Skip to main content

Advertisement

Log in

Update on Central Nervous System Effects of the Intersection of HIV-1 and SARS-CoV-2

  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Research has shown myriad neurologic and mental health manifestations during the acute and subsequent stages of COVID-19 in people with HIV (PWH). This review summarizes the updates on central nervous system (CNS) outcomes following SARS-CoV-2 infection in PWH and highlight the existing knowledge gaps in this area.

Recent Findings

Studies leveraging electronic record systems have highlighted the excess risk of developing acute and lingering neurological complications of COVID-19 in PWH compared to people without HIV (PWoH). However, there is a notable scarcity of neuroimaging as well as blood and cerebrospinal fluid (CSF) marker studies that can confirm the potential synergy between these two infections, particularly in PWH receiving suppressive antiretroviral therapy.

Summary

Considering the unclear potential interaction between SARS-CoV-2 and HIV, clinicians should remain vigilant regarding new-onset or worsening neurological symptoms in PWH following COVID-19, as they could be linked to either infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. World Health Organization; [cited 2023 Jun 12]. Available from: https://covid19.who.int/.

  2. Bonanad C, García-Blas S, Tarazona-Santabalbina F, Sanchis J, Bertomeu-González V, Fácila L, et al. The effect of age on mortality in patients with COVID-19: A meta-analysis with 611,583 subjects. J Am Med Dir Assoc. 2020;21(7):915–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aveyard P, Gao M, Lindson N, Hartmann-Boyce J, Watkinson P, Young D, et al. Association between pre-existing respiratory disease and its treatment, and severe COVID-19: a population cohort study. Lancet Respir Med. 2021;9(8):909–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ssentongo P, Ssentongo AE, Heilbrunn ES, Ba DM, Chinchilli VM. Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. PLoS ONE. 2020;15:e0238215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao Y, Chen Y, Liu M, Shi S, Tian J. Impacts of immunosuppression and immunodeficiency on COVID-19: A systematic review and meta-analysis. J Infect. 2020;81(2):e93–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fernández-de-Las-Peñas C, Notarte KI, Peligro PJ, Velasco JV, Ocampo MJ, Henry BM, et al. Long-COVID symptoms in individuals infected with different SARS-CoV-2 variants of concern: A systematic review of the literature. Viruses. 2022;14(12):2629.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102–7.

    Article  CAS  PubMed  Google Scholar 

  8. Dangayach NS, Newcombe V, Sonnenville R. Acute neurologic complications of COVID-19 and postacute sequelae of COVID-19. Crit Care Clin. 2022;38(3):553–70.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fan Y, Li X, Zhang L, Wan S, Zhang L, Zhou F. SARS-CoV-2 Omicron variant: recent progress and future perspectives. Signal Transduct Target Ther. 2022;7(1):141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Willett BJ, Grove J, MacLean OA, Wilkie C, De Lorenzo G, Furnon W, et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat Microbiol. 2022;7(8):1161–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McCallum M, Czudnochowski N, Rosen LE, Zepeda SK, Bowen JE, Walls AC, et al. Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science. 2022;375(6583):864–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maslo C, Friedland R, Toubkin M, Laubscher A, Akaloo T, Kama B. Characteristics and outcomes of hospitalized patients in south Africa during the COVID-19 Omicron wave compared with previous waves. JAMA. 2022;327(6):583.

    Article  CAS  PubMed  Google Scholar 

  13. Stepanova M, Lam B, Younossi E, Felix S, Ziayee M, Price J, et al. The impact of variants and vaccination on the mortality and resource utilization of hospitalized patients with COVID-19. BMC Infect Dis. 2022;22(1):702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Willan J, Agarwal G, Bienz N. Mortality and burden of post-COVID-19 syndrome have reduced with time across SARS-CoV-2 variants in haematology patients. Br J Haematol. 2023;201(4):640–4.

    Article  CAS  PubMed  Google Scholar 

  15. Cortellini A, Tabernero J, Mukherjee U, Salazar R, Sureda A, Maluquer C, et al. SARS-CoV-2 omicron (B.1.1.529)-related COVID-19 sequelae in vaccinated and unvaccinated patients with cancer: results from the OnCovid registry. Lancet Oncol. 2023;24(4):335–46.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Reiner RC, Collins JK, Team C1F, Murray CJ. Forecasting the trajectory of the COVID-19 pandemic under plausible variant and intervention scenarios: A global modelling study [Internet]. SSRN Journal [cited 2023 Jul 13]. Available from: https://ssrn.com/abstract=4126660.

  17. Amanatidou E, Gkiouliava A, Pella E, Serafidi M, Tsilingiris D, Vallianou NG, et al. Breakthrough infections after COVID-19 vaccination: Insights, perspectives and challenges. Metabolism Open. 2022;14:100180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zisis SN, Durieux JC, Mouchati C, Perez JA, McComsey GA. The protective effect of coronavirus disease 2019 (COVID-19) vaccination on postacute sequelae of COVID-19: A multicenter study from a large national health research network. Open Forum. Infect Dis. 2022;9(7):ofac228.

    Google Scholar 

  19. Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med. 2022;386(15):1397–408.

    Article  CAS  PubMed  Google Scholar 

  20. Najjar-Debbiny R, Gronich N, Weber G, Khoury J, Amar M, Stein N, et al. Effectiveness of Paxlovid in reducing severe coronavirus disease 2019 and mortality in high-risk patients. Clin Infect Dis. 2023;76(3):e342–9.

    Article  CAS  PubMed  Google Scholar 

  21. Xie Y, Choi T, Al-Aly Z. Association of treatment with nirmatrelvir and the risk of post–COVID-19 condition. JAMA Intern Med. 2023;183(6):554–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peluso MJ, Anglin K, Durstenfeld MS, Martin JN, Kelly JD, Hsue PY, et al. Effect of oral Nirmatrelvir on long COVID symptoms: 4 cases and rationale for systematic studies. Pathog Immun. 2022;7(1):95–103.

    PubMed  PubMed Central  Google Scholar 

  23. Statement on the fifteenth meeting of the IHR (2005) Emergency Committee on the COVID-19 pandemic [Internet]. World Health Organization; [cited 2023 Jun 28]. Available from: https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic

  24. Chou SH, Beghi E, Helbok R, Moro E, Sampson J, Altamirano V, et al. Global incidence of neurological manifestations among patients hospitalized with COVID-19-a report for the GCS-NeuroCOVID Consortium and the ENERGY Consortium. JAMA Netw Open. 2021;4(5):e2112131.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Spudich S, Nath A. Nervous system consequences of COVID-19. Science. 2022;375(6578):267–9.

    Article  CAS  PubMed  Google Scholar 

  26. Solomon T. Neurological infection with SARS-CoV-2 - the story so far. Nat Rev Neurol. 2021;17(2):65–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Misra S, Kolappa K, Prasad M, Radhakrishnan D, Thakur KT, Solomon T, et al. Frequency of neurologic manifestations in COVID-19: a systematic review and meta-analysis. Neurology. 2021;97(23):e2269–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of Coronavirus disease 2019: A review. JAMA Neurol. 2020;77(8):1018.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Douaud G, Lee S, Alfaro-Almagro F, Arthofer C, Wang C, McCarthy P, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature. 2022;604(7907):697–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kamasak B, Ulcay T, Nisari M, Gorgulu O, Akca V, Alpaslan M, et al. Effects of COVID-19 on brain and cerebellum: a voxel based morphometrical analysis. Bratisl Lek Listy. 2023;124(6):442–8.

    PubMed  Google Scholar 

  31. Paolini M, Palladini M, Mazza MG, Colombo F, Vai B, Rovere-Querini P, et al. Brain correlates of subjective cognitive complaints in COVID-19 survivors: A multimodal magnetic resonance imaging study. Eur Neuropsychopharmacol. 2023;68:1–10.

    Article  CAS  PubMed  Google Scholar 

  32. Guedj E, Campion JY, Dudouet P, Kaphan E, Bregeon F, Tissot-Dupont H, et al. 18F-FDG brain PET hypometabolism in patients with long COVID. Eur J Nucl Med Mol Imaging. 2021;48(9):2823–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goehringer F, Bruyere A, Doyen M, Bevilacqua S, Charmillon A, Heyer S, et al. Brain 18F-FDG PET imaging in outpatients with post-COVID-19 conditions: findings and associations with clinical characteristics. Eur J Nucl Med Mol Imaging. 2023;50(4):1084–9.

    Article  PubMed  Google Scholar 

  34. Venkataramani V, Winkler F. Cognitive deficits in long COVID-19. N Engl J Med. 2022;387(19):1813–5.

    Article  CAS  PubMed  Google Scholar 

  35. Zicari S, Sessa L, Cotugno N, Ruggiero A, Morrocchi E, Concato C, et al. Immune activation, inflammation, and non-AIDS co-morbidities in HIV-infected patients under long-term ART. Viruses. 2019;11(3):200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pourcher V, Gourmelen J, Bureau I, Bouee S. Comorbidities in people living with HIV: an epidemiologic and economic analysis using a claims database in France. PLoS One. 2020;15(12):e0243529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pérez-Valero I, Ellis R, Heaton R, Deutsch R, Franklin D, Clifford DB, et al. Cerebrospinal fluid viral escape in aviremic HIV-infected patients receiving antiretroviral therapy: prevalence, risk factors and neurocognitive effects. AIDS. 2019;33(3):475–81.

    Article  PubMed  Google Scholar 

  38. Winston A, Spudich S. Cognitive disorders in people living with HIV. Lancet HIV. 2020;7(7):e504–13.

    Article  PubMed  Google Scholar 

  39. Rubin LH, Maki PM. HIV, depression, and cognitive impairment in the era of effective antiretroviral therapy. Curr HIV/AIDS Rep. 2019;16(1):82–95.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Alonso A, Barnes AE, Guest JL, Shah A, Shao IY, Marconi V. HIV infection and incidence of cardiovascular diseases: an analysis of a large healthcare database. J Am Heart Assoc. 2019;8(14):e012241.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of Coronavirus disease 2019: A review. JAMA Neurol. 2020;77(8):1018–27.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ahmad SJ, Feigen CM, Vazquez JP, Kobets AJ, Altschul DJ. Neurological sequelae of COVID-19. J Integr Neurosci. 2022;21(3):77.

    Article  PubMed  Google Scholar 

  43. Xu E, Xie Y, Al-Aly Z. Long-term neurologic outcomes of COVID-19. Nat Med. 2022;28(11):2406–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peluso MJ, Hellmuth J, Chow FC. Central nervous system effects of COVID-19 in people with HIV infection. Curr HIV/AIDS Rep. 2021;18(6):538–48. This is a pioneer review article released during the initial stages of the pandemic that summarized the interaction of HIV and SARS-CoV-2 in the CNS.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bertagnolio S, Thwin SS, Silva R, Nagarajan S, Jassat W, Fowler R, et al. Clinical features of, and risk factors for, severe or fatal COVID-19 among people living with HIV admitted to hospital: analysis of data from the WHO Global Clinical Platform of COVID-19. The Lancet HIV. 2022;9(7):e486–95. This multi-country study from the WHO Global Clinical Platform of COVID-19 described the clinical features and risk factors of severe/fatal COVID-19 in PWH who are hospitalized due to COVID-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peluso MJ, AAR A. Long COVID in people living with HIV. Curr Opin HIV AIDS. 2023;18(3):126–34. This is a recent review article which summarized the latest knowledge and highlighted the potential contributors to long COVID in PWH.

    Article  PubMed  Google Scholar 

  47. Mellor MM, Bast AC, Jones NR, et al. Risk of adverse coronavirus disease 2019 outcomes for people living with HIV. AIDS. 2021;35(04):F1–F10.

    Article  CAS  PubMed  Google Scholar 

  48. Dandachi D, Geiger G, Montgomery MW, Karmen-Tuohy S, Golzy M, Antar AAR, et al. Characteristics, comorbidities, and outcomes in a multicenter registry of patients with human immunodeficiency virus and coronavirus disease 2019. Clin Infect Dis. 2020;65212:1–9.

    Google Scholar 

  49. Boulle A, Davies MA, Hussey H, Ismail M, Morden E, Vundle Z, et al. Risk factors for Coronavirus disease 2019 (COVID-19) death in a population cohort study from the Western Cape province. South Africa. Clin Infect Dis. 2021;73(7):e2005–15.

    Article  CAS  Google Scholar 

  50. Nachega JB, Kapata N, Sam-Agudu NA, Decloedt EH, Katoto PDMC, Nagu T, et al. Minimizing the impact of the triple burden of COVID-19, tuberculosis and HIV on health services in sub-Saharan Africa. Int J Infect Dis. 2021;113(Suppl 1):S16–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heidary M, Asadi A, Noorbakhsh N, Dashtbin S, Asadollahi P, Dranbandi A, et al. COVID-19 in HIV-positive patients: A systematic review of case reports and case series. J Clin Lab Anal. 2022;36(4):e24308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pujari S, Gaikwad S, Chitalikar A, Dabhade D, Joshi K, Bele V. Long-coronavirus disease among people living with HIV in western India: An observational study. Immun Inflamm Dis. 2021;9(3):1037–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mazzitelli M, Trunfio M, Sasset L, Leoni D, Castelli E, Lo Menzo S, et al. Factors associated with severe COVID-19 and post-acute COVID-19 syndrome in a cohort of people living with HIV on antiretroviral treatment and with undetectable HIV RNA. Viruses. 2022;14(3):493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yendewa G, Perez JA, Patil N, McComsey GA. hiv infection is associated with higher risk of post-acute sequelae of SARS-CoV-2 (PASC) however vaccination is protective. SSRN; cited [2023 Jun 28]. Available from: https://ssrn.com/abstract=4276609. This work is a multi-center, electronic health record study involving 30,000 PWH that investigated the risk of post-acute sequelae of COVID-19 in PWH across different SARS-CoV-2 variants.

  55. Bongomin F, Sereke SG, Okot J, Katsigazi R, Kandole TK, Oriekot A, et al. COVID-19, HIV-associated cryptococcal meningitis, disseminated tuberculosis and acute ischaemic stroke: A fatal foursome. Infect Drug Resist. 2021;14:4167–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gulati U, Nanduri AC, Juneja P, Kaufman D, Elrod MG, Kolton CB, et al. Case report: A fatal case of latent melioidosis activated by COVID-19. Am J Trop Med Hyg. 2022;106(4):1170–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Daodu J, Basuli D, Parikh A. A rare case of AIDS co-infected with COVID-19 presenting with disseminated herpes zoster complicated with CMV and Varicella zoster virus meningoencephalitis. Acta Biomed. 2022;93(6):e2022326.

    PubMed  PubMed Central  Google Scholar 

  58. Mathew S, Kalanad A, Khan MM, Hameed AMA, Sathyapal A, Mohankumar P. Cryptococcal meningoencephalitis in post-COVID period:case series and review of literature. J Med Sci Health. 2022;8(2):166–72.

    Google Scholar 

  59. Bessa PB, Brito AKB, Pereira FR, Silva SQE, Almeida TVR, Almeida AP. Ischemic stroke related to HIV and SARS-COV-2 co-infection: a case report. Rev Soc Bras Med Trop. 2020;53:e20200692.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Haddad S, Tayyar R, Risch L, Churchill G, Fares E, Choe M, et al. Encephalopathy and seizure activity in a COVID-19 well controlled HIV patient. IDCases. 2020;21:e00814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peluso MJ, Spinelli MA, Deveau T, Forman CA, Munter SE, Mathur S, et al. Postacute sequelae and adaptive immune responses in people with HIV recovering from SARS-COV-2 infection. AIDS. 2022;36(12):F7–F16.

    Article  CAS  PubMed  Google Scholar 

  62. Sha A, Chen H. Infection routes, invasion mechanisms, and drug inhibition pathways of human coronaviruses on the nervous system. Front Neurosci. 2023;17:1169740.

    Article  PubMed  Google Scholar 

  63. Stein SR, Ramelli SC, Grazioli A, Chung JY, Singh M, Yinda CK, et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022;612(7941):758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19(11):919–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thakur KT, Miller EH, Glendinning MD, Al-Dalahmah O, Banu MA, Boehme AK, et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain. 2021;144(9):2696–708.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Salman MA, Mallah SI, Khalid W, Ryan Moran L, Abousedu YAI, Jassim GA. Characteristics of Patients with SARS-CoV-2 Positive Cerebrospinal Fluid: A Systematic Review. Int J Gen Med. 2021;14:10385–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Normandin E, Holroyd KB, Collens SI, Shaw BM, Siddle KJ, Adams G, et al. Intrathecal inflammatory responses in the absence of SARS-CoV-2 nucleic acid in the CSF of COVID-19 hospitalized patients. J Neurol Sci. 2021;15(430):120023.

    Article  Google Scholar 

  68. Edén A, Grahn A, Bremell D, Aghvanyan A, Bathala P, Fuchs D, et al. Viral antigen and inflammatory biomarkers in cerebrospinal fluid in patients with COVID-19 infection and neurologic symptoms compared with control participants without infection or neurologic symptoms. JAMA Netw Open. 2022;5(5):e2213253.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jarius S, Pache F, Körtvelyessy P, Jelčić I, Stettner M, Franciotta D, et al. Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients. J Neuroinflammation. 2022;19(1):19

  70. Beckman D, Bonillas A, Diniz GB, Ott S, Roh JW, Elizaldi SR, et al. SARS-CoV-2 infects neurons and induces neuroinflammation in a non-human primate model of COVID-19. Cell Rep. 2022;41(5):111573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seehusen F, Clark JJ, Sharma P, Bentley EG, Kirby A, Subramaniam K, et al. Neuroinvasion and Neurotropism by SARS-CoV-2 Variants in the K18-hACE2 Mouse. Viruses. 2022;14(5):1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Crunfli F, Carregari VC, Veras FP, Silva LS, Nogueira MH, Antunes ASLM, et al. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc Natl Acad Sci U S A. 2022;119(35):e2200960119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Agrawal S, Farfel JM, Arfanakis K, Al-Harthi L, Shull T, Teppen TL, et al. Brain autopsies of critically ill COVID-19 patients demonstrate heterogeneous profile of acute vascular injury, inflammation and age-linked chronic brain diseases. Acta Neuropathol Commun. 2022;10(1):186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Colombo D, Falasca L, Marchioni L, Tammaro A, Adebanjo GAR, Ippolito G, et al. Neuropathology and inflammatory cell characterization in 10 autoptic COVID-19 brains. Cells. 2021;10(9):2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Song E, Bartley CM, Chow RD, Ngo TT, Jiang R, Zamecnik CR, et al. Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Rep Med. 2021;2(5):100288.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Franke C, Ferse C, Kreye J, Reincke SM, Sanchez-Sendin E, Rocco A, et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav Immun. 2021;93:415–9.

    Article  CAS  PubMed  Google Scholar 

  77. Jones BI, Freedman A, Thomas MJ, Villalba-Mendez C, Sathia L, Flanagan D, Francis S, Currie CJ. Comorbid diseases and conditions in people with HIV in the UK. Curr Med Res Opin. 2022;38(2):277–85.

    Article  CAS  PubMed  Google Scholar 

  78. De Michele M, Kahan J, Berto I, Schiavo OG, Iacobucci M, Toni D, et al. Cerebrovascular Complications of COVID-19 and COVID-19 Vaccination. Circ Res. 2022;130(8):1187–203.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vassiliou AG, Vrettou CS, Keskinidou C, Dimopoulou I, Kotanidou A, Orfanos SE. Endotheliopathy in Acute COVID-19 and Long COVID. Int J Mol Sci. 2023;24(9):8237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Martínez-Salazar B, Holwerda M, Stüdle C, Piragyte I, Mercader N, Engelhardt B, et al. COVID-19 and the vasculature: Current aspects and long-term consequences. Front Cell Dev Biol. 2022;10:824851.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zanini G, Selleri V, Roncati L, Coppi F, Nasi M, Farinetti A, et al. Vascular "long COVID": A new vessel disease. Angiology. 2023;18:000331972311532. https://doi.org/10.1177/00033197231153204.

    Article  Google Scholar 

  82. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Amin S, Aktar S, Rahman MM, Chowdhury MMH. NLRP3 inflammasome activation in COVID-19: an interlink between risk factors and disease severity. Microbes and Infect. 2022;24(1):104913.

    Article  CAS  Google Scholar 

  84. Monje M, Iwasaki A. The neurobiology of long COVID. Neuron. 2022;110(21):3484–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Peluso MJ, Deveau TM, Munter SE, Ryder D, Buck A, Beck-Engeser G, et al. Chronic viral coinfections differentially affect the likelihood of developing long COVID. J Clin Invest. 2023;133(3):e163669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vojdani A, Vojdani E, Saidara E, Maes M. Persistent SARS-CoV-2 infection, EBV, HHV-6 and other factors may contribute to inflammation and autoimmunity in long COVID. Viruses. 2023;15(2):400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu X, Xiang M, Jing H, Wang C, Novakovic VA, Shi J. Damage to endothelial barriers and its contribution to long COVID. Angiogenesis. 2023;27:1–18.

    Google Scholar 

  88. Nataf S, Pays L. Molecular insights into SARS-CoV2-induced alterations of the Gut/Brain axis. Int J Mol Sci. 2021;22(19):10440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gareau MG, Barrett KE. Role of the microbiota-gut-brain axis in postacute COVID syndrome. Am J Physiol Gastrointest Liver Physiol. 2023;324(4):G322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Katuri A, Bryant J, Heredia A, Makar TK. Role of the inflammasomes in HIV-associated neuroinflammation and neurocognitive disorders. Experimental and Molecular Pathology. 2019;108:64–72.

    Article  CAS  PubMed  Google Scholar 

  91. Yan Y, Ren Y, Chen R, Hu J, Ji Y, Yang J, et al. Evaluation of Epstein-Barr virus salivary shedding in HIV/AIDS patients and HAART use: A retrospective cohort study. Virol Sin. 2018;33(3):227–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Perello R, Vergara A, Monclus E, Jimenez S, Montero M, Saubi N, et al. Cytomegalovirus infection in HIV-infected patients in the era of combination antiretroviral therapy. BMC Infect Dis. BMC Infect Dis. 2019;19(1):1030.

    Article  CAS  PubMed  Google Scholar 

  93. Munawwar A, Singh S. Human herpesviruses as copathogens of HIV infection, their role in HIV transmission, and disease progression. J Lab Physicians. 2016;8(1):5–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mezoh G, Crowther NJ. Deciphering endothelial dysfunction in the HIV-infected population. Adv Exp Med Biol. 2019;1134:193–215.

    Article  CAS  PubMed  Google Scholar 

  95. Marincowitz C, Genis A, Goswami N, De Boever P, Nawrot TS, Strijdom H. Vascular endothelial dysfunction in the wake of HIV and ART. FEBS J. 2019;286(7):1256–70.

    Article  CAS  PubMed  Google Scholar 

  96. Rich S, Klann E, Bryant V, Richards V, Wijayabahu A, Bryant K, et al. A review of potential microbiome-gut-brain axis mediated neurocognitive conditions in persons living with HIV. Brain, Behavior, & Immunity - Health. 2020;9:100168.

    Article  Google Scholar 

  97. Dutta D, Liu J, Xiong H. The impact of COVID-19 on people living with HIV-1 and HIV-1-associated neurological complications. Viruses. 2023;15(5):1117. This is a recent review on the impact of COVID-19 in PWH and HIV-associated neurological disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Spudich SS. Immune activation in the central nervous system throughout the course of HIV infection. Curr Opin HIV AIDS. 2016;11(2):226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kovacs L, Kress TC, Belin de Chantemèle EJ. HIV, combination antiretroviral therapy, and vascular diseases in men and women. JACC: Basic Transl Sci. 2022;7(4):410–21.

    PubMed  Google Scholar 

  100. Opsteen S, Files JK, Fram T, Erdmann N. The role of immune activation and antigen persistence in acute and long COVID. J Investig Med. 2023;71(5):545–62.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Monje M, Iwasaki A. The neurobiology of long COVID. Neuron. 2022;110(21):3484–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wen X, Jiang D, Gao L, Zhou J, Xiao J, Cheng X, et al. Clinical characteristics and predictive value of lower CD4+T cell level in patients with moderate and severe COVID-19: a multicenter retrospective study. BMC Infect Dis. 2021;21(1):57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hu R, Yan H, Liu M, Tang L, Kong W, Zhu Z, et al. Brief report: Virologic and immunologic outcomes for HIV patients with Coronavirus disease 2019. J Acquir Immune Defic Syndr. 2021;86(2):213–8.

    Article  CAS  PubMed  Google Scholar 

  104. Calza L, Bon I, Borderi M, Colangeli V, Viale P. No significant effect of COVID-19 on immunological and virological parameters in patients with HIV-1 infection. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2020;85(1):e6–8.

    Article  CAS  PubMed  Google Scholar 

  105. Ocampo, F, Paudel M, Sacdalan C, Pinyakorn, S, Puttamaswin, S, Srieplienchan, S et al. Characteristics and outcomes of COVID-19 in an early treated HIV cohort in Thailand. In Special issue: Abstracts from CROI2023 conference on retroviruses and opportunistic infections: February 19 to 22, 202; Seattle, WA. Top Antivir Med. 2023;31(2):194. This is a conference abstract which investigated the short-term clinical, immunological, virological and neuropsychiatric outcomes of COVID-19 in an early-treated longitudinal HIV cohort in Thailand.

  106. Biagianti B, Di Liberto A, Nicolò Edoardo A, Lisi I, Nobilia L, de Ferrabonc GD, et al. Cognitive assessment in SARS-CoV-2 patients: A systematic review. Front Aging Neurosci. 2022;14:909661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mazza MG, Palladini M, De Lorenzo R, Magnaghi C, Poletti S, Furlan R, et al. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun. 2021;94:138–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dziarski A, Marquez NG, Jamal A, Walch S, Romero A, Araujo-Pereira M, et al. Trajectory of post-COVID neurocognitive recovery in people living with and without HIV. In Special Issue: Abstracts from CROI2023 Conference on Retroviruses and Opportunistic Infections: February 19 to 22, 202; Seattle, WA. Top Antivir Med. 2023;31(2):194–5. This is a conference abstract from a prospective observational cohort study which compared neurocognitive test performance 4 months after COVID-19 in PWH versus PWoH as well as in PWH and PWoH who did not acquire SARS-CoV-2 infection.

    Google Scholar 

  109. Panda PK, Gupta J, Chowdhury SR, Kumar R, Meena AK, Madaan P, et al. Psychological and behavioral impact of lockdown and quarantine measures for COVID-19 pandemic on children, adolescents and caregivers: A systematic review and meta-analysis. J Trop Pediatr. 2021;67(1):fmaa122.

    Article  PubMed  Google Scholar 

  110. Odriozola-González P, Planchuelo-Gómez Á, Irurtia MJ, de Luis-García R. Psychological effects of the COVID-19 outbreak and lockdown among students and workers of a Spanish university. Psychiatry Res. 2020;290:113108.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Panchal U, Salazar de Pablo G, Franco M, Moreno C, Parellada M, Arango C, et al. The impact of COVID-19 lockdown on child and adolescent mental health: systematic review. Eur Child Adolesc Psychiatry. 2023;32(7):1151–77.

    Article  PubMed  Google Scholar 

  112. Every-Palmer S, Jenkins M, Gendall P, Hoek J, Beaglehole B, Bell C, et al. Psychological distress, anxiety, family violence, suicidality, and wellbeing in New Zealand during the COVID-19 lockdown: A cross-sectional study. PLoS One. 2020;15(11):e0241658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Marelli S, Castelnuovo A, Somma A, Castronovo V, Mombelli S, Bottoni D, et al. Impact of COVID-19 lockdown on sleep quality in university students and administration staff. J Neurol. 2021;268(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  114. Ballivian J, Alcaide ML, Cecchini D, Jones DL, Abbamonte JM, Cassetti I. Impact of COVID-19-related stress and lockdown on mental health among people living with HIV in Argentina. J Acquir Immune Defic Syndr. 2020;85(4):475–82.

    Article  CAS  PubMed  Google Scholar 

  115. Sun S, Hou J, Chen Y, Lu Y, Brown L, Operario D. Challenges to HIV care and psychological health during the COVID-19 pandemic among people living with HIV in China. AIDS Behav. 2020;24(10):2764–5.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kuman Tunçel Ö, Pullukçu H, Erdem HA, Kurtaran B, Taşbakan SE, Taşbakan M. COVID-19-related anxiety in people living with HIV: an online cross-sectional study. Turk J Med Sci. 2020;50(8):1792–800.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bourmistrova NW, Solomon T, Braude P, Strawbridge R, Carter B. Long-term effects of COVID-19 on mental health: A systematic review. J Affect Disord. 2022;(299):118–25.

  118. Taquet M, Sillett R, Zhu L, Mendel J, Camplisson I, Dercon Q, et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry. 2022;9(10):815–2.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8(5):416–27.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yue, Y, Liang, C, Weissman S, Lyu, T, Olatosi, B, Li, X. 12-month consequences in people with HIV/SARS-CoV-2 coinfection: National EHR Cohort. In Special Issue: Abstracts from CROI2023 Conference on Retroviruses and Opportunistic Infections: February 19 to 22, 202; Seattle, WA. Top Antivir Med. 2023;31(2):354. This is a conference abstract from the N3C electronic health record study that compared the 12-month outcomes of COVID-19 in PWH versus PWoH, showing that PWH have higher risks of developing neuropsychological complications after COVID-19.

  121. Hernández-Aceituno A, García-Hernández A, Larumbe-Zabala E. COVID-19 long-term sequelae: Omicron versus Alpha and Delta variants. Infect Dis Now. 2023;53(5).

  122. Gottlieb M, Wang RC, Yu H, Spatz ES, Montoy JCC, Rodriguez RM, et al. Severe fatigue and persistent symptoms at 3 months following severe acute respiratory syndrome Coronavirus 2 infections during the pre-delta, delta, and omicron time periods: a multicenter prospective cohort study. Clin Infect Dis. 2023;76(11):1930-1941

  123. Kahlert CR, Strahm C, Güsewell S, Cusini A, Brucher A, Goppel S, et al. Post-acute sequelae after severe acute respiratory syndrome coronavirus 2 infection by viral variant and vaccination status: A multicenter cross-sectional study. Clin Infect Dis. 2023;77(2):194–202.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Jassat W, Mudara C, Vika C, Welch R, Arendse T, Dryden M, et al. A cohort study of post-COVID-19 condition across the Beta, Delta, and Omicron waves in South Africa: 6-month follow-up of hospitalized and nonhospitalized participants. Int J Infect Dis. 2023;128:102–11.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Nguyen HTK, Cornelissen L, Castanares-Zapatero D, De Pauw R, Van Cauteren D, Demarest S, et al. Association between SARS-CoV-2 variants and post COVID-19 condition: findings from a longitudinal cohort study in the Belgian adult population [Internet]. Res Sq; [cited 2023 Jul 01]. https://doi.org/10.21203/rs.3.rs-2765170/v1.

  126. Thaweethai T, Jolley SE, Karlson EW, Levitan EB, Levy B, McComsey GA, et al. Development of a definition of postacute sequelae of SARS-CoV-2 infection. AMA. 2023;329(22):1934–1946.

  127. Lauring AS, Tenforde MW, Chappell JD, Gaglani M, Ginde AA, McNeal T, et al. Clinical severity of, and effectiveness of mRNA vaccines against, covid-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: Prospective observational study. BMJ. 2022;(376):e069761.

  128. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99.

    Article  CAS  PubMed  Google Scholar 

  129. Huang P, Zhang LY, Tan YY, Chen SD. Links between COVID-19 and Parkinson's disease/Alzheimer's disease: Reciprocal impacts, medical care strategies and underlying mechanisms. Transl Neurodegener. 2023;12(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rahmati M, Yon DK, Lee SW, Soysal P, Koyanagi A, Jacob L, et al. New-onset neurodegenerative diseases as long-term sequelae of SARS-CoV-2 infection: A systematic review and meta-analysis. J Med Virol. 2023;95(7):e28909.

    Article  CAS  PubMed  Google Scholar 

  131. de Erausquin GA, Snyder H, Brugha TS, Seshadri S, Carrillo M, Sagar R, et al. Chronic neuropsychiatric sequelae of SARS-CoV-2: Protocol and methods from the Alzheimer's Association Global Consortium. Alzheimers Dement (N Y). 2022;8(1):e12348.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.O.wrote the main manuscript text and prepared figures 1 & 2. P.P. provided critical revision of the manuscript. P.C. wrote the main manuscript text and provided critical revision of the manuscript All authors reviewed the manuscript

Corresponding author

Correspondence to Ferron F. Ocampo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the author.  

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ocampo, F.F., Promsena, P. & Chan, P. Update on Central Nervous System Effects of the Intersection of HIV-1 and SARS-CoV-2. Curr HIV/AIDS Rep 20, 345–356 (2023). https://doi.org/10.1007/s11904-023-00676-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-023-00676-8

Keywords

Navigation