Skip to main content

Advertisement

Log in

Therapy Resistance and Disease Progression in CML: Mechanistic Links and Therapeutic Strategies

  • Chronic Myeloid Leukemias (V Oehler, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Despite the adoption of tyrosine kinases inhibitors (TKIs) as molecular targeted therapy in chronic myeloid leukemia, some patients do not respond to treatment and even experience disease progression. This review aims to give a broad summary of advances in understanding of the mechanisms of therapy resistance, as well as management strategies that may overcome or prevent the emergence of drug resistance. Ultimately, the goal of therapy is the cure of CML, which will also require an increased understanding of the leukemia stem cell (LSC).

Recent Findings

Resistance to tyrosine kinase inhibitors stems from a range of possible causes. Mutations of the BCR-ABL1 fusion oncoprotein have been well-studied. Other causes range from cell-intrinsic factors, such as the inherent resistance of primitive stem cells to drug treatment, to mechanisms extrinsic to the leukemic compartment that help CML cells evade apoptosis.

Summary

There exists heterogeneity in TKI response among different hematopoietic populations in CML. The abundances of these TKI-sensitive and TKI-insensitive populations differ from patient to patient and contribute to response heterogeneity. It is becoming clear that targeting the BCR-ABL1 kinase through TKIs is only one part of the equation, and TKI usage alone may not cure the majority of patients with CML. Considerable effort should be devoted to targeting the BCR-ABL1-independent mechanisms of resistance and persistence of CML LSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, Clark RE, Cortes JE, Deininger MW, Guilhot F, Hjorth-Hansen H, Hughes TP, Janssen J, Kantarjian HM, Kim DW, Larson RA, Lipton JH, Mahon FX, Mayer J, Nicolini F, Niederwieser D, Pane F, Radich JP, Rea D, Richter J, Rosti G, Rousselot P, Saglio G, Saussele S, Soverini S, Steegmann JL, Turkina A, Zaritskey A, Hehlmann R. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966–84. https://doi.org/10.1038/s41375-020-0776-2. Outlines standard of care for patients with CML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. •• Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F, Legros L, Charbonnier A, Guerci A, Varet B, Etienne G, Reiffers J, Rousselot P. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35. https://doi.org/10.1016/S1470-2045(10)70233-3S1470-2045(10)70233-3. Pivotal study demonstrating possibility of TFR.

    Article  CAS  PubMed  Google Scholar 

  3. • Ross DM, Hughes TP. Treatment-free remission in patients with chronic myeloid leukaemia. Nat Rev Clin Oncol. 2020;17(8):493–503. https://doi.org/10.1038/s41571-020-0367-1. Recent and comprehensive review on TFR.

    Article  PubMed  Google Scholar 

  4. Quintas-Cardama A, Kantarjian HM, Cortes JE. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control. 2009;16(2):122–31. https://doi.org/10.1177/107327480901600204.

    Article  PubMed  Google Scholar 

  5. Shanmuganathan N, Pagani IS, Ross DM, Park S, Yong ASM, Braley JA, Altamura HK, Hiwase DK, Yeung DT, Kim DW, Branford S, Hughes TP. Early BCR-ABL1 kinetics are predictive of subsequent achievement of treatment-free remission in chronic myeloid leukemia. Blood. 2021;137(9):1196–207. https://doi.org/10.1182/blood.2020005514. Important study relating early BCR-ABL1 kinetics to distal TKI responses.

  6. Patel AB, O’Hare T, Deininger MW. Mechanisms of resistance to ABL kinase inhibition in chronic myeloid leukemia and the development of next generation ABL kinase inhibitors. Hematol Oncol Clin N Am. 2017;31(4):589–612. https://doi.org/10.1016/j.hoc.2017.04.007.

    Article  Google Scholar 

  7. Eiring AM, Khorashad JS, Anderson DJ, Yu F, Redwine HM, Mason CC, Reynolds KR, Clair PM, Gantz KC, Zhang TY, Pomicter AD, Kraft IL, Bowler AD, Johnson K, Partlin MM, O’Hare T, Deininger MW. beta-Catenin is required for intrinsic but not extrinsic BCR-ABL1 kinase-independent resistance to tyrosine kinase inhibitors in chronic myeloid leukemia. Leukemia. 2015;29(12):2328–37. https://doi.org/10.1038/leu.2015.196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. • Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL, Nowak MA. Dynamics of chronic myeloid leukaemia. Nature. 2005;435(7046):1267–70. https://doi.org/10.1038/nature03669. Important study highlighting the kinetics of BCR-ABL1 transcript responses and cell compartment models.

    Article  CAS  PubMed  Google Scholar 

  9. • Kvasnicka HM, Thiele J, Schmitt-Graeff A, Diehl V, Zankovich R, Niederle N, Leder LD, Schaefer HE. Bone marrow features improve prognostic efficiency in multivariate risk classification of chronic-phase Ph(1+) chronic myelogenous leukemia: a multicenter trial. J Clin Oncol. 2001;19(12):2994–3009. https://doi.org/10.1200/JCO.2001.19.12.2994. Erythroid progenitor expansion is a good prognostic factor in the pre-TKI era.

    Article  CAS  PubMed  Google Scholar 

  10. • Jiang X, Forrest D, Nicolini F, Turhan A, Guilhot J, Yip C, Holyoake T, Jorgensen H, Lambie K, Saw KM, Pang E, Vukovic R, Lehn P, Ringrose A, Yu M, Brinkman RR, Smith C, Eaves A, Eaves C. Properties of CD34+ CML stem/progenitor cells that correlate with different clinical responses to imatinib mesylate. Blood. 2010;116(12):2112–21. https://doi.org/10.1182/blood-2009-05-222471. Differential TKI sensitivity of erythroid vs myeloid progenitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saifullah HH, Lucas CM. Treatment-free remission in chronic myeloid leukemia: can we identify prognostic factors? Cancers (Basel). 2021;13(16). https://doi.org/10.3390/cancers13164175.

  12. • Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL, Arber DA, Slovak ML, Forman SJ. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood. 2003;101(12):4701–7. https://doi.org/10.1182/blood-2002-09-2780. Demonstrates CML progenitor cell persistence in patients with good TKI responses.

    Article  CAS  PubMed  Google Scholar 

  13. • Chomel JC, Bonnet ML, Sorel N, Bertrand A, Meunier MC, Fichelson S, Melkus M, Bennaceur-Griscelli A, Guilhot F, Turhan AG. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood. 2011;118(13):3657–60. https://doi.org/10.1182/blood-2011-02-335497. Demonstrates CML progenitor cell persistence in patients with excellent TKI responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chomel JC, Bonnet ML, Sorel N, Sloma I, Bennaceur-Griscelli A, Rea D, Legros L, Marfaing-Koka A, Bourhis JH, Ame S, Guerci-Bresler A, Rousselot P, Turhan AG. Leukemic stem cell persistence in chronic myeloid leukemia patients in deep molecular response induced by tyrosine kinase inhibitors and the impact of therapy discontinuation. Oncotarget. 2016;7(23):35293–301. https://doi.org/10.18632/oncotarget.9182.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chu S, McDonald T, Lin A, Chakraborty S, Huang Q, Snyder DS, Bhatia R. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood. 2011;118(20):5565–72. https://doi.org/10.1182/blood-2010-12-327437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raaijmakers MH. ATP-binding-cassette transporters in hematopoietic stem cells and their utility as therapeutical targets in acute and chronic myeloid leukemia. Leukemia. 2007;21(10):2094–102. https://doi.org/10.1038/sj.leu.2404859.

    Article  CAS  PubMed  Google Scholar 

  17. de Grouw EP, Raaijmakers MH, Boezeman JB, van der Reijden BA, van de Locht LT, de Witte TJ, Jansen JH, Raymakers RA. Preferential expression of a high number of ATP binding cassette transporters in both normal and leukemic CD34+CD38- cells. Leukemia. 2006;20(4):750–4. https://doi.org/10.1038/sj.leu.2404131.

    Article  CAS  PubMed  Google Scholar 

  18. White DL, Saunders VA, Dang P, Engler J, Zannettino AC, Cambareri AC, Quinn SR, Manley PW, Hughes TP. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood. 2006;108(2):697–704. https://doi.org/10.1182/blood-2005-11-4687.

    Article  CAS  PubMed  Google Scholar 

  19. Thomas J, Wang L, Clark RE, Pirmohamed M. Active transport of imatinib into and out of cells: implications for drug resistance. Blood. 2004;104(12):3739–45. https://doi.org/10.1182/blood-2003-12-4276.

    Article  CAS  PubMed  Google Scholar 

  20. Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J, Goldman JM, Melo JV. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood. 2003;101(6):2368–73. https://doi.org/10.1182/blood.V101.6.2368.

    Article  CAS  PubMed  Google Scholar 

  21. Illmer T, Schaich M, Platzbecker U, Freiberg-Richter J, Oelschlagel U, von Bonin M, Pursche S, Bergemann T, Ehninger G, Schleyer E. P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia. 2004;18(3):401–8. https://doi.org/10.1038/sj.leu.2403257.

    Article  CAS  PubMed  Google Scholar 

  22. Rumpold H, Wolf AM, Gruenewald K, Gastl G, Gunsilius E, Wolf D. RNAi-mediated knockdown of P-glycoprotein using a transposon-based vector system durably restores imatinib sensitivity in imatinib-resistant CML cell lines. Exp Hematol. 2005;33(7):767–75. https://doi.org/10.1016/j.exphem.2005.03.014.

    Article  CAS  PubMed  Google Scholar 

  23. Jordanides NE, Jorgensen HG, Holyoake TL, Mountford JC. Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood. 2006;108(4):1370–3. https://doi.org/10.1182/blood-2006-02-003145.

    Article  CAS  PubMed  Google Scholar 

  24. Nakanishi T, Shiozawa K, Hassel BA, Ross DD. Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood. 2006;108(2):678–84. https://doi.org/10.1182/blood-2005-10-4020.

    Article  CAS  PubMed  Google Scholar 

  25. Arrigoni E, Del Re M, Galimberti S, Restante G, Rofi E, Crucitta S, Barate C, Petrini M, Danesi R, Di Paolo A. Concise review: Chronic myeloid leukemia: stem cell niche and response to pharmacologic treatment. Stem Cells Transl Med. 2018;7(3):305–14. https://doi.org/10.1002/sctm.17-0175.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gerber JM, Qin L, Kowalski J, Smith BD, Griffin CA, Vala MS, Collector MI, Perkins B, Zahurak M, Matsui W, Gocke CD, Sharkis SJ, Levitsky HI, Jones RJ. Characterization of chronic myeloid leukemia stem cells. Am J Hematol. 2011;86(1):31–7. https://doi.org/10.1002/ajh.21915.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Venton G, Perez-Alea M, Baier C, Fournet G, Quash G, Labiad Y, Martin G, Sanderson F, Poullin P, Suchon P, Farnault L, Nguyen C, Brunet C, Ceylan I, Costello RT. Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors. Blood Cancer J. 2016;6(9): e469. https://doi.org/10.1038/bcj.2016.78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holyoake T, Jiang X, Eaves C, Eaves A. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood. 1999;94(6):2056–64. https://doi.org/10.1182/blood.V94.6.2056.

    Article  CAS  PubMed  Google Scholar 

  29. •• Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, Holyoake TL. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99(1):319–25. https://doi.org/10.1182/blood.v99.1.319. Landmark study describining in vitro phenomenon of TKI-resistant quiescent CML stem and progenitor cells.

    Article  CAS  PubMed  Google Scholar 

  30. Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N, Barow M, Mountford JC, Holyoake TL. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood. 2006;107(11):4532–9. https://doi.org/10.1182/blood-2005-07-2947.

    Article  CAS  PubMed  Google Scholar 

  31. • Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest. 2011;121(1):396–409. https://doi.org/10.1172/JCI35721. Describes role of extrinsic cell signaling in rendering CML cells impervious to TKIs.

    Article  CAS  PubMed  Google Scholar 

  32. • Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL, Helgason GV, Gottlieb E. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med. 2017;23(10):1234–40. https://doi.org/10.1038/nm.4399. Highlights OXPHOS in CML stem and progenitor cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Flis K, Irvine D, Copland M, Bhatia R, Skorski T. Chronic myeloid leukemia stem cells display alterations in expression of genes involved in oxidative phosphorylation. Leuk Lymphoma. 2012;53(12):2474–8. https://doi.org/10.3109/10428194.2012.696313.

    Article  CAS  PubMed  Google Scholar 

  34. • Giustacchini A, Thongjuea S, Barkas N, Woll PS, Povinelli BJ, Booth CAG, Sopp P, Norfo R, Rodriguez-Meira A, Ashley N, Jamieson L, Vyas P, Anderson K, Segerstolpe A, Qian H, Olsson-Stromberg U, Mustjoki S, Sandberg R, Jacobsen SEW, Mead AJ. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat Med. 2017;23(6):692–702. https://doi.org/10.1038/nm.4336. First paper using single cell 'omics' to study primary CML samples, describes gene expression signatures associated with CML persistence.

    Article  CAS  PubMed  Google Scholar 

  35. Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, Schneider JW, Zhang CC, Sadek HA. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 2010;7(3):380–90. https://doi.org/10.1016/j.stem.2010.07.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abraham A, Qiu S, Chacko BK, Li H, Paterson A, He J, Agarwal P, Shah M, Welner R, Darley-Usmar VM, Bhatia R. SIRT1 regulates metabolism and leukemogenic potential in CML stem cells. J Clin Invest. 2019;129(7):2685–701. https://doi.org/10.1172/JCI127080.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lehmann L, Ferrari R, Vashisht AA, Wohlschlegel JA, Kurdistani SK, Carey M. Polycomb repressive complex 1 (PRC1) disassembles RNA polymerase II preinitiation complexes. J Biol Chem. 2012;287(43):35784–94. https://doi.org/10.1074/jbc.M112.397430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chase A, Cross NC. Aberrations of EZH2 in cancer. Clin Cancer Res. 2011;17(9):2613–8. https://doi.org/10.1158/1078-0432.CCR-10-2156.

    Article  CAS  PubMed  Google Scholar 

  39. Xie H, Peng C, Huang J, Li BE, Kim W, Smith EC, Fujiwara Y, Qi J, Cheloni G, Das PP, Nguyen M, Li S, Bradner JE, Orkin SH. Chronic myelogenous leukemia- initiating cells require polycomb group protein EZH2. Cancer Discov. 2016;6(11):1237–47. https://doi.org/10.1158/2159-8290.CD-15-1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. •• Scott MT, Korfi K, Saffrey P, Hopcroft LE, Kinstrie R, Pellicano F, Guenther C, Gallipoli P, Cruz M, Dunn K, Jorgensen HG, Cassels JE, Hamilton A, Crossan A, Sinclair A, Holyoake TL, Vetrie D. Epigenetic reprogramming sensitizes CML stem cells to combined EZH2 and tyrosine kinase inhibition. Cancer Discov. 2016;6(11):1248–57. https://doi.org/10.1158/2159-8290.CD-16-0263. Describes role of EZH2 in CP LSCs, and utility of targeting this pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. • Braun TP, Eide CA, Druker BJ. Response and Resistance to BCR-ABL1-Targeted Therapies. Cancer Cell. 2020;37(4):530–42. https://doi.org/10.1016/j.ccell.2020.03.006. Comprehensive review of history and current status of anti-BCR-ABL1 therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Branford S, Rudzki Z, Walsh S, Parkinson I, Grigg A, Szer J, Taylor K, Herrmann R, Seymour JF, Arthur C, Joske D, Lynch K, Hughes T. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood. 2003;102(1):276–83. https://doi.org/10.1182/blood-2002-09-2896.

    Article  CAS  PubMed  Google Scholar 

  43. Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood. 2005;105(7):2640–53. https://doi.org/10.1182/blood-2004-08-3097.

    Article  CAS  PubMed  Google Scholar 

  44. Khorashad JS, Kelley TW, Szankasi P, Mason CC, Soverini S, Adrian LT, Eide CA, Zabriskie MS, Lange T, Estrada JC, Pomicter AD, Eiring AM, Kraft IL, Anderson DJ, Gu Z, Alikian M, Reid AG, Foroni L, Marin D, Druker BJ, O’Hare T, Deininger MW. BCR-ABL1 compound mutations in tyrosine kinase inhibitor-resistant CML: frequency and clonal relationships. Blood. 2013;121(3):489–98. https://doi.org/10.1182/blood-2012-05-431379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shah NP, Skaggs BJ, Branford S, Hughes TP, Nicoll JM, Paquette RL, Sawyers CL. Sequential ABL kinase inhibitor therapy selects for compound drug-resistant BCR-ABL mutations with altered oncogenic potency. J Clin Invest. 2007;117(9):2562–9. https://doi.org/10.1172/JCI30890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adrian FJ, Ding Q, Sim T, Velentza A, Sloan C, Liu Y, Zhang G, Hur W, Ding S, Manley P, Mestan J, Fabbro D, Gray NS. Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Nat Chem Biol. 2006;2(2):95–102. https://doi.org/10.1038/nchembio760.

    Article  CAS  PubMed  Google Scholar 

  47. Iacob RE, Zhang J, Gray NS, Engen JR. Allosteric interactions between the myristate- and ATP-site of the Abl kinase. PLoS ONE. 2011;6(1): e15929. https://doi.org/10.1371/journal.pone.0015929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang J, Adrian FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, Sim T, Powers J, Dierks C, Sun F, Guo GR, Ding Q, Okram B, Choi Y, Wojciechowski A, Deng X, Liu G, Fendrich G, Strauss A, Vajpai N, Grzesiek S, Tuntland T, Liu Y, Bursulaya B, Azam M, Manley PW, Engen JR, Daley GQ, Warmuth M, Gray NS. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature. 2010;463(7280):501–6. https://doi.org/10.1038/nature08675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eide CA, Zabriskie MS, Savage Stevens SL, Antelope O, Vellore NA, Than H, Schultz AR, Clair P, Bowler AD, Pomicter AD, Yan D, Senina AV, Qiang W, Kelley TW, Szankasi P, Heinrich MC, Tyner JW, Rea D, Cayuela JM, Kim DW, Tognon CE, O’Hare T, Druker BJ, Deininger MW. Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant BCR-ABL1 mutants. Cancer Cell. 2019;36(4):431-443 e5. https://doi.org/10.1016/j.ccell.2019.08.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wylie AA, Schoepfer J, Jahnke W, Cowan-Jacob SW, Loo A, Furet P, Marzinzik AL, Pelle X, Donovan J, Zhu W, Buonamici S, Hassan AQ, Lombardo F, Iyer V, Palmer M, Berellini G, Dodd S, Thohan S, Bitter H, Branford S, Ross DM, Hughes TP, Petruzzelli L, Vanasse KG, Warmuth M, Hofmann F, Keen NJ, Sellers WR. The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1. Nature. 2017;543(7647):733–7. https://doi.org/10.1038/nature21702.

    Article  CAS  PubMed  Google Scholar 

  51. Zhan JY, Ma J, Zheng QC. Molecular dynamics investigation on the Asciminib resistance mechanism of I502L and V468F mutations in BCR-ABL. J Mol Graph Model. 2019;89:242–9. https://doi.org/10.1016/j.jmgm.2019.03.018.

    Article  CAS  PubMed  Google Scholar 

  52. Gaiger A, Henn T, Horth E, Geissler K, Mitterbauer G, Maier-Dobersberger T, Greinix H, Mannhalter C, Haas OA, Lechner K. Increase of bcr-abl chimeric mRNA expression in tumor cells of patients with chronic myeloid leukemia precedes disease progression. Blood. 1995;86(6):2371–8. https://doi.org/10.1182/blood.V86.6.2371.bloodjournal8662371.

    Article  CAS  PubMed  Google Scholar 

  53. Elmaagacli AH, Beelen DW, Opalka B, Seeber S, Schaefer UW. The amount of BCR-ABL fusion transcripts detected by the real-time quantitative polymerase chain reaction method in patients with Philadelphia chromosome positive chronic myeloid leukemia correlates with the disease stage. Ann Hematol. 2000;79(8):424–31. https://doi.org/10.1007/s002770000169.

    Article  CAS  PubMed  Google Scholar 

  54. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A, Sawyers CL, Weissman IL. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351(7):657–67. https://doi.org/10.1056/NEJMoa040258.

    Article  CAS  PubMed  Google Scholar 

  55. Maguer-Satta V, Petzer AL, Eaves AC, Eaves CJ. BCR-ABL expression in different subpopulations of functionally characterized Ph+ CD34+ cells from patients with chronic myeloid leukemia. Blood. 1996;88(5):1796–804. https://doi.org/10.1182/blood.V88.5.1796.1796.

    Article  CAS  PubMed  Google Scholar 

  56. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A, Eaves C. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia. 2007;21(5):926–35. https://doi.org/10.1038/sj.leu.2404609.

    Article  CAS  PubMed  Google Scholar 

  57. Michor F. Chronic myeloid leukemia blast crisis arises from progenitors. Stem Cells. 2007;25(5):1114–8. https://doi.org/10.1634/stemcells.2006-0638.

    Article  CAS  PubMed  Google Scholar 

  58. Khorashad JS, Anand M, Marin D, Saunders S, Al-Jabary T, Iqbal A, Margerison S, Melo JV, Goldman JM, Apperley JF, Kaeda J. The presence of a BCR-ABL mutant allele in CML does not always explain clinical resistance to imatinib. Leukemia. 2006;20(4):658–63. https://doi.org/10.1038/sj.leu.2404137.

    Article  CAS  PubMed  Google Scholar 

  59. Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S, Allan EK, Nicolini FE, Muller-Tidow C, Bhatia R, Brunton VG, Koschmieder S, Holyoake TL. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood. 2012;119(6):1501–10. https://doi.org/10.1182/blood-2010-12-326843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. • Branford S, Kim DDH, Apperley JF, Eide CA, Mustjoki S, Ong ST, et al.. Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia. Leukemia. 2019;33(8):1835–1850. https://doi.org/10.1038/s41375-019-0512-y. Comprehensive review of contribution of genetic mutations to TKI resistance and BC transformation.

  61. Togasaki E, Takeda J, Yoshida K, Shiozawa Y, Takeuchi M, Oshima M, Saraya A, Iwama A, Yokote K, Sakaida E, Hirase C, Takeshita A, Imai K, Okumura H, Morishita Y, Usui N, Takahashi N, Fujisawa S, Shiraishi Y, Chiba K, Tanaka H, Kiyoi H, Ohnishi K, Ohtake S, Asou N, Kobayashi Y, Miyazaki Y, Miyano S, Ogawa S, Matsumura I, Nakaseko C, Naoe T. Frequent somatic mutations in epigenetic regulators in newly diagnosed chronic myeloid leukemia. Blood Cancer J. 2017;7(4): e559. https://doi.org/10.1038/bcj.2017.36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nteliopoulos G, Bazeos A, Claudiani S, Gerrard G, Curry E, Szydlo R, Alikian M, Foong HE, Nikolakopoulou Z, Loaiza S, Khorashad JS, Milojkovic D, Perrotti D, Gale RP, Foroni L, Apperley JF. Somatic variants in epigenetic modifiers can predict failure of response to imatinib but not to second-generation tyrosine kinase inhibitors. Haematologica. 2019;104(12):2400–9. https://doi.org/10.3324/haematol.2018.200220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Menezes J, Salgado RN, Acquadro F, Gomez-Lopez G, Carralero MC, Barroso A, Mercadillo F, Espinosa-Hevia L, Talavera-Casanas JG, Pisano DG, Alvarez S, Cigudosa JC. ASXL1, TP53 and IKZF3 mutations are present in the chronic phase and blast crisis of chronic myeloid leukemia. Blood Cancer J. 2013;8(3): e157. https://doi.org/10.1038/bcj.2013.54.

    Article  Google Scholar 

  64. Adnan-Awad S, Kankainen M, Mustjoki S. Mutational landscape of chronic myeloid leukemia: more than a single oncogene leukemia. Leuk Lymphoma. 2021;62(9):2064–78. https://doi.org/10.1080/10428194.2021.1894652.

    Article  CAS  PubMed  Google Scholar 

  65. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, McMichael JF, Schmidt HK, Yellapantula V, Miller CA, Ozenberger BA, Welch JS, Link DC, Walter MJ, Mardis ER, Dipersio JF, Chen F, Wilson RK, Ley TJ, Ding L. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20(12):1472–8. https://doi.org/10.1038/nm.3733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, Chambert K, Mick E, Neale BM, Fromer M, Purcell SM, Svantesson O, Landen M, Hoglund M, Lehmann S, Gabriel SB, Moran JL, Lander ES, Sullivan PF, Sklar P, Gronberg H, Hultman CM, McCarroll SA. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87. https://doi.org/10.1056/NEJMoa1409405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. • Kim T, Tyndel MS, Kim HJ, Ahn JS, Choi SH, Park HJ, Kim YK, Kim SY, Lipton JH, Zhang Z, Kim DD. Spectrum of somatic mutation dynamics in chronic myeloid leukemia following tyrosine kinase inhibitor therapy. Blood. 2017;129(1):38–47. https://doi.org/10.1182/blood-2016-04-708560. Important paper describing assocation of specific mutations in TKI-treated patients examined longitudinally.

    Article  CAS  PubMed  Google Scholar 

  68. • Awad SA, Bruck O, Shanmuganathan N, Jarvinen T, Lahteenmaki H, Klievink J, et al.. Epigenetic modifier gene mutations in chronic myeloid leukemia (CML) at diagnosis are associated with risk of relapse upon treatment discontinuation. Blood Cancer J. 2022;12(69). First paper to describe association between specific gene mutations with TFR.

  69. Rahman S, Mansour MR. The role of noncoding mutations in blood cancers. Dis Model Mech. 2019;12(11). https://doi.org/10.1242/dmm.041988.

  70. Groschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BAM, Erpelinck C, van der Velden VHJ, Havermans M, Avellino R, van Lom K, Rombouts EJ, van Duin M, Dohner K, Beverloo HB, Bradner JE, Dohner H, Lowenberg B, Valk PJM, Bindels EMJ, de Laat W, Delwel R. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell. 2014;157(2):369–81. https://doi.org/10.1016/j.cell.2014.02.019.

    Article  CAS  PubMed  Google Scholar 

  71. Yamazaki H, Suzuki M, Otsuki A, Shimizu R, Bresnick EH, Engel JD, Yamamoto M. A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell. 2014;25(4):415–27. https://doi.org/10.1016/j.ccr.2014.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153(2):320–34. https://doi.org/10.1016/j.cell.2013.03.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. • Koschmieder S, Vetrie D. Epigenetic dysregulation in chronic myeloid leukaemia: a myriad of mechanisms and therapeutic options. Semin Cancer Biol. 2017. https://doi.org/10.1016/j.semcancer.2017.07.006. Comprehensive and exhaustive review on CML epigenetics.

    Article  PubMed  Google Scholar 

  74. Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science. 2010;330(6004):612–6. https://doi.org/10.1126/science.1191078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. •• Ko TK, Javed A, Lee KL, Pathiraja TN, Liu X, Malik S, Soh SX, Heng XT, Takahashi N, Tan JHJ, Bhatia R, Khng AJ, Chng WJ, Sia YY, Fruman DA, Ng KP, Chan ZE, Xie KJ, Hoi Q, Chan CX, Teo ASM, Velazquez Camacho O, Meah WY, Khor CC, Ong CTJ, Soon WJW, Tan P, Ng PC, Chuah C, Hillmer AM, Ong ST. An integrative model of pathway convergence in genetically heterogeneous blast crisis chronic myeloid leukemia. Blood. 2020;135(26):2337–53. https://doi.org/10.1182/blood.2020004834. Large integrated multi-omics study of CP and BC samples. Highlights notion of core BC transcriptome and role of PRC1/2 in BC transformation.

    Article  PubMed  Google Scholar 

  76. Yong AS, Rezvani K, Savani BN, Eniafe R, Mielke S, Goldman JM, Barrett AJ. High PR3 or ELA2 expression by CD34+ cells in advanced-phase chronic myeloid leukemia is associated with improved outcome following allogeneic stem cell transplantation and may improve PR1 peptide-driven graft-versus-leukemia effects. Blood. 2007;110(2):770–5. https://doi.org/10.1182/blood-2007-02-071738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McWeeney SK, Pemberton LC, Loriaux MM, Vartanian K, Willis SG, Yochum G, Wilmot B, Turpaz Y, Pillai R, Druker BJ, Snead JL, MacPartlin M, O’Brien SG, Melo JV, Lange T, Harrington CA, Deininger MW. A gene expression signature of CD34+ cells to predict major cytogenetic response in chronic-phase chronic myeloid leukemia patients treated with imatinib. Blood. 2010;115(2):315–25. https://doi.org/10.1182/blood-2009-03-210732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20. https://doi.org/10.1016/j.cmet.2007.10.002.

    Article  CAS  PubMed  Google Scholar 

  79. Tennant DA, Duran RV, Boulahbel H, Gottlieb E. Metabolic transformation in cancer. Carcinogenesis. 2009;30(8):1269–80. https://doi.org/10.1093/carcin/bgp070.

    Article  CAS  PubMed  Google Scholar 

  80. King A, Gottlieb E. Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective. Curr Opin Cell Biol. 2009;21(6):885–93. https://doi.org/10.1016/j.ceb.2009.09.009.

    Article  CAS  PubMed  Google Scholar 

  81. Kroemer G, Jaattela M. Lysosomes and autophagy in cell death control. Nat Rev Cancer. 2005;5(11):886–97. https://doi.org/10.1038/nrc1738.

    Article  CAS  PubMed  Google Scholar 

  82. Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 2007;8(11):931–7. https://doi.org/10.1038/nrm2245.

    Article  CAS  PubMed  Google Scholar 

  83. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52. https://doi.org/10.1038/nrm2239.

    Article  CAS  PubMed  Google Scholar 

  84. Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell. 2005;120(2):237–48. https://doi.org/10.1016/j.cell.2004.11.046.

    Article  CAS  PubMed  Google Scholar 

  85. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M, Galavotti S, Young KW, Selmi T, Yacobi R, Van Etten RA, Donato N, Hunter A, Dinsdale D, Tirro E, Vigneri P, Nicotera P, Dyer MJ, Holyoake T, Salomoni P, Calabretta B. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest. 2009;119(5):1109–23. https://doi.org/10.1172/JCI35660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. • Hsieh YC, Kirschner K, Copland M. Improving outcomes in chronic myeloid leukemia through harnessing the immunological landscape. Leukemia. 2021;35(5):1229–42. https://doi.org/10.1038/s41375-021-01238-w. Comprehensive review of immune factors in TKI responses and potential of immune-based therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dong R, Cwynarski K, Entwistle A, Marelli-Berg F, Dazzi F, Simpson E, Goldman JM, Melo JV, Lechler RI, Bellantuono I, Ridley A, Lombardi G. Dendritic cells from CML patients have altered actin organization, reduced antigen processing, and impaired migration. Blood. 2003;101(9):3560–7. https://doi.org/10.1182/blood-2002-06-1841.

    Article  CAS  PubMed  Google Scholar 

  88. Boissel N, Rousselot P, Raffoux E, Cayuela JM, Maarek O, Charron D, Degos L, Dombret H, Toubert A, Rea D. Defective blood dendritic cells in chronic myeloid leukemia correlate with high plasmatic VEGF and are not normalized by imatinib mesylate. Leukemia. 2004;18(10):1656–61. https://doi.org/10.1038/sj.leu.2403474.

    Article  CAS  PubMed  Google Scholar 

  89. Mohty M, Jarrossay D, Lafage-Pochitaloff M, Zandotti C, Briere F, de Lamballeri XN, Isnardon D, Sainty D, Olive D, Gaugler B. Circulating blood dendritic cells from myeloid leukemia patients display quantitative and cytogenetic abnormalities as well as functional impairment. Blood. 2001;98(13):3750–6. https://doi.org/10.1182/blood.v98.13.3750.

    Article  CAS  PubMed  Google Scholar 

  90. Mohty M, Isnardon D, Vey N, Briere F, Blaise D, Olive D, Gaugler B. Low blood dendritic cells in chronic myeloid leukaemia patients correlates with loss of CD34+/CD38- primitive haematopoietic progenitors. Br J Haematol. 2002;119(1):115–8. https://doi.org/10.1046/j.1365-2141.2002.03831.x.

    Article  PubMed  Google Scholar 

  91. Schutz C, Inselmann S, Saussele S, Dietz CT, Mu Ller MC, Eigendorff E, Brendel CA, Metzelder SK, Bru Mmendorf TH, Waller C, Dengler J, Goebeler ME, Herbst R, Freunek G, Hanzel S, Illmer T, Wang Y, Lange T, Finkernagel F, Hehlmann R, Huber M, Neubauer A, Hochhaus A, Guilhot J, Xavier Mahon F, Pfirrmann M, Burchert A. Expression of the CTLA-4 ligand CD86 on plasmacytoid dendritic cells (pDC) predicts risk of disease recurrence after treatment discontinuation in CML. Leukemia. 2017;31(4):829–36. https://doi.org/10.1038/leu.2017.9.

    Article  CAS  PubMed  Google Scholar 

  92. Nakajima H, Zhao R, Lund TC, Ward J, Dolan M, Hirsch B, Miller JS. The BCR/ABL transgene causes abnormal NK cell differentiation and can be found in circulating NK cells of advanced phase chronic myelogenous leukemia patients. J Immunol. 2002;168(2):643–50. https://doi.org/10.4049/jimmunol.168.2.643.

    Article  CAS  PubMed  Google Scholar 

  93. Mellqvist U-H, Hansson M, Brune M, Dahlgren C, Hermodsson S, Hellstrand K. Natural killer cell dysfunction and apoptosis induced by chronic myelogenous leukemia cells: role of reactive oxygen species and regulation by histamine. Blood. 2000;96(5):1961–8. https://doi.org/10.1182/blood.V96.5.1961.

    Article  CAS  PubMed  Google Scholar 

  94. Pierson BA, Miller JS. CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood. 1996;88(6):2279–87. https://doi.org/10.1182/blood.V88.6.2279.bloodjournal8862279.

    Article  CAS  PubMed  Google Scholar 

  95. Chen X, Woiciechowsky A, Raffegerst S, Schendel D, Kolb H-J, Roskrow M. Impaired expression of the CD3-zeta chain in peripheral blood T cells of patients with chronic myeloid leukaemia results in an increased susceptibility to apoptosis. Br J Haematol. 2000;111(3):817–25. https://doi.org/10.1111/j.1365-2141.2000.02415.x.

    Article  CAS  PubMed  Google Scholar 

  96. Buggins AG, Hirst WJ, Pagliuca A, Mufti GJ. Variable expression of CD3-zeta and associated protein tyrosine kinases in lymphocytes from patients with myeloid malignancies. Br J Haematol. 1998;100(4):784–92. https://doi.org/10.1046/j.1365-2141.1998.00654.x.

    Article  CAS  PubMed  Google Scholar 

  97. Bruck O, Blom S, Dufva O, Turkki R, Chheda H, Ribeiro A, Kovanen P, Aittokallio T, Koskenvesa P, Kallioniemi O, Porkka K, Pellinen T, Mustjoki S. Immune cell contexture in the bone marrow tumor microenvironment impacts therapy response in CML. Leukemia. 2018;32(7):1643–56. https://doi.org/10.1038/s41375-018-0175-0.

    Article  CAS  PubMed  Google Scholar 

  98. Mumprecht S, Schurch C, Schwaller J, Solenthaler M, Ochsenbein AF. Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood. 2009;114(8):1528–36. https://doi.org/10.1182/blood-2008-09-179697.

    Article  CAS  PubMed  Google Scholar 

  99. Munoz L, Bellido M, Sierra J, Nomdedeu JF. Flow cytometric detection of B cell abnormal maturation in chronic myeloid leukemia. Leukemia. 2000;14(2):339–40. https://doi.org/10.1038/sj.leu.2401549.

    Article  CAS  PubMed  Google Scholar 

  100. Giallongo C, Parrinello N, Tibullo D, La Cava P, Romano A, Chiarenza A, Barbagallo I, Palumbo GA, Stagno F, Vigneri P, Di Raimondo F. Myeloid derived suppressor cells (MDSCs) are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs) in chronic myeloid leukemia patients. PLoS ONE. 2014;9(7): e101848. https://doi.org/10.1371/journal.pone.0101848.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hughes A, Clarson J, Tang C, Vidovic L, White DL, Hughes TP, Yong AS. CML patients with deep molecular responses to TKI have restored immune effectors and decreased PD-1 and immune suppressors. Blood. 2017;129(9):1166–76. https://doi.org/10.1182/blood-2016-10-745992.

    Article  CAS  PubMed  Google Scholar 

  102. Civini S, Jin P, Ren J, Sabatino M, Castiello L, Jin J, Wang H, Zhao Y, Marincola F, Stroncek D. Leukemia cells induce changes in human bone marrow stromal cells. J Transl Med. 2013;4(11):298. https://doi.org/10.1186/1479-5876-11-298.

    Article  CAS  Google Scholar 

  103. Bhatia R, McGlave PB, Dewald GW, Blazar BR, Verfaillie CM. Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages. Blood. 1995;85(12):3636–45. https://doi.org/10.1182/blood.V85.12.3636.bloodjournal85123636.

    Article  CAS  PubMed  Google Scholar 

  104. Agarwal P, Zhang B, Ho Y, Cook A, Li L, Mikhail FM, Wang Y, McLaughlin ME, Bhatia R. Enhanced targeting of CML stem and progenitor cells by inhibition of porcupine acyltransferase in combination with TKI. Blood. 2017;129(8):1008–20. https://doi.org/10.1182/blood-2016-05-714089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang B, Li M, McDonald T, Holyoake TL, Moon RT, Campana D, Shultz L, Bhatia R. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-beta-catenin signaling. Blood. 2013;121(10):1824–38. https://doi.org/10.1182/blood-2012-02-412890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Agarwal P, Li H, Choi K, Hueneman K, He J, Welner RS, Starczynowski DT, Bhatia R. TNF-alpha-induced alterations in stromal progenitors enhance leukemic stem cell growth via CXCR2 signaling. Cell Rep. 2021;36(2): 109386. https://doi.org/10.1016/j.celrep.2021.109386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Agarwal P, Isringhausen S, Li H, Paterson AJ, He J, Gomariz A, Nagasawa T, Nombela-Arrieta C, Bhatia R. Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells. Cell Stem Cell. 2019;24(5):769-784 e6. https://doi.org/10.1016/j.stem.2019.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang B, Ho YW, Huang Q, Maeda T, Lin A, Lee SU, Hair A, Holyoake TL, Huettner C, Bhatia R. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell. 2012;21(4):577–92. https://doi.org/10.1016/j.ccr.2012.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vianello F, Villanova F, Tisato V, Lymperi S, Ho KK, Gomes AR, Marin D, Bonnet D, Apperley J, Lam EW, Dazzi F. Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica. 2010;95(7):1081–9. https://doi.org/10.3324/haematol.2009.017178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jin L, Tabe Y, Konoplev S, Xu Y, Leysath CE, Lu H, Kimura S, Ohsaka A, Rios MB, Calvert L, Kantarjian H, Andreeff M, Konopleva M. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther. 2008;7(1):48–58. https://doi.org/10.1158/1535-7163.MCT-07-0042.

    Article  CAS  PubMed  Google Scholar 

  111. Grockowiak E, Laperrousaz B, Jeanpierre S, Voeltzel T, Guyot B, Gobert S, Nicolini FE, Maguer-Satta V. Immature CML cells implement a BMP autocrine loop to escape TKI treatment. Blood. 2017;130(26):2860–71. https://doi.org/10.1182/blood-2017-08-801019.

    Article  CAS  PubMed  Google Scholar 

  112. Nievergall E, Reynolds J, Kok CH, Watkins DB, Biondo M, Busfield SJ, Vairo G, Fuller K, Erber WN, Sadras T, Grose R, Yeung DT, Lopez AF, Hiwase DK, Hughes TP, White DL. TGF-alpha and IL-6 plasma levels selectively identify CML patients who fail to achieve an early molecular response or progress in the first year of therapy. Leukemia. 2016;30(6):1263–72. https://doi.org/10.1038/leu.2016.34.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang B, Chu S, Agarwal P, Campbell VL, Hopcroft L, Jorgensen HG, Lin A, Gaal K, Holyoake TL, Bhatia R. Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor-treated CML stem cells. Blood. 2016;128(23):2671–82. https://doi.org/10.1182/blood-2015-11-679928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wetzler M, Kurzrock R, Estrov Z, Kantarjian H, Gisslinger H, Underbrink MP, Talpaz M. Altered levels of interleukin-1 beta and interleukin-1 receptor antagonist in chronic myelogenous leukemia: clinical and prognostic correlates. Blood. 1994;84(9):3142–7. https://doi.org/10.1182/blood.V84.9.3142.3142.

    Article  CAS  PubMed  Google Scholar 

  115. Takubo K, Kobayashi C, Suda T. Distinct leukemia-initiating subsets are maintained by IL-2/CD25 axis in chronic myeloid leukemia niche. Exp Hematol. 2013;41(8). https://doi.org/10.1016/j.exphem.2013.05.244.

  116. Kobayashi CI, Takubo K, Kobayashi H, Nakamura-Ishizu A, Honda H, Kataoka K, Kumano K, Akiyama H, Sudo T, Kurokawa M, Suda T. The IL-2/CD25 axis maintains distinct subsets of chronic myeloid leukemia-initiating cells. Blood. 2014;123(16):2540–9. https://doi.org/10.1182/blood-2013-07-517847.

    Article  CAS  PubMed  Google Scholar 

  117. Welner RS, Amabile G, Bararia D, Czibere A, Yang H, Zhang H, Pontes LL, Ye M, Levantini E, Di Ruscio A, Martinelli G, Tenen DG. Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells. Cancer Cell. 2015;27(5):671–81. https://doi.org/10.1016/j.ccell.2015.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Anand M, Chodda SK, Parikh PM, Nadkarni JS. Abnormal levels of proinflammatory cytokines in serum and monocyte cultures from patients with chronic myeloid leukemia in different stages, and their role in prognosis. Hematol Oncol. 1998;16(4):143–54. https://doi.org/10.1002/(sici)1099-1069(199812)16:4%3c143::Aid-hon628%3e3.0.Co;2-u.

    Article  CAS  PubMed  Google Scholar 

  119. Ng KP, Manjeri A, Lee KL, Huang W, Tan SY, Chuah CT, Poellinger L, Ong ST. Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition. Blood. 2014;123(21):3316–26. https://doi.org/10.1182/blood-2013-07-511907.

    Article  CAS  PubMed  Google Scholar 

  120. Giuntoli S, Rovida E, Barbetti V, Cipolleschi MG, Olivotto M, Dello Sbarba P. Hypoxia suppresses BCR/Abl and selects imatinib-insensitive progenitors within clonal CML populations. Leukemia. 2006;20(7):1291–3. https://doi.org/10.1038/sj.leu.2404224.

    Article  CAS  PubMed  Google Scholar 

  121. Giuntoli S, Tanturli M, Di Gesualdo F, Barbetti V, Rovida E, Dello Sbarba P. Glucose availability in hypoxia regulates the selection of chronic myeloid leukemia progenitor subsets with different resistance to imatinib-mesylate. Haematologica. 2011;96(2):204–12. https://doi.org/10.3324/haematol.2010.029082.

    Article  CAS  PubMed  Google Scholar 

  122. Kuepper MK, Butow M, Herrmann O, Ziemons J, Chatain N, Maurer A, Kirschner M, Maie T, Costa IG, Eschweiler J, Koschmieder S, Brummendorf TH, Muller-Newen G, Schemionek M. Stem cell persistence in CML is mediated by extrinsically activated JAK1-STAT3 signaling. Leukemia. 2019;33(8):1964–77. https://doi.org/10.1038/s41375-019-0427-7.

    Article  CAS  PubMed  Google Scholar 

  123. Coppo P, Flamant S, De Mas V, Jarrier P, Guillier M, Bonnet ML, Lacout C, Guilhot F, Vainchenker W, Turhan AG. BCR-ABL activates STAT3 via JAK and MEK pathways in human cells. Br J Haematol. 2006;134(2):171–9. https://doi.org/10.1111/j.1365-2141.2006.06161.x.

    Article  CAS  PubMed  Google Scholar 

  124. Ito K, Ito K. Leukemia stem cells as a potential target to achieve therapy-free remission in chronic myeloid leukemia. Cancers (Basel). 2021;13(22). https://doi.org/10.3390/cancers13225822.

  125. de Beauchamp L, Himonas E, Helgason GV. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia. 2022;36(1):1–12. https://doi.org/10.1038/s41375-021-01416-w.

    Article  CAS  PubMed  Google Scholar 

  126. Soverini S, De Santis S, Monaldi C, Bruno S, Mancini M. Targeting leukemic stem cells in chronic myeloid leukemia: is it worth the effort? Int J Mol Sci. 2021;22(13). https://doi.org/10.3390/ijms22137093.

  127. Osman AEG, Deininger MW. Chronic myeloid leukemia: modern therapies, current challenges and future directions. Blood Rev. 2021;49: 100825. https://doi.org/10.1016/j.blre.2021.100825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Saglio G, Hughes TP, Geissler J, Kapoor S, Longin A-S, Mukherjee A, Cortes JE. Randomized, open-label, multicenter, phase 2 study of asciminib (ABL001) as an add-on to imatinib versus continued imatinib versus switch to nilotinib in patients with chronic myeloid leukemia in chronic phase who have not achieved a deep molecular response with frontline imatinib. Blood. 2019;134(1):5910–5910. https://doi.org/10.1182/blood-2019-124702.

    Article  Google Scholar 

  129. Rea D, Mauro MJ, Boquimpani C, Minami Y, Lomaia E, Voloshin S, Turkina A, Kim DW, Apperley JF, Abdo A, Fogliatto LM, Kim DDH, le Coutre P, Saussele S, Annunziata M, Hughes TP, Chaudhri N, Sasaki K, Chee L, Garcia-Gutierrez V, Cortes JE, Aimone P, Allepuz A, Quenet S, Bedoucha V, Hochhaus A. A phase 3, open-label, randomized study of asciminib, a STAMP inhibitor, vs bosutinib in CML after 2 or more prior TKIs. Blood. 2021;138(21):2031–41. https://doi.org/10.1182/blood.2020009984.

    Article  CAS  PubMed  Google Scholar 

  130. Hughes TP, Mauro MJ, Cortes JE, Minami H, Rea D, DeAngelo DJ, Breccia M, Goh YT, Talpaz M, Hochhaus A, le Coutre P, Ottmann O, Heinrich MC, Steegmann JL, Deininger MWN, Janssen J, Mahon FX, Minami Y, Yeung D, Ross DM, Tallman MS, Park JH, Druker BJ, Hynds D, Duan Y, Meille C, Hourcade-Potelleret F, Vanasse KG, Lang F, Kim DW. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure. N Engl J Med. 2019;381(24):2315–26. https://doi.org/10.1056/NEJMoa1902328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Goff DJ, Court Recart A, Sadarangani A, Chun HJ, Barrett CL, Krajewska M, Leu H, Low-Marchelli J, Ma W, Shih AY, Wei J, Zhai D, Geron I, Pu M, Bao L, Chuang R, Balaian L, Gotlib J, Minden M, Martinelli G, Rusert J, Dao KH, Shazand K, Wentworth P, Smith KM, Jamieson CA, Morris SR, Messer K, Goldstein LS, Hudson TJ, Marra M, Frazer KA, Pellecchia M, Reed JC, Jamieson CH. A Pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell. 2013;12(3):316–28. https://doi.org/10.1016/j.stem.2012.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Carter BZ, Mak PY, Mu H, Zhou H, Mak DH, Schober W, Leverson JD, Zhang B, Bhatia R, Huang X, Cortes J, Kantarjian H, Konopleva M, Andreeff M. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med. 2016;8(355):355ra117. Joel Leverson is an employee of AbbVie Inc, which developed ABT-199. The study was in part supported by research funding from AbbVie Inc. https://doi.org/10.1126/scitranslmed.aag1180.

  133. Naqvi K, Jabbour E, Skinner J, Yilmaz M, Ferrajoli A, Bose P, Thompson P, Alvarado Y, Jain N, Takahashi K, Burger J, Estrov Z, Borthakur G, Pemmaraju N, Paul S, Cortes J, Kantarjian HM. Early results of lower dose dasatinib (50 mg daily) as frontline therapy for newly diagnosed chronic-phase chronic myeloid leukemia. Cancer. 2018;124(13):2740–7. https://doi.org/10.1002/cncr.31357.

    Article  CAS  PubMed  Google Scholar 

  134. Naqvi K, Jabbour E, Skinner J, Anderson K, Dellasala S, Yilmaz M, Ferrajoli A, Bose P, Thompson P, Alvarado Y, Jain N, Takahashi K, Burger J, Estrov Z, Borthakur G, Pemmaraju N, Paul S, Cortes J, Kantarjian HM. Long-term follow-up of lower dose dasatinib (50 mg daily) as frontline therapy in newly diagnosed chronic-phase chronic myeloid leukemia. Cancer. 2020;126(1):67–75. https://doi.org/10.1002/cncr.32504.

    Article  CAS  PubMed  Google Scholar 

  135. Maiti A, Franquiz MJ, Ravandi F, Cortes JE, Jabbour EJ, Sasaki K, Marx K, Daver NG, Kadia TM, Konopleva MY, Masarova L, Borthakur G, DiNardo CD, Naqvi K, Pierce S, Kantarjian HM, Short NJ. Venetoclax and BCR-ABL tyrosine kinase inhibitor combinations: outcome in patients with Philadelphia chromosome-positive advanced myeloid leukemias. Acta Haematol. 2020;143(6):567–73. https://doi.org/10.1159/000506346.

    Article  CAS  PubMed  Google Scholar 

  136. Ruggiu M, Oberkampf F, Ghez D, Cony-Makhoul P, Beckeriche F, Cano I, Taksin AL, Benbrahim O, Ghez S, Farhat H, Rigaudeau S, de Gunzburg N, Lara D, Terre C, Raggueneau V, Garcia I, Spentchian M, De Botton S, Rousselot P. Azacytidine in combination with tyrosine kinase inhibitors induced durable responses in patients with advanced phase chronic myelogenous leukemia. Leuk Lymphoma. 2018;59(7):1659–65. https://doi.org/10.1080/10428194.2017.1397666.

    Article  CAS  PubMed  Google Scholar 

  137. Ghez D, Micol JB, Pasquier F, Auger N, Saada V, Spentchian M, Ianotto JC, Bourhis JH, Bennaceur-Griscelli A, Terre C, Castaigne S, Rigaudeau S, Rousselot P, de Botton S. Clinical efficacy of second generation tyrosine kinase inhibitor and 5-azacytidine combination in chronic myelogenous leukaemia in myeloid blast crisis. Eur J Cancer. 2013;49(17):3666–70. https://doi.org/10.1016/j.ejca.2013.07.147.

    Article  CAS  PubMed  Google Scholar 

  138. Maiti A, Cortes JE, Brown YD, Kantarjian HM. Phase I/II study of low-dose azacytidine in patients with chronic myeloid leukemia who have minimal residual disease while receiving therapy with tyrosine kinase inhibitors. Leuk Lymphoma. 2017;58(3):722–725. Potential conflict of interest: Disclosure forms provided by the authors are available with the full text of this article at https://doi.org/10.1080/10428194.2016.1207764.https://doi.org/10.1080/10428194.2016.1207767.

  139. Dutcher JP, Eudey L, Wiernik PH, Paietta E, Bennett JM, Arlin Z, et al. Phase II study of mitoxantrone and 5-azacytidine for accelerated and blast crisis of chronic myelogenous leukemia: a study of the Eastern Cooperative Oncology Group. Leukemia. 1992;6(8):770–5.

  140. Schiffer CA, DeBellis R, Kasdorf H, Wiernik PH. Treatment of the blast crisis of chronic myelogenous leukemia with 5-azacitidine and VP-16–213. Cancer Treat Rep. 1982;66(2):267–71.

    CAS  PubMed  Google Scholar 

  141. Abaza Y, Kantarjian H, Alwash Y, Borthakur G, Champlin R, Kadia T, Garcia-Manero G, Daver N, Ravandi F, Verstovsek S, Burger J, Estrov Z, Ohanian M, Lim M, Pemmaraju N, Jabbour E, Cortes J. Phase I/II study of dasatinib in combination with decitabine in patients with accelerated or blast phase chronic myeloid leukemia. Am J Hematol. 2020;95(11):1288–95. https://doi.org/10.1002/ajh.25939.

    Article  CAS  PubMed  Google Scholar 

  142. Issa JP, Gharibyan V, Cortes J, Jelinek J, Morris G, Verstovsek S, Talpaz M, Garcia-Manero G, Kantarjian HM. Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol. 2005;23(17):3948–56. https://doi.org/10.1200/JCO.2005.11.981.

    Article  CAS  PubMed  Google Scholar 

  143. Oki Y, Kantarjian HM, Gharibyan V, Jones D, O’Brien S, Verstovsek S, Cortes J, Morris GM, Garcia-Manero G, Issa JP. Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia. Cancer. 2007;109(5):899–906. https://doi.org/10.1002/cncr.22470.

    Article  CAS  PubMed  Google Scholar 

  144. Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, Baccarani M, Deininger MW, Cervantes F, Fujihara S, Ortmann CE, Menssen HD, Kantarjian H, O’Brien SG, Druker BJ, Investigators I. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376(10):917–27. https://doi.org/10.1056/NEJMoa1609324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jain P, Kantarjian H, Nazha A, O’Brien S, Jabbour E, Romo CG, Pierce S, Cardenas-Turanzas M, Verstovsek S, Borthakur G, Ravandi F, Quintas-Cardama A, Cortes J. Early responses predict better outcomes in patients with newly diagnosed chronic myeloid leukemia: results with four tyrosine kinase inhibitor modalities. Blood. 2013;121(24):4867–74. https://doi.org/10.1182/blood-2013-03-490128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Larson RA, Druker BJ, Guilhot F, O’Brien SG, Riviere GJ, Krahnke T, Gathmann I, Wang Y, Group IS. Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood. 2008;111(8):4022–8. https://doi.org/10.1182/blood-2007-10-116475.

    Article  CAS  PubMed  Google Scholar 

  147. Preudhomme C, Guilhot J, Nicolini FE, Guerci-Bresler A, Rigal-Huguet F, Maloisel F, Coiteux V, Gardembas M, Berthou C, Vekhoff A, Rea D, Jourdan E, Allard C, Delmer A, Rousselot P, Legros L, Berger M, Corm S, Etienne G, Roche-Lestienne C, Eclache V, Mahon FX, Guilhot F, Investigators S, France Intergroupe des Leucemies Myeloides C. Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. N Engl J Med. 2010;363(26):2511–21. https://doi.org/10.1056/NEJMoa1004095.

    Article  CAS  PubMed  Google Scholar 

  148. Hehlmann R, Lauseker M, Saussele S, Pfirrmann M, Krause S, Kolb HJ, Neubauer A, Hossfeld DK, Nerl C, Gratwohl A, Baerlocher GM, Heim D, Brummendorf TH, Fabarius A, Haferlach C, Schlegelberger B, Muller MC, Jeromin S, Proetel U, Kohlbrenner K, Voskanyan A, Rinaldetti S, Seifarth W, Spiess B, Balleisen L, Goebeler MC, Hanel M, Ho A, Dengler J, Falge C, Kanz L, Kremers S, Burchert A, Kneba M, Stegelmann F, Kohne CA, Lindemann HW, Waller CF, Pfreundschuh M, Spiekermann K, Berdel WE, Muller L, Edinger M, Mayer J, Beelen DW, Bentz M, Link H, Hertenstein B, Fuchs R, Wernli M, Schlegel F, Schlag R, de Wit M, Trumper L, Hebart H, Hahn M, Thomalla J, Scheid C, Schafhausen P, Verbeek W, Eckart MJ, Gassmann W, Pezzutto A, Schenk M, Brossart P, Geer T, Bildat S, Schafer E, Hochhaus A, Hasford J. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants. Leukemia. 2017;31(11):2398–406. https://doi.org/10.1038/leu.2017.253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hehlmann R, Lauseker M, Saussele S, Pfirrmann M, Krause SW, Kolb H-J, Neubauer A, Hossfeld DK, Nerl C, Gratwohl A, Baerlocher GM, Heim D, Bruemmendorf TH, Fabarius A, Haferlach C, Schlegelberger B, Müller MC, Jeromin S, Proetel U, Kohlbrenner K, Voskanyan A, Rinaldetti S, Seifarth W, Spiess B, Balleisen L, Goebeler ME, Hänel M, Ho AD, Dengler J, Falge C, Kanz L, Köhne C-H, Burchert A, Kneba M, Stegelmann F, Köhne C, Lindemann H-W, Waller C, Pfreundschuh M, Spiekermann K, Berdel WE, Müller L, Edinger M, Mayer J, Beelen DW, Bentz M, Link H, Hertenstein B, Fuchs R, Wernli M, Schlegel F, Schlag R, de Wit M, Trümper L, Hebarth H, Hahn M, Thomalla J, Scheid C, Schafhausen P, Verbeek W, Eckart MJ, Gassmann W, Pezzutto A, Schenk M, Brossart P, Geer T, Bildat S, Schäfer E, Hochhaus A, Hasford J. Final evaluation of randomized CML-Study IV: 10-year survival and evolution of terminal phase. Blood. 2017;130(Suppl_1):897–897. https://doi.org/10.1182/blood.V130.Suppl_1.897.897.

    Article  Google Scholar 

  150. Nicolini FE, Etienne G, Dubruille V, Roy L, Huguet F, Legros L, Giraudier S, Coiteux V, Guerci-Bresler A, Lenain P, Cony-Makhoul P, Gardembas M, Hermet E, Rousselot P, Amé S, Gagnieu M-C, Pivot C, Hayette S, Maguer-Satta V, Etienne M, Dulucq S, Rea D, Mahon F-X. Nilotinib and peginterferon alfa-2a for newly diagnosed chronic-phase chronic myeloid leukaemia (NiloPeg): a multicentre, non-randomised, open-label phase 2 study. Lancet Haematol. 2015;2(1):e37–46. https://doi.org/10.1016/s2352-3026(14)00027-1.

    Article  PubMed  Google Scholar 

  151. Miao YR, Liu W, Zhong Z, You Y, Tang Y, Li W, et al. Case Report: Multi-Omics Analysis and CAR-T Treatment of a Chronic Myeloid Leukemia Blast Crisis Case 5 Years After the Discontinuation of TKI. Front Oncol. 2021;11:739871. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. https://doi.org/10.3389/fonc.2021.739871.

  152. Zhou L, Shi H, Shi W, Yang L, Zhang Y, Xu M, et al.. Durable Molecular Remission in a Lymphoid BP-CML Patient Harboring T315I Mutation Treated with Anti-CD19 CAR-T Therapy. Onco Targets Ther. 2019;12:10989–10995. The authors report no conflicts of interest in this work. https://doi.org/10.2147/OTT.S232102.

  153. Kim SH, Menon H, Jootar S, Saikia T, Kwak JY, Sohn SK, Park JS, Jeong SH, Kim HJ, Kim YK, Oh SJ, Kim H, Zang DY, Chung JS, Shin HJ, Do YR, Kim JA, Kim DY, Choi CW, Park S, Park HL, Lee GY, Cho DJ, Shin JS, Kim DW. Efficacy and safety of radotinib in chronic phase chronic myeloid leukemia patients with resistance or intolerance to BCR-ABL1 tyrosine kinase inhibitors. Haematologica. 2014;99(7):1191–6. https://doi.org/10.3324/haematol.2013.096776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kwak JY, Kim SH, Oh SJ, Zang DY, Kim H, Kim JA, Do YR, Kim HJ, Park JS, Choi CW, Lee WS, Mun YC, Kong JH, Chung JS, Shin HJ, Kim DY, Park J, Jung CW, Bunworasate U, Comia NS, Jootar S, Reksodiputro AH, Caguioa PB, Lee SE, Kim DW. Phase III clinical trial (RERISE study) results of efficacy and safety of radotinib compared with imatinib in newly diagnosed chronic phase chronic myeloid leukemia. Clin Cancer Res. 2017;23(23):7180–8. https://doi.org/10.1158/1078-0432.CCR-17-0957.

    Article  CAS  PubMed  Google Scholar 

  155. Cortes JE, Saikia T, Kim D-W, Alvarado Y, Nicolini FE, Khattry N, Rathnam K, Apperley J, Deininger MW, de Lavallade H, Charbonnier A, Granacher N, Gambacorti-Passerini C, Lucchesi A, Mauro MJ, Verhoef G, Vandenberghe P, Whiteley AR, Apte S, Yao S-L, Kothekar M, Sreenivasan J, Hv B, Chimote G. Phase 1 trial of vodobatinib, a novel oral BCR-ABL1 tyrosine kinase inhibitor (TKI): activity in CML chronic phase patients failing TKI therapies including ponatinib. Blood. 2020;136(Supplement 1):51–2. https://doi.org/10.1182/blood-2020-139847.

    Article  Google Scholar 

  156. Wang G, Lv J, Tang C, Min P, Rui L, Zhang F, Wang L, Ge Y, Lian K, Liang E, Yang D, Zhai Y. Abstract 1463: ATP-site inhibitor olverembatinib, HQP1351, enhanced the effect of allosteric inhibitor on the resistance conferred by the compound mutations of BCR-ABL. Cancer Res. 2021;81(13_Supplement):1463–1463. https://doi.org/10.1158/1538-7445.Am2021-1463.

    Article  Google Scholar 

  157. Dhillon S. Olverembatinib: first approval. Drugs. 2022;82(4):469–75. https://doi.org/10.1007/s40265-022-01680-9.

    Article  CAS  PubMed  Google Scholar 

  158. Gleixner KV, Ferenc V, Peter B, Gruze A, Meyer RA, Hadzijusufovic E, Cerny-Reiterer S, Mayerhofer M, Pickl WF, Sillaber C, Valent P. Polo-like kinase 1 (Plk1) as a novel drug target in chronic myeloid leukemia: overriding imatinib resistance with the Plk1 inhibitor BI 2536. Cancer Res. 2010;70(4):1513–23. https://doi.org/10.1158/0008-5472.CAN-09-2181.

    Article  CAS  PubMed  Google Scholar 

  159. Pellicano F, Simara P, Sinclair A, Helgason GV, Copland M, Grant S, Holyoake TL. The MEK inhibitor PD184352 enhances BMS-214662-induced apoptosis in CD34+ CML stem/progenitor cells. Leukemia. 2011;25(7):1159–67. https://doi.org/10.1038/leu.2011.67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Irvine DA, Zhang B, Kinstrie R, Tarafdar A, Morrison H, Campbell VL, Moka HA, Ho Y, Nixon C, Manley PW, Wheadon H, Goodlad JR, Holyoake TL, Bhatia R, Copland M. Deregulated hedgehog pathway signaling is inhibited by the smoothened antagonist LDE225 (Sonidegib) in chronic phase chronic myeloid leukaemia. Sci Rep. 2016;9(6):25476. https://doi.org/10.1038/srep25476.

    Article  CAS  Google Scholar 

  161. Wang LX, Wang JD, Chen JJ, Long B, Liu LL, Tu XX, Luo Y, Hu Y, Lin DJ, Lu G, Long ZJ, Liu Q. Aurora A Kinase Inhibitor AKI603 Induces Cellular Senescence in Chronic Myeloid Leukemia Cells Harboring T315I Mutation. Sci Rep. 2016;8(6):35533. https://doi.org/10.1038/srep35533.

    Article  CAS  Google Scholar 

  162. Lernoux M, Schnekenburger M, Losson H, Vermeulen K, Hahn H, Gerard D, Lee JY, Mazumder A, Ahamed M, Christov C, Kim DW, Dicato M, Bormans G, Han BW, Diederich M. Novel HDAC inhibitor MAKV-8 and imatinib synergistically kill chronic myeloid leukemia cells via inhibition of BCR-ABL/MYC-signaling: effect on imatinib resistance and stem cells. Clin Epigenetics. 2020;12(1):69. https://doi.org/10.1186/s13148-020-00839-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bhatia S, Diedrich D, Frieg B, Ahlert H, Stein S, Bopp B, Lang F, Zang T, Kroger T, Ernst T, Kogler G, Krieg A, Ludeke S, Kunkel H, Rodrigues Moita AJ, Kassack MU, Marquardt V, Opitz FV, Oldenburg M, Remke M, Babor F, Grez M, Hochhaus A, Borkhardt A, Groth G, Nagel-Steger L, Jose J, Kurz T, Gohlke H, Hansen FK, Hauer J. Targeting HSP90 dimerization via the C terminus is effective in imatinib-resistant CML and lacks the heat shock response. Blood. 2018;132(3):307–20. https://doi.org/10.1182/blood-2017-10-810986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gallipoli P, Cook A, Rhodes S, Hopcroft L, Wheadon H, Whetton AD, Jorgensen HG, Bhatia R, Holyoake TL. JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo. Blood. 2014;124(9):1492–501. https://doi.org/10.1182/blood-2013-12-545640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cortes J, Lang F. Third-line therapy for chronic myeloid leukemia: current status and future directions. J Hematol Oncol. 2021;14(1):44. https://doi.org/10.1186/s13045-021-01055-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yamamoto C, Nakashima H, Ikeda T, Kawaguchi SI, Toda Y, Ito S, Mashima K, Nagayama T, Umino K, Minakata D, Nakano H, Morita K, Yamasaki R, Sugimoto M, Ishihara Y, Ashizawa M, Hatano K, Sato K, Oh I, Fujiwara SI, Ueda M, Ohmine K, Muroi K, Kanda Y. Analysis of the cost-effectiveness of treatment strategies for CML with incorporation of treatment discontinuation. Blood Adv. 2019;3(21):3266–77. https://doi.org/10.1182/bloodadvances.2019000745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Padula WV, Larson RA, Dusetzina SB, Apperley JF, Hehlmann R, Baccarani M, et al.. Cost-effectiveness of tyrosine kinase inhibitor treatment strategies for chronic myeloid leukemia in chronic phase after generic entry of imatinib in the United States. J Natl Cancer Inst. 2016;108(7). https://doi.org/10.1093/jnci/djw003.

Download references

Acknowledgements

We are grateful to insightful discussions with Dr. Vaidehi Krishnan.

Funding

This work is funded in part by grants MOH-CSASI18may-0002 and MOH-CIRG20nov-0003 from the Singapore Ministry of Health.

Author information

Authors and Affiliations

Authors

Contributions

JJN wrote the first draft of the manuscript, which was revised with STO.

Corresponding author

Correspondence to S. Tiong Ong.

Ethics declarations

Conflict of Interest

JJN declares no potential conflicts of interest. STO has received licensing fees from AUM Biosciences.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Chronic Myeloid Leukemias

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, J.J., Ong, S.T. Therapy Resistance and Disease Progression in CML: Mechanistic Links and Therapeutic Strategies. Curr Hematol Malig Rep 17, 181–197 (2022). https://doi.org/10.1007/s11899-022-00679-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-022-00679-z

Keywords

Navigation