Skip to main content

Advertisement

Log in

Role of the Renal Lymphatic System in Heart Failure

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The lymphatic system plays a major but overlooked role in maintaining fluid homeostasis. Given the unique fluid homeostasis functions of the kidneys, dysregulation of the renal lymphatic system underlies the development of self-propagating congestive pathomechanisms. In this review, we outline the roles of the renal lymphatic system in heart failure (HF).

Recent Findings

Studies have uncovered several pathomechanisms involving the renal lymphatic system in congestive states, such as impaired interstitial draining by the renal lymphatic system, impaired structure and valves of renal lymphatics, lymphatic-induced increase in renal reabsorption of water and sodium, and development of albuminuria with proteinuria-induced renal lymphangiogenesis. These self-propagating mechanisms result in “renal tamponade” with manifestations of cardiorenal syndrome and inappropriate renal response to diuretics.

Summary

Dysregulation of the renal lymphatic system is integral to the development and progression of congestion in HF. Targeting renal lymphatics may provide a novel pathway to treat intractable congestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Fudim M, Salah HM, Sathananthan J, et al. Lymphatic dysregulation in patients with heart failure: JACC Review Topic of the Week. J Am Coll Cardiol. 2021;78:66–76. In this paper, lymphatic dysregulation was suggested as a driving pathomechanism for the manifestations of congestion in heart failure, and targeting the lymphatic system was proposed as a potenital novel treatment pathway to address congestion in heart failure.

    Article  PubMed  Google Scholar 

  2. Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic vessel network structure and physiology. Compr Physiol. 2018;9:207–99.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schwager S, Detmar M. Inflammation and lymphatic function. Front Immunol. 2019;10:308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Oliver G. Current views on the function of the lymphatic vasculature in health and disease. Genes Dev. 2010;24:2115–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hall JE, Hall ME. Guyton and Hall Textbook of Medical Physiology, Elsevier, 2020.

  6. Jones D, Min W. An overview of lymphatic vessels and their emerging role in cardiovascular disease. J Cardiovasc Dis Res. 2011;2:141–52.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010;140:460–76.

    Article  CAS  PubMed  Google Scholar 

  8. Santambrogio L. The lymphatic fluid. Int Rev Cell Mol Biol. 2018;337:111–33.

    Article  CAS  PubMed  Google Scholar 

  9. Null M, Agarwal M. Anatomy, lymphatic system. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, Stat Pearls Publishing LLC, 2022.

  10. Choi I, Lee S, Hong YK. The new era of the lymphatic system: no longer secondary to the blood vascular system. Cold Spring Harb Perspect Med. 2012;2:a006445.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Donnan MD, Kenig-Kozlovsky Y, Quaggin SE. The lymphatics in kidney health and disease. Nat Rev Nephrol. 2021;17:655–75.

    Article  PubMed  Google Scholar 

  12. LeBrie SJ, Mayerson HS. Influence of elevated venous pressure on flow and composition of renal lymph. American Journal of Physiology-Legacy Content. 1960;198:1037–40.

    Article  CAS  Google Scholar 

  13. Cockett ATK. Lymphatic network of kidney I. anatomic and physiologic considerations. Urology. 1977;9:125–9.

    Article  CAS  PubMed  Google Scholar 

  14. Heney NM, O’Morchoe PJ, O’Morchoe CCC. The renal lymphatic system during obstructed urine flow. J Urol. 1971;106:455–62.

    Article  CAS  PubMed  Google Scholar 

  15. Ishikawa Y, Akasaka Y, Kiguchi H, et al. The human renal lymphatics under normal and pathological conditions. Histopathology. 2006;49:265–73.

    Article  CAS  PubMed  Google Scholar 

  16. Cuttino JT, Clark RL, Charles JJ. Microradiographic demonstration of human intrarenal microlymphatic pathways. Urol Radiol. 1989;11:83–7.

    Article  PubMed  Google Scholar 

  17. Holmes MJ, O’Morchoe PJ, O’Morchoe CCC. Morphology of the intrarenal lymphatic system. Capsular and hilar communications. Am J Anat. 1977;149:333–51.

    Article  CAS  PubMed  Google Scholar 

  18. Holmes MJ, O’Morchoe PJ, O’Morchoe CC. Morphology of the intrarenal lymphatic system. Capsular and hilar communications. Am J Anat. 1977;149:333–51.

    Article  CAS  PubMed  Google Scholar 

  19. Russell PS, Hong J, Windsor JA, Itkin M, Phillips ARJ. Renal lymphatics: anatomy, physiology, and clinical implications. Front Physiol. 2019;10:251.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Boorsma EM, ter Maaten JM, Damman K et al. Albuminuria as a marker of systemic congestion in patients with heart failure. Eur Heart J 2022;44:368–380.

  21. Sugarman J, Friedman M, Barrett E, Addis T. The distribution, flow, protein and urea content of renal lymph. American Journal of Physiology-Legacy Content. 1942;138:108–12.

    Article  CAS  Google Scholar 

  22. Swann HG, Ormsby AA, Delashaw JB, Tharp WW. Relation of lymph to distending fluids of the kidney. Proc Soc Exp Biol Med. 1958;97:517–22.

    Article  CAS  PubMed  Google Scholar 

  23. LeBrie S, Mayerson H. Composition of renal lymph and its significance. Proc Soc Exp Biol Med. 1959;100:378–80.

    Article  CAS  PubMed  Google Scholar 

  24. Hargens AR, Tucker BJ, Blantz RC. Renal lymph protein in the rat. Am J Physiol-Renal Physiol. 1977;233:F269–73.

    Article  CAS  Google Scholar 

  25. Lever AF, Peart WS. Renin and angiotensin-like activity in renal lymph. J Physiol. 1962;160:548–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bailie MD, Rector FC Jr, Seldin DW. Angiotensin II in arterial and renal venous plasma and renal lymph in the dog. J Clin Invest. 1971;50:119–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ott CE, Knox FG. Tissue pressures and fluid dynamics in the kidney. Fed Proc. 1976;35:1872–5.

    CAS  PubMed  Google Scholar 

  28. The lymphatic system in body homeostasis. physiological conditions. Lymphat Res Biol. 2003;1:11–24.

    Article  Google Scholar 

  29. Fonarow GC, Heywood JT, Heidenreich PA, Lopatin M, Yancy CW. Temporal trends in clinical characteristics, treatments, and outcomes for heart failure hospitalizations, 2002 to 2004: findings from Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2007;153:1021–8.

    Article  PubMed  Google Scholar 

  30. Damman K, Deursen VMV, Navis G, Voors AA, Veldhuisen DJV, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53:582–8.

    Article  PubMed  Google Scholar 

  31. Ganda A, Onat D, Demmer RT, et al. Venous congestion and endothelial cell activation in acute decompensated heart failure. Curr Heart Fail Rep. 2010;7:66–74.

    Article  CAS  PubMed  Google Scholar 

  32. Tansey EA, Montgomery LEA, Quinn JG, Roe SM, Johnson CD. Understanding basic vein physiology and venous blood pressure through simple physical assessments. Adv Physiol Educ. 2019;43:423–9.

    Article  PubMed  Google Scholar 

  33. Joris I, Cuénoud HF, Doern GV, Underwood JM, Majno G. Capillary leakage in inflammation A study by vascular labeling. Am J Pathol. 1990;137:1353–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. • Boorsma EM, ter Maaten JM, Voors AA, van Veldhuisen DJ. Renal compression in heart failure: the renal tamponade hypothesis. JACC: Heart Failure. 2022;10:175–83. In this paper, the concept of "renal tamponade" (i.e., compression of renal structures due limited space for expansion within the rigid renal capsule) was proposed as a pathomechanism for the disproportionate impairment in kidney function in the setting of elevated central venous pressure.

    PubMed  Google Scholar 

  35. Colombo PC, Ganda A, Lin J, et al. Inflammatory activation: cardiac, renal, and cardio-renal interactions in patients with the cardiorenal syndrome. Heart Fail Rev. 2012;17:177–90.

    Article  CAS  PubMed  Google Scholar 

  36. Afsar B, Ortiz A, Covic A, Solak Y, Goldsmith D, Kanbay M. Focus on renal congestion in heart failure. Clin Kidney J. 2016;9:39–47.

    Article  CAS  PubMed  Google Scholar 

  37. Katz YJ, Cockett ATK, Moor RS. Elevation of inferior vena cava pressure and thoracic lymph and urine flow. Circ Res. 1959;7:118–22.

    Article  CAS  PubMed  Google Scholar 

  38. Mullens W, Verbrugge FH, Nijst P, Tang WHW. Renal sodium avidity in heart failure: from pathophysiology to treatment strategies. Eur Heart J. 2017;38:1872–82.

    Article  CAS  PubMed  Google Scholar 

  39. Fountain JH, Lappin SL. Physiology, renin angiotensin system. StatPearls. Treasure Island (FL): StatPearls Publishing, Copyright © 2022, StatPearls Publishing LLC, 2022.

  40. Threefoot SA, Pearson JE, Georgiardis A. Albumin uptake by renal lymphatics with and without obstruction of the renal vein. Am J Cardiol. 1989;64:C51–6.

    Article  Google Scholar 

  41. Zhang T, Guan G, Liu G, et al. Disturbance of lymph circulation develops renal fibrosis in rats with or without contralateral nephrectomy. Nephrology (Carlton). 2008;13:128–38.

    Article  CAS  PubMed  Google Scholar 

  42. Yazdani S, Poosti F, Kramer AB, et al. Proteinuria triggers renal lymphangiogenesis prior to the development of interstitial fibrosis. PLoS ONE. 2012;7:e50209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rangaswami J, Bhalla V, Blair JEA, et al. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation. 2019;139:e840–78.

    Article  PubMed  Google Scholar 

  44. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527–39.

    Article  PubMed  Google Scholar 

  45. Zymliński R, Biegus J, Sokolski M, et al. Increased blood lactate is prevalent and identifies poor prognosis in patients with acute heart failure without overt peripheral hypoperfusion. Eur J Heart Fail. 2018;20:1011–8.

    Article  PubMed  Google Scholar 

  46. Adams KF, Fonarow GC, Emerman CL, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149:209–16.

    Article  PubMed  Google Scholar 

  47. Damman K, Navis G, Smilde TDJ, et al. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail. 2007;9:872–8.

    Article  PubMed  Google Scholar 

  48. Mullens W, Abrahams Z, Francis GS, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bart BA, Goldsmith SR, Lee KL, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367:2296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cole WR, Witte MH, Kash SL, Rodger M, Bleisch VR, Muelheims GH. Thoracic duct-to-pulmonary vein shunt in the treatment of experimental right heart failure. Circulation. 1967;36:539–43.

    Article  CAS  PubMed  Google Scholar 

  51. • Abraham WT, Jonas M, Dongaonkar RM, et al. Direct interstitial decongestion in an animal model of acute-on-chronic ischemic heart failure. JACC Basic to Transl Sci. 2021;6:872–81. In this work, targeting the lymphatic system using a device-based approach to create a low-pressure zone at the thoracic duct outlet significantly increased urine output in animals and human.

    Article  Google Scholar 

  52. Witte MH, Dumont AE, Clauss RH, Rader B, Levine N, Breed ES. Lymph circulation in congestive heart failure. Circulation. 1969;39:723–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat Fudim.

Ethics declarations

Conflict of Interest

Dr. Fudim was supported by the National Heart, Lung, and Blood Institute (NHLBI) (K23HL151744), the American Heart Association (20IPA35310955), Mario Family Award, Duke Chair’s Award, Translating Duke Health Award, Bayer, Bodyport, BTG Specialty Pharmaceuticals, and Verily. He receives consulting fees from Abbott, Alleviant, Audicor, AxonTherapies, Bayer, Bodyguide, Bodyport, Boston Scientific, CVRx, Daxor, Deerfield Catalyst, Edwards LifeSciences, Feldschuh Foundation, Fire1, Gradient, Intershunt, NXT Biomedical, Pharmacosmos, PreHealth, Shifamed, Splendo, Vironix, Viscardia, and Zoll. All other authors declare no disclosures.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, H.M., Biegus, J. & Fudim, M. Role of the Renal Lymphatic System in Heart Failure. Curr Heart Fail Rep 20, 113–120 (2023). https://doi.org/10.1007/s11897-023-00595-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-023-00595-0

Keywords

Navigation