Y, Zhang S, Zhou X. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics. 2021;11(7):3052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu D, Yang M, Yao Y, et al. Cardiac fibroblasts promote ferroptosis in atrial fibrillation by secreting exo-miR-23a-3p targeting SLC7A11. Oxid Med Cell Longev. 2022;2022:3961495. https://doi.org/10.1155/2022/3961495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig. 2014;124(5):2136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Frangogiannis NG. Pathophysiology of myocardial infarction. Compr Physiol. 2011;5(4):1841–75.

    Google Scholar 

  79. Wang C, Zhang C, Liu L, et al. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther. 2017;25(1):192–204. https://doi.org/10.1016/j.ymthe.2016.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu S, Chen J, Shi J, et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment. Basic Res Cardiol. 2020;115(2):22. https://doi.org/10.1007/s00395-020-0781-7.

    Article  CAS  PubMed  Google Scholar 

  81. Wang Y, Li C, Zhao R, et al. CircUbe3a from M2 macrophage-derived small extracellular vesicles mediates myocardial fibrosis after acute myocardial infarction. Theranostics. 2021;11(13):6315–33. https://doi.org/10.7150/thno.52843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Long R, Gao L, Li Y, et al. M2 macrophage-derived exosomes carry miR-1271-5p to alleviate cardiac injury in acute myocardial infarction through down-regulating SOX6. Mol Immunol. 2021;136:26–35.

    Article  CAS  PubMed  Google Scholar 

  83. Dai Y, Wang S, Chang S, et al. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. J Mol Cell Cardiol. 2020;142:65–79.

    Article  CAS  PubMed  Google Scholar 

  84. Wei L, Zhao D. M2 macrophage-derived exosomal miR-145-5p protects against the hypoxia/reoxygenation-induced pyroptosis of cardiomyocytes by inhibiting TLR4 expression. Ann Transl Med. 2022;10(24):1376. https://doi.org/10.21037/atm-22-6109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu H, Gao W, Yuan J, et al. Exosomes derived from dendritic cells improve cardiac function via activation of CD4(+) T lymphocytes after myocardial infarction. J Mol Cell Cardiol. 2016;91:123–33. https://doi.org/10.1016/j.yjmcc.2015.12.028.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang Y, Gao W, Yuan J, et al. CCR7 mediates dendritic-cell-derived exosome migration and improves cardiac function after myocardial infarction. Pharmaceutics. 2023;15(2):461. https://doi.org/10.3390/pharmaceutics15020461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu H, Yu W, Wang C, et al. GW26-e0461 Exosomes secreted from dendritic cells induce angiogenesis by cardiac microvascular endothelial cells after myocardial infarction. J Am Coll Cardiol. 2015;66(16S):C63–C63.

    Article  Google Scholar 

  88. Liu H, Zhang Y, Yuan J, et al. Dendritic cell-derived exosomal miR-494-3p promotes angiogenesis following myocardial infarction. Int J Mol Med. 2021;47(1):315–25.

    Article  CAS  PubMed  Google Scholar 

  89. Laroumanie F, Douin-Echinard V, Pozzo J, et al. CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload. Circulation. 2014;129(21):2111–24.

    Article  CAS  PubMed  Google Scholar 

  90. Bansal SS, Ismahil MA, Goel M et al. Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure. Circ Heart Fail 2017;10(3):e003688.

  91. Zhao X, Wang J, He J, Tian X, Zhu D, Cai L. Effects of activated CD4+ T cell-derived exosomes on cardiac remodeling after myocardial infarction. Zhonghua Wei Zhong Bing ji jiu yi xue. 2021;33(11):1332–6.

    PubMed  Google Scholar 

  92. Cai L, Chao G, Li W, et al. Activated CD4+ T cells-derived exosomal miR-142-3p boosts post-ischemic ventricular remodeling by activating myofibroblast. Aging (Albany NY). 2020;12(8):7380.

    Article  CAS  PubMed  Google Scholar 

  93. Rolski F, Czepiel M, Weglarczyk K, Siedlar M, Kania G, Błyszczuk P. Autoreactive T lymphocytes activate cardiac endothelium independently of Tnf-α and cause endothelial dysfunction through exosomes in experimental autoimmune myocarditis. Circulation 2020;142(Suppl_3):A14723-A23.

  94. Rolski F, Czepiel M, Tkacz K et al. T lymphocyte-derived exosomes transport MEK1/2 and ERK1/2 and induce NOX4-dependent oxidative stress in cardiac microvascular endothelial cells. Oxid Med Cell Longev. 2022;2022.

  95. Wang J, Jin M, Ma W-h, Zhu Z, Wang X. The history of telocyte discovery and understanding. Telocytes: Connecting Cells 2016:1–21.

  96. Manole C, Cismaşiu V, Gherghiceanu M, Popescu L. Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med. 2011;15(11):2284–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang J, Li Y, Xue F, Liu W, Zhang S. Exosomes derived from cardiac telocytes exert positive effects on endothelial cells. Am J Transl Res. 2017;9(12):5375.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Liao Z, Chen Y, Duan C, et al. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Theranostics. 2021;11(1):268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Khan M, Nickoloff E, Abramova T, et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res. 2015;117(1):52–64. https://doi.org/10.1161/CIRCRESAHA.117.305990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kervadec A, Bellamy V, El Harane N, et al. Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. J Heart Lung Transplant. 2016;35(6):795–807. https://doi.org/10.1016/j.healun.2016.01.013.

    Article  PubMed  Google Scholar 

  101. Huang G. Abstract 139: Systemic analysis and discovery of embryonic stem cell-derived exosomal long non-coding RNAs as potential therapeutic modulators of myocardial repair. Circ Res. 2019;125(Suppl_1):A139-A39. https://doi.org/10.1161/res.125.suppl_1.139p.

  102. Dargani ZT, Singla DK. Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am J Physiol-Heart Circ Physiol. 2019;317(2):H460–71.

    Article  CAS  Google Scholar 

  103. Wu Q, Wang J, Tan WLW, et al. Extracellular vesicles from human embryonic stem cell-derived cardiovascular progenitor cells promote cardiac infarct healing through reducing cardiomyocyte death and promoting angiogenesis. Cell Death Dis. 2020;11(5):354. https://doi.org/10.1038/s41419-020-2508-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Takafuji Y, Hori M, Mizuno T, Harada-Shiba M. Humoral factors secreted from adipose tissue-derived mesenchymal stem cells ameliorate atherosclerosis in Ldlr-/- mice. Cardiovasc Res. 2019;115(6):1041–51. https://doi.org/10.1093/cvr/cvy271.

    Article  CAS  PubMed  Google Scholar 

  105. Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl). 2014;92(4):387–97. https://doi.org/10.1007/s00109-013-1110-5.

    Article  CAS  PubMed  Google Scholar 

  106. Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem. 2015;37(6):2415–24. https://doi.org/10.1159/000438594.

    Article  CAS  PubMed  Google Scholar 

  107. Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10(3):301–12. https://doi.org/10.1016/j.scr.2013.01.002.

    Article  CAS  PubMed  Google Scholar 

  108. Cui X, He Z, Liang Z, Chen Z, Wang H, Zhang J. Exosomes from adipose-derived mesenchymal stem cells protect the myocardium against ischemia/reperfusion injury through wnt/beta-catenin signaling pathway. J Cardiovasc Pharmacol. 2017;70(4):225–31. https://doi.org/10.1097/FJC.0000000000000507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem. 2017;43(1):52–68. https://doi.org/10.1159/000480317.

    Article  CAS  PubMed  Google Scholar 

  110. Deng J, Zhang T, Li M, et al. Irisin-pretreated BMMSCs secrete exosomes to alleviate cardiomyocytes pyroptosis and oxidative stress to hypoxia/reoxygenation injury. Curr Stem Cell Res Ther. 2022. https://doi.org/10.2174/1574888X18666221117111829.

    Article  PubMed  Google Scholar 

  111. Kang K, Ma R, Cai W, et al. Exosomes secreted from CXCR4 overexpressing mesenchymal stem cells promote cardioprotection via Akt signaling pathway following myocardial infarction. Stem Cells Int. 2015;2015: 659890. https://doi.org/10.1155/2015/659890.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ma J, Zhao Y, Sun L, et al. Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl Med. 2017;6(1):51–9. https://doi.org/10.5966/sctm.2016-0038.

    Article  CAS  PubMed  Google Scholar 

  113. Gonzalez-King H, Garcia NA, Ontoria-Oviedo I, Ciria M, Montero JA, Sepulveda P. Hypoxia inducible factor-1alpha potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem Cells. 2017;35(7):1747–59. https://doi.org/10.1002/stem.2618.

    Article  CAS  PubMed  Google Scholar 

  114. Zhu J, Lu K, Zhang N, et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. Artif Cells Nanomed Biotechnol. 2018;46(8):1659–70. https://doi.org/10.1080/21691401.2017.1388249.

    Article  CAS  PubMed  Google Scholar 

  115. Xu CM, Karbasiafshar C, Brinck Teixeira R, et al. Proteomic assessment of hypoxia-pre-conditioned human bone marrow mesenchymal stem cell-derived extracellular vesicles demonstrates promise in the treatment of cardiovascular disease. Int J Mol Sci. 2023;24(2):1674–774. https://doi.org/10.3390/ijms24021674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96(4):1297–325. https://doi.org/10.1152/physrev.00041.2015.

    Article  CAS  PubMed  Google Scholar 

  117. Nakamura Y, Kita S, Tanaka Y, et al. Adiponectin stimulates exosome release to enhance mesenchymal stem-cell-driven therapy of heart failure in mice. Mol Ther. 2020;28(10):2203–19. https://doi.org/10.1016/j.ymthe.2020.06.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li J, Xue H, Li T, et al. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE(-/-) mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun. 2019;510(4):565–72. https://doi.org/10.1016/j.bbrc.2019.02.005.

    Article  CAS  PubMed  Google Scholar 

  119. Ma J, Chen L, Zhu X, Li Q, Hu L, Li H. Mesenchymal stem cell-derived exosomal miR-21a-5p promotes M2 macrophage polarization and reduces macrophage infiltration to attenuate atherosclerosis. Acta Biochim Biophys Sin (Shanghai). 2021;53(9):1227–36. https://doi.org/10.1093/abbs/gmab102.

    Article  CAS  PubMed  Google Scholar 

  120. Yang W, Yin R, Zhu X, et al. Mesenchymal stem-cell-derived exosomal miR-145 inhibits atherosclerosis by targeting JAM-A. Mol Ther Nucleic Acids. 2021;23:119–31. https://doi.org/10.1016/j.omtn.2020.10.037.

    Article  CAS  PubMed  Google Scholar 

  121. Hu J, Jiang Y, Wu X, et al. Exosomal miR-17-5p from adipose-derived mesenchymal stem cells inhibits abdominal aortic aneurysm by suppressing TXNIP-NLRP3 inflammasome. Stem Cell Res Ther. 2022;13(1):349. https://doi.org/10.1186/s13287-022-03037-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Luther KM, Haar L, McGuinness M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. J Mol Cell Cardiol. 2018;119:125–37. https://doi.org/10.1016/j.yjmcc.2018.04.012.

    Article  CAS  PubMed  Google Scholar 

  123. Lin F, Zhang S, Liu X, Wu M. Mouse bone marrow derived mesenchymal stem cells-secreted exosomal microRNA-125b-5p suppresses atherosclerotic plaque formation via inhibiting Map4k4. Life Sci. 2021;274: 119249. https://doi.org/10.1016/j.lfs.2021.119249.

    Article  CAS  PubMed  Google Scholar 

  124. Gao H, Yu Z, Li Y, Wang X. miR-100-5p in human umbilical cord mesenchymal stem cell-derived exosomes mediates eosinophilic inflammation to alleviate atherosclerosis via the FZD5/Wnt/beta-catenin pathway. Acta Biochim Biophys Sin (Shanghai). 2021;53(9):1166–76. https://doi.org/10.1093/abbs/gmab093.

    Article  CAS  PubMed  Google Scholar 

  125. Feng Y, Huang W, Wani M, Yu X, Ashraf M. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS ONE. 2014;9(2): e88685. https://doi.org/10.1371/journal.pone.0088685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yu B, Kim HW, Gong M, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol. 2015;182:349–60. https://doi.org/10.1016/j.ijcard.2014.12.043.

    Article  PubMed  Google Scholar 

  127. Shi B, Wang Y, Zhao R, Long X, Deng W, Wang Z. Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit+ cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis. PLoS ONE. 2018;13(2):e0191616-e191716.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zhu W, Wang Q, Zhang J et al. Exosomes derived from miR-214–3p overexpressing mesenchymal stem cells promote myocardial repair. 2021. https://doi.org/10.21203/rs.3.rs-721088/v2.

  129. Wen Z, Mai Z, Zhu X, et al. Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic conditions through microRNA144 by targeting the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11(1):36. https://doi.org/10.1186/s13287-020-1563-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Peng Y, Zhao JL, Peng ZY, Xu WF, Yu GL. Exosomal miR-25-3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2. Cell Death Dis. 2020;11(5):317. https://doi.org/10.1038/s41419-020-2545-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen G, Wang M, Ruan Z, Zhu L, Tang C. Mesenchymal stem cell-derived exosomal miR-143-3p suppresses myocardial ischemia-reperfusion injury by regulating autophagy. Life Sci. 2021;280: 119742. https://doi.org/10.1016/j.lfs.2021.119742.

    Article  CAS  PubMed  Google Scholar 

  132. Wang W, Peng X, Zhao L, Zhao H, Gu Q. Extracellular vesicles from bone marrow mesenchymal stem cells inhibit apoptosis and autophagy of ischemia-hypoxia cardiomyocyte line in vitro by carrying miR-144-3p to inhibit ROCK1. Curr Stem Cell Res Ther. 2023;18(2):247–59. https://doi.org/10.2174/1574888X17666220503192941.

    Article  CAS  PubMed  Google Scholar 

  133. Cheng H, Chang S, Xu R, et al. Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. Stem Cell Res Ther. 2020;11(1):224. https://doi.org/10.1186/s13287-020-01737-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Song BW, Lee CY, Kim R, et al. Multiplexed targeting of miRNA-210 in stem cell-derived extracellular vesicles promotes selective regeneration in ischemic hearts. Exp Mol Med. 2021;53(4):695–708. https://doi.org/10.1038/s12276-021-00584-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ma T, Chen Y, Chen Y, et al. MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells Int. 2018;2018:3290372. https://doi.org/10.1155/2018/3290372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen Q, Liu Y, Ding X, et al. Bone marrow mesenchymal stem cell-secreted exosomes carrying microRNA-125b protect against myocardial ischemia reperfusion injury via targeting SIRT7. Mol Cell Biochem. 2020;465(1–2):103–14. https://doi.org/10.1007/s11010-019-03671-z.

    Article  CAS  PubMed  Google Scholar 

  137. Zhu LP, Tian T, Wang JY, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics. 2018;8(22):6163–77. https://doi.org/10.7150/thno.28021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhao J, Li X, Hu J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res. 2019;115(7):1205–16. https://doi.org/10.1093/cvr/cvz040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sun C, Li W, Li Y, et al. MiR-182-5p Mediated by exosomes derived from bone marrow mesenchymal stem cell attenuates inflammatory responses by targeting TLR4 in a mouse model of myocardial infraction. Immune Netw. 2022;22(6): e49. https://doi.org/10.4110/in.2022.22.e49.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Yue R, Lu S, Luo Y, et al. Mesenchymal stem cell-derived exosomal microRNA-182-5p alleviates myocardial ischemia/reperfusion injury by targeting GSDMD in mice. Cell Death Discov. 2022;8(1):202. https://doi.org/10.1038/s41420-022-00909-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sun L, Zhu W, Zhao P et al. Down-regulated exosomal microRNA-221–3p derived from senescent mesenchymal stem cells impairs heart repair. Front Cell Develop Biol. 2020.

  142. Wang Y, Shen Y. Exosomal miR-455-3p from BMMSCs prevents cardiac ischemia-reperfusion injury. Hum Exp Toxicol. 2022;41:9603271221102508. https://doi.org/10.1177/09603271221102508.

    Article  CAS  PubMed  Google Scholar 

  143. Sun XH, Wang X, Zhang Y, Hui J. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway. Thromb Res. 2019;177:23–32. https://doi.org/10.1016/j.thromres.2019.02.002.

    Article  CAS  PubMed  Google Scholar 

  144. Liu J, Wu J, Li L, Li T, Wang J. The role of exosomal non-coding RNAs in coronary artery disease. Front Pharmacol. 2020.

  145. Wang K, Jiang Z, Webster KA, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal microRNA-21. Stem Cells Transl Med. 2017;6(1):209–22. https://doi.org/10.5966/sctm.2015-0386.

    Article  CAS  PubMed  Google Scholar 

  146. Ning W, Li S, Yang W, et al. Blocking exosomal miRNA-153-3p derived from bone marrow mesenchymal stem cells ameliorates hypoxia-induced myocardial and microvascular damage by targeting the ANGPT1-mediated VEGF/PI3k/Akt/eNOS pathway. Cell Signal. 2021;77: 109812. https://doi.org/10.1016/j.cellsig.2020.109812.

    Article  CAS  PubMed  Google Scholar 

  147. Huang Y. Exosomal lncRNAs from mesenchymal stem cells as the novel modulators to cardiovascular disease. Stem Cell Res Ther. 2020;11:1–2.

    Article  Google Scholar 

  148. Liu W, Higashikuni Y, Sata M. Linking RNA dynamics to heart disease: the lncRNA/miRNA/mRNA axis in myocardial ischemia-reperfusion injury. Hypertens Res. 2022;45(6):1067–9. https://doi.org/10.1038/s41440-022-00905-4.

    Article  CAS  PubMed  Google Scholar 

  149. Zhang N, Luo Y, Zhang H, Zhang F, Gao X, Shao J. Exosomes derived from mesenchymal stem cells ameliorate the progression of atherosclerosis in ApoE(-/-) mice via FENDRR. Cardiovasc Toxicol. 2022;22(6):528–44. https://doi.org/10.1007/s12012-022-09736-8.

    Article  CAS  PubMed  Google Scholar 

  150. Sun L, He X, Zhang T, Han Y, Tao G. Knockdown of mesenchymal stem cell-derived exosomal LOC100129516 suppresses the symptoms of atherosclerosis via upregulation of the PPARgamma/LXRalpha/ABCA1 signaling pathway. Int J Mol Med. 2021;48(6):208–308. https://doi.org/10.3892/ijmm.2021.5041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yan B, Liu T, Yao C, Liu X, Du Q, Pan L. LncRNA XIST shuttled by adipose tissue-derived mesenchymal stem cell-derived extracellular vesicles suppresses myocardial pyroptosis in atrial fibrillation by disrupting miR-214-3p-mediated Arl2 inhibition. Lab Invest. 2021;101(11):1427–38. https://doi.org/10.1038/s41374-021-00635-0.

    Article  CAS  PubMed  Google Scholar 

  152. Li M, Ding W, Liu G, Wang J. Extracellular circular RNAs act as novel first messengers mediating cell cross-talk in ischemic cardiac injury and myocardial remodeling. J Cardiovasc Transl Res. 2022;15(3):444–55. https://doi.org/10.1007/s12265-022-10219-y.

    Article  PubMed  Google Scholar 

  153. Mao Q, Liang XL, Zhang CL, Pang YH, Lu YX. LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis. Stem Cell Res Ther. 2019;10(1):393. https://doi.org/10.1186/s13287-019-1522-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sun L, Zhu W, Zhao P, et al. Long noncoding RNA UCA1 from hypoxia-conditioned hMSC-derived exosomes: a novel molecular target for cardioprotection through miR-873-5p/XIAP axis. Cell Death Dis. 2020;11(8):696. https://doi.org/10.1038/s41419-020-02783-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Huang P, Wang L, Li Q, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res. 2020;116(2):353–67. https://doi.org/10.1093/cvr/cvz139.

    Article  CAS  PubMed  Google Scholar 

  156. Chen H, Xia W, Hou M. LncRNA-NEAT1 from the competing endogenous RNA network promotes cardioprotective efficacy of mesenchymal stem cell-derived exosomes induced by macrophage migration inhibitory factor via the miR-142-3p/FOXO1 signaling pathway. Stem Cell Res Ther. 2020;11(1):31. https://doi.org/10.1186/s13287-020-1556-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhang JK, Zhang Z, Guo ZA, et al. The BMSC-derived exosomal lncRNA Mir9-3hg suppresses cardiomyocyte ferroptosis in ischemia-reperfusion mice via the Pum2/PRDX6 axis. Nutr Metab Cardiovasc Dis. 2022;32(2):515–27. https://doi.org/10.1016/j.numecd.2021.10.017.

    Article  CAS  PubMed  Google Scholar 

  158. Ma J, Lei P, Chen H, et al. Advances in lncRNAs from stem cell-derived exosome for the treatment of cardiovascular diseases. Front Pharmacol. 2022;13: 986683. https://doi.org/10.3389/fphar.2022.986683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hu X, Qin H, Yan Y, et al. Exosomal circular RNAs: biogenesis, effect, and application in cardiovascular diseases. Front Cell Dev Biol. 2022;10: 948256. https://doi.org/10.3389/fcell.2022.948256.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Li CX, Song J, Li X, Zhang T, Li ZM. Circular RNA 0001273 in exosomes derived from human umbilical cord mesenchymal stem cells (UMSCs) in myocardial infarction. Eur Rev Med Pharmacol Sci. 2020;24(19):10086–95. https://doi.org/10.26355/eurrev_202010_23228.

    Article  PubMed  Google Scholar 

  161. Tian T, Li F, Chen R, Wang Z, Su X, Yang C. Therapeutic potential of exosomes derived from circRNA_0002113 lacking mesenchymal stem cells in myocardial infarction. Front Cell Develop Biol. 2022.

  162. Li J, Jiang R, Hou Y, Lin A. Mesenchymal stem cells-derived exosomes prevent sepsis-induced myocardial injury by a CircRTN4/miR-497-5p/MG53 pathway. Biochem Biophys Res Commun. 2022;618:133–40. https://doi.org/10.1016/j.bbrc.2022.05.094.

    Article  CAS  PubMed  Google Scholar 

  163. Zhou D, Dai Z, Ren M, Yang M. Adipose-derived stem cells-derived exosomes with high amounts of Circ_0001747 alleviate hypoxia/reoxygenation-induced injury in myocardial cells by targeting MiR-199b-3p/MCL1 Axis. Int Heart J. 2022;63(2):356–66. https://doi.org/10.1536/ihj.21-441.

    Article  CAS  PubMed  Google Scholar 

  164. Romano V, Belviso I, Sacco AM, et al. Human cardiac progenitor cell-derived extracellular vesicles exhibit promising potential for supporting cardiac repair in vitro. Front Physiol. 2022;13: 879046. https://doi.org/10.3389/fphys.2022.879046.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Barile L, Cervio E, Lionetti V, et al. Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-A. Cardiovasc Res. 2018;114(7):992–1005. https://doi.org/10.1093/cvr/cvy055.

    Article  CAS  PubMed  Google Scholar 

  166. Milano G, Biemmi V, Lazzarini E, et al. Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovasc Res. 2020;116(2):383–92. https://doi.org/10.1093/cvr/cvz108.

    Article  CAS  PubMed  Google Scholar 

  167. Gray WD, French KM, Ghosh-Choudhary S, et al. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circ Res. 2015;116(2):255–63. https://doi.org/10.1161/CIRCRESAHA.116.304360.

    Article  CAS  PubMed  Google Scholar 

  168. Chen L, Wang Y, Pan Y, et al. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun. 2013;431(3):566–71. https://doi.org/10.1016/j.bbrc.2013.01.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ibrahim AG, Cheng K, Marban E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports. 2014;2(5):606–19. https://doi.org/10.1016/j.stemcr.2014.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Namazi H, Mohit E, Namazi I, et al. Exosomes secreted by hypoxic cardiosphere-derived cells enhance tube formation and increase pro-angiogenic miRNA. J Cell Biochem. 2018;119(5):4150–60. https://doi.org/10.1002/jcb.26621.

    Article  CAS  PubMed  Google Scholar 

  171. Hirai K, Ousaka D, Fukushima Y, et al. Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy. Sci Transl Med 2020;12(573):eabb3336-eabb36 doi: https://doi.org/10.1126/scitranslmed.abb3336.

  172. Adamiak M, Cheng G, Bobis-Wozowicz S, et al. Induced pluripotent stem cell (iPSC)-derived extracellular vesicles are safer and more effective for cardiac repair than iPSCs. Circ Res. 2018;122(2):296–309. https://doi.org/10.1161/CIRCRESAHA.117.311769.

    Article  CAS  PubMed  Google Scholar 

  173. Wang Y, Zhang L, Li Y, et al. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol. 2015;192:61–9. https://doi.org/10.1016/j.ijcard.2015.05.020.

    Article  PubMed  PubMed Central  Google Scholar 

  174. •• Gao L, Wang L, Wei Y et al. Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine. Sci Transl Med 2020;12(561):eaay1318-eaay18. https://doi.org/10.1126/scitranslmed.aay1318. A comprehensive study about the comparison of iPSCs-derived exosomes and iPSCs, in cardiac repair. In vivo findings demonstrate the potential of iPSCs-derived exosomes to prevent complications from cell transplantation.

  175. • Kurtzwald-Josefson E, Zeevi-Levin N, Rubchevsky V et al. Cardiac fibroblast-induced pluripotent stem cell-derived exosomes as a potential therapeutic mean for heart failure. Int J Mol Sci 2020;21(19):7215–15. https://doi.org/10.3390/ijms21197215. Diversities the in cargo content of iPSCs-derived exosomes which are programmed from fibroblasts that are isolated from distinct tissues have been shown to affect cardiac regeneration potential.

  176. El Harane N, Kervadec A, Bellamy V, et al. Acellular therapeutic approach for heart failure: in vitro production of extracellular vesicles from human cardiovascular progenitors. Eur Heart J. 2018;39(20):1835–47. https://doi.org/10.1093/eurheartj/ehy012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Liu B, Lee BW, Nakanishi K, et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nat Biomed Eng. 2018;2(5):293–303. https://doi.org/10.1038/s41551-018-0229-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lee WH, Chen WY, Shao NY, et al. Comparison of non-coding RNAs in exosomes and functional efficacy of human embryonic stem cell- versus induced pluripotent stem cell-derived cardiomyocytes. Stem Cells. 2017;35(10):2138–49. https://doi.org/10.1002/stem.2669.

    Article  CAS  PubMed  Google Scholar 

  179. Li H, Gu J, Sun X, Zuo Q, Li B, Gu X. Isolation of swine bone marrow lin-/CD45-/CD133 + cells and cardio-protective effects of its exosomes. Stem Cell Rev Rep. 2023;19(1):213–29. https://doi.org/10.1007/s12015-022-10432-x.

    Article  CAS  PubMed  Google Scholar 

  180. Xiong Y, Yang C, Yang X, Ding C, Wang Q, Zhu H. LncRNA MIR9-3HG enhances LIMK1 mRNA and protein levels to contribute to the carcinogenesis of lung squamous cell carcinoma via sponging miR-138-5p and recruiting TAF15. Pathol Res Pract. 2022;237: 153941. https://doi.org/10.1016/j.prp.2022.153941.

    Article  CAS  PubMed  Google Scholar 

  181. Yang T, Long T, Du T, Chen Y, Dong Y, Huang ZP. Circle the cardiac remodeling with circRNAs. Front Cardiovasc Med. 2021;8: 702586. https://doi.org/10.3389/fcvm.2021.702586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

These authors contributed equally to this work.

Corresponding author

Correspondence to Ayca Aslan PhD.

Ethics declarations

Conflict of Interest

Selcen Ari Yuka declares that she has no conflict of interest. Ayca Aslan declares that she has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuka, S.A., Aslan, A. Current Approaches in Cardiac Repair: Somatic and Stem Cell Exosomes. Curr Treat Options Cardio Med 25, 689–714 (2023). https://doi.org/10.1007/s11936-023-01021-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-023-01021-3

Keywords

Navigation