Skip to main content

Advertisement

Log in

Cognitive Dysfunction in Heart Failure: Pathophysiology and Implications for Patient Management

  • Comorbidities (J. Tromp, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

There is increasing recognition of the prevalence and impact of cognitive dysfunction (CD) in heart failure (HF) patients. This contemporary review appraises the evidence for epidemiological association, direct pathophysiological links and emerging pharmacological and non-pharmacological interventions. Furthermore, we present evidence for care models that aim to mitigate the morbidity and poor quality of life associated with these dual processes and propose future work to improve outcomes.

Recent Findings

CD disproportionately affects heart failure patients, even accounting for known comorbid risk factors, and this may extend to subclinical left ventricular dysfunction. Neuroimaging studies now provide evidence of anatomical and functional differences which support previously postulated mechanisms of reduced cerebral blood flow, micro-embolism and systemic inflammation. Interventions such as multidisciplinary ambulatory HF care, education and memory training improve HF outcomes perhaps to a greater degree in those with comorbid CD. Additionally, optimisation of standard heart failure care (cardiac rehabilitation, pharmacological and device therapy) may lead to additional cognitive benefits.

Summary

Epidemiological, neuroimaging and intervention studies provide evidence for the causal association between HF and CD, although evidence for Alzheimer’s dementia is less certain. Specific reporting of cognitive outcomes in HF trials and evaluation of targeted interventions is required to further guide care provision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the united states: a policy statement from the American heart association. Circ Heart Fail. 2013;6:606–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Riet EE, Hoes AW, Wagenaar KP, Limburg A, Landman MA, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail. 2016;18:242–52.

    Article  PubMed  Google Scholar 

  3. Conrad N, Judge A, Tran J, et al. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet. 2018;391:572–80.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in china: a cross-sectional study. Lancet Public Health. 2020;5:e661–71.

    Article  PubMed  Google Scholar 

  5. Hale JM, Schneider DC, Gampe J, Mehta NK, Myrskylä M. Trends in the risk of cognitive impairment in the United States, 1996–2014. Epidemiology. 2020;31:745–54.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pais R, Ruano L, Carvalho OP, Barros H. Global cognitive impairment prevalence and incidence in community dwelling older adults-a systematic review. Geriatrics (Basel). 2020;5:84.

    Article  Google Scholar 

  7. Hugo J, Ganguli M. Dementia and cognitive impairment: epidemiology, diagnosis, and treatment. Clin Geriatr Med. 2014;30:421–42.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cannon JA, Moffitt P, Perez-Moreno AC, et al. Cognitive impairment and heart failure: systematic review and meta-analysis. J Card Fail. 2017;23:464–75.

    Article  PubMed  Google Scholar 

  9. Gure TR, Blaum CS, Giordani B, et al. Prevalence of cognitive impairment in older adults with heart failure. J Am Geriatr Soc. 2012;60:1724–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Adelborg K, Horváth-Puhó E, Ording A, Pedersen L, Sørensen HT, Henderson VW. Heart failure and risk of dementia: a Danish nationwide population-based cohort study. Eur J Heart Fail. 2017;19:253–60.

    Article  CAS  PubMed  Google Scholar 

  11. Witt LS, Rotter J, Stearns SC, et al. Heart failure and cognitive impairment in the atherosclerosis risk in communities (ARIC) study. J Gen Intern Med. 2018;33:1721–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lovell J, Pham T, Noaman SQ, Davis MC, Johnson M, Ibrahim JE. Self-management of heart failure in dementia and cognitive impairment: a systematic review. BMC Cardiovasc Disord. 2019;19:99.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Holm H, Bachus E, Jujic A, et al. Cognitive test results are associated with mortality and rehospitalization in heart failure: Swedish prospective cohort study. ESC Heart Fail. 2020;7:2948–55.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hjelm C, Broström A, Dahl A, Johansson B, Fredrikson M, Strömberg A. Factors associated with increased risk for dementia in individuals age 80 years or older with congestive heart failure. J Cardiovasc Nurs. 2014;29:82–90.

    Article  PubMed  Google Scholar 

  15. Li J, Wu Y, Zhang D, Nie J. Associations between heart failure and risk of dementia: a prisma-compliant meta-analysis. Medicine (Baltimore). 2020;99:e18492. This meta-analysis quantifies the risk of all-cause dementia and Alzheimer’s disease in HF from available prospective studies; the first to include recent large-scale registry studies.

    Article  Google Scholar 

  16. Vishwanath S, Qaderi V, Steves CJ, Reid CM, Hopper I, Ryan J. Cognitive decline and risk of dementia in individuals with heart failure: a systematic review and meta-analysis. J Card Fail. 2021:S1071–9164(21)00529-7. https://doi.org/10.1016/j.cardfail.2021.12.014This meta-analysis also quantifies the risk of all-cause dementia, Alzheimer’s disease and vascular dementia from available prospective studies including recent large-scale registry studies and more rigorously differentiates between studies of dementia and cognitive impairment/decline.

  17. Wolters FJ, Segufa RA, Darweesh SKL, et al. Coronary heart disease, heart failure, and the risk of dementia: a systematic review and meta-analysis. Alzheimers Dement. 2018;14:1493–504.

    Article  PubMed  Google Scholar 

  18. Wändell P, Carlsson AC, Li X, Sundquist J, Sundquist K. Association between relevant co-morbidities and dementia with atrial fibrillation-a national study. Arch Med Res. 2019;50:29–35.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huijts M, van Oostenbrugge RJ, Duits A, et al. Cognitive impairment in heart failure: results from the trial of intensified versus standard medical therapy in elderly patients with congestive heart failure (time-chf) randomized trial. Eur J Heart Fail. 2013;15:699–707.

    Article  CAS  PubMed  Google Scholar 

  20. Warraich HJ, Kitzman DW, Whellan DJ, et al. Physical function, frailty, cognition, depression, and quality of life in hospitalized adults ≥60 years with acute decompensated heart failure with preserved versus reduced ejection fraction. Circ Heart Fail. 2018;11:e005254.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Faulkner KM, Dickson VV, Fletcher J, et al. Factors associated with cognitive impairment in heart failure with preserved ejection fraction. J Cardiovasc Nurs. 2022;37:17–30.

    PubMed  Google Scholar 

  22. Shin MS, An M, Kim S, Shim JL, Park JK, Kim J. Concomitant diastolic dysfunction further interferes with cognitive performance in moderate to severe systolic heart failure. PLoS One. 2017;12:e0184981.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gauthier S, Reisberg B, Zaudig M, et al. Mild cognitive impairment. Lancet. 2006;367:1262–70.

    Article  PubMed  Google Scholar 

  24. Sacre JW, Ball J, Wong C, et al. Mild cognitive impairment is associated with subclinical diastolic dysfunction in patients with chronic heart disease. Eur Heart J Cardiovasc Imaging. 2018;19:285–92.

    Article  PubMed  Google Scholar 

  25. Potter EL, Ramkumar S, Wright L, Marwick TH. Associations of subclinical heart failure and atrial fibrillation with mild cognitive impairment: a cross-sectional study in a subclinical heart failure screening programme. BMJ Open. 2021;11:e045896.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Park CM, Williams ED, Chaturvedi N, Tillin T, Stewart RJ, Richards M, Shibata D, Mayet J, Hughes AD. Associations between left ventricular dysfunction and brain structure and function: findings from the SABRE (Southall and Brent Revisited) study. J Am Heart Assoc. 2017;6(4):e004898. https://doi.org/10.1161/JAHA.116.004898

  27. Russo C, Jin Z, Homma S, et al. Subclinical left ventricular dysfunction and silent cerebrovascular disease. Circulation. 2013;128:1105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Restrepo C, Patel SK, Rethnam V, et al. Left ventricular hypertrophy and cognitive function: a systematic review. J Hum Hypertens. 2018;32:171–9.

    Article  CAS  PubMed  Google Scholar 

  29. Haring B, Omidpanah A, Suchy-Dicey AM, et al. Left ventricular mass, brain magnetic resonance imaging, and cognitive performance. Hypertension. 2017;70:964–71.

    Article  CAS  PubMed  Google Scholar 

  30. Almeida OP, Garrido GJ, Etherton-Beer C, et al. Brain and mood changes over 2 years in healthy controls and adults with heart failure and ischaemic heart disease. Eur J Heart Fail. 2013;15:850–8.

    Article  PubMed  Google Scholar 

  31. Woo MA, Macey PM, Fonarow GC, Hamilton MA, Harper RM. Regional brain gray matter loss in heart failure. J Appl Physiol. 1985;2003(95):677–84.

    Google Scholar 

  32. Vogels RLC, Oosterman JM, van Harten B, et al. Neuroimaging and correlates of cognitive function among patients with heart failure. Dement Geriatr Cogn Disord. 2007;24:418–23.

    Article  PubMed  Google Scholar 

  33. Almeida OP, Garrido GJ, Beer C, Lautenschlager NT, Arnolda L, Flicker L. Cognitive and brain changes associated with ischaemic heart disease and heart failure. Eur Heart J. 2012;33:1769–76.

    Article  PubMed  Google Scholar 

  34. Beer C, Ebenezer E, Fenner S, et al. Contributors to cognitive impairment in congestive heart failure: a pilot case-control study. Intern Med J. 2009;39:600–5.

    Article  CAS  PubMed  Google Scholar 

  35. Mueller K, Thiel F, Beutner F, et al. Brain damage with heart failure: cardiac biomarker alterations and gray matter decline. Circ Res. 2020;126:750–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meguro T, Meguro Y, Kunieda T. Atrophy of the parahippocampal gyrus is prominent in heart failure patients without dementia. ESC Heart Fail. 2017;4:632–40.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Alosco ML, Brickman AM, Spitznagel MB, et al. Cerebral perfusion is associated with white matter hyperintensities in older adults with heart failure. Congest Heart Fail. 2013;19:E29-34.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stegmann T, Chu ML, Witte VA, et al. Heart failure is independently associated with white matter lesions: insights from the population-based life-adult study. ESC Heart Fail. 2021;8:697–704.

    Article  PubMed  Google Scholar 

  39. Frey A, Sell R, Homola GA, et al. Cognitive deficits and related brain lesions in patients with chronic heart failure. JACC Heart Fail. 2018;6:583–92.

    Article  PubMed  Google Scholar 

  40. Alves TC, Busatto GF. Regional cerebral blood flow reductions, heart failure and Alzheimer’s disease. Neurol Res. 2006;28:579–87.

    Article  PubMed  Google Scholar 

  41. van der Velpen IF, Feleus S, Bertens AS, Sabayan B. Hemodynamic and serum cardiac markers and risk of cognitive impairment and dementia. Alzheimers Dement. 2017;13:441–53.

    Article  PubMed  Google Scholar 

  42. Suzuki H, Matsumoto Y, Ota H, et al. Hippocampal blood flow abnormality associated with depressive symptoms and cognitive impairment in patients with chronic heart failure. Circ J. 2016;80:1773–80.

    Article  PubMed  Google Scholar 

  43. Yang T, Lu Z, Wang L, et al. Dynamic changes in brain glucose metabolism and neuronal structure in rats with heart failure. Neuroscience. 2020;424:34–44.

    Article  CAS  PubMed  Google Scholar 

  44. Islam MR, Lbik D, Sakib MS, et al. Epigenetic gene expression links heart failure to memory impairment. EMBO Mol Med. 2021;13:e11900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Toledo C, Lucero C, Andrade DC, et al. Cognitive impairment in heart failure is associated with altered wnt signaling in the hippocampus. Aging (Albany NY). 2019;11:5924–42.

    Article  CAS  Google Scholar 

  46. Ovsenik A, Podbregar M, Fabjan A. Cerebral blood flow impairment and cognitive decline in heart failure. Brain Behav. 2021;11:e02176.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jefferson AL, Liu D, Gupta DK, et al. Lower cardiac index levels relate to lower cerebral blood flow in older adults. Neurology. 2017;89:2327–34.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jefferson AL, Himali JJ, Beiser AS, et al. Cardiac index is associated with brain aging: the Framingham heart study. Circulation. 2010;122:690–7.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dardiotis E, Giamouzis G, Mastrogiannis D, et al. Cognitive impairment in heart failure. Cardiol Res Pract. 2012;2012:595821.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kure CE, Rosenfeldt FL, Scholey AB, et al. Relationships among cognitive function and cerebral blood flow, oxidative stress, and inflammation in older heart failure patients. J Card Fail. 2016;22:548–59.

    Article  CAS  PubMed  Google Scholar 

  51. Mene-Afejuku TO, Pernia M, Ibebuogu UN, et al. Heart failure and cognitive impairment: clinical relevance and therapeutic considerations. Curr Cardiol Rev. 2019;15:291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Georgiadis D, Sievert M, Cencetti S, et al. Cerebrovascular reactivity is impaired in patients with cardiac failure. Eur Heart J. 2000;21:407–13.

    Article  CAS  PubMed  Google Scholar 

  53. Ampadu J, Morley JE. Heart failure and cognitive dysfunction. Int J Cardiol. 2015;178:12–23.

    Article  PubMed  Google Scholar 

  54. Zheng YM, Zhao YY, Zhang T, et al. Left ventricular ejection fraction and cerebrospinal fluid biomarkers of Alzheimer’s disease pathology in cognitively normal older adults: the cable study. J Alzheimers Dis. 2021;81:743–50.

    Article  CAS  PubMed  Google Scholar 

  55. Kresge HA, Liu D, Gupta DK, et al. Lower left ventricular ejection fraction relates to cerebrospinal fluid biomarker evidence of neurodegeneration in older adults. J Alzheimers Dis. 2020;74:965–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ferro D, van den Brink H, Amier R, et al. Cerebral cortical microinfarcts: a novel mri marker of vascular brain injury in patients with heart failure. Int J Cardiol. 2020;310:96–102.

    Article  PubMed  Google Scholar 

  57. Chung I, Lip GY. Platelets and heart failure. Eur Heart J. 2006;27:2623–31.

    Article  CAS  PubMed  Google Scholar 

  58. Gupta A, Watkins A, Thomas P, et al. Coagulation and inflammatory markers in Alzheimer’s and vascular dementia. Int J Clin Pract. 2005;59:52–7.

    Article  CAS  PubMed  Google Scholar 

  59. Moffitt P, Lane DA, Park H, O’Connell J, Quinn TJ. Thromboprophylaxis in atrial fibrillation and association with cognitive decline: systematic review. Age Ageing. 2016;45:767–75.

    Article  PubMed  Google Scholar 

  60. Athilingam P, Moynihan J, Chen L, D’Aoust R, Groer M, Kip K. Elevated levels of interleukin 6 and c-reactive protein associated with cognitive impairment in heart failure. Congest Heart Fail. 2013;19:92–8.

    Article  CAS  PubMed  Google Scholar 

  61. Cannon JA, McMurray JJ, Quinn TJ. ‘Hearts and minds’: association, causation and implication of cognitive impairment in heart failure. Alzheimers Res Ther. 2015;7:22.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Florea VG, Cohn JN. The autonomic nervous system and heart failure. Circ Res. 2014;114:1815–26.

    Article  CAS  PubMed  Google Scholar 

  63. Pasini E, Aquilani R, Testa C, et al. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail. 2016;4:220–7.

    Article  PubMed  Google Scholar 

  64. Yu W, Gao D, Jin W, et al. Intestinal flora dysbiosis aggravates cognitive dysfunction associated with neuroinflammation in heart failure. J Card Fail. 2020;26:885–94.

    Article  PubMed  Google Scholar 

  65. Hawkins MA, Gunstad J, Dolansky MA, et al. Greater body mass index is associated with poorer cognitive functioning in male heart failure patients. J Card Fail. 2014;20:199–206.

    Article  PubMed  Google Scholar 

  66. Alosco ML, Spitznagel MB, van Dulmen M, et al. The additive effects of type-2 diabetes on cognitive function in older adults with heart failure. Cardiol Res Pract. 2012;2012:348054–348054.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Alosco ML, Spitznagel MB, Josephson R, Hughes J, Gunstad J. Copd is associated with cognitive dysfunction and poor physical fitness in heart failure. Heart Lung. 2015;44:21–6.

    Article  PubMed  Google Scholar 

  68. Kim EY, Son YJ. Association between anemia and cognitive impairment among elderly patients with heart failure. Int J Environ Res Public Health. 2019;16(16):2933. https://doi.org/10.3390/ijerph16162933

  69. Zuccalà G, Marzetti E, Cesari M, et al. Correlates of cognitive impairment among patients with heart failure: results of a multicenter survey. Am J Med. 2005;118:496–502.

    Article  PubMed  Google Scholar 

  70. Faulkner KM, Uchmanowicz I, Lisiak M, Cichoń E, Cyrkot T, Szczepanowski R. Cognition and frailty in patients with heart failure: a systematic review of the association between frailty and cognitive impairment. Front Psychiatry. 2021;12:713386–713386.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Myserlis PG, Malli A, Kalaitzoglou DK, et al. Atrial fibrillation and cognitive function in patients with heart failure: a systematic review and meta-analysis. Heart Fail Rev. 2017;22:1–11.

    Article  PubMed  Google Scholar 

  72. Chen LY, Lopez FL, Gottesman RF, et al. Atrial fibrillation and cognitive decline–the role of subclinical cerebral infarcts. Stroke. 2014;45:2568–74.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ding M, Fratiglioni L, Johnell K, et al. Atrial fibrillation, antithrombotic treatment, and cognitive aging: a population-based study. Neurology. 2018;91:e1732–40.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bratzke LC, Moser DK, Pelter MM, et al. Evidence-based heart failure medications and cognition. J Cardiovasc Nurs. 2016;31:62–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Uchmanowicz I, Jankowska-Polańska B, Mazur G, Sivarajan FE. Cognitive deficits and self-care behaviors in elderly adults with heart failure. Clin Interv Aging. 2017;12:1565–72.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Viveiros J, Sethares KA, Westlake C. Executive dysfunction is associated with self-care confidence in patients with heart failure. Appl Nurs Res. 2020;54:151312.

    Article  PubMed  Google Scholar 

  77. Howell EH, Senapati A, Hsich E, Gorodeski EZ. Medication self-management skills and cognitive impairment in older adults hospitalized for heart failure: a cross-sectional study. SAGE Open Med. 2017;5:2050312117700301–2050312117700301.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dolansky MA, Hawkins MA, Schaefer JT, et al. Association between poorer cognitive function and reduced objectively monitored medication adherence in patients with heart failure. Circ Heart Fail. 2016;9.

  79. Huynh QL, Negishi K, De Pasquale CG, et al. Cognitive domains and postdischarge outcomes in hospitalized patients with heart failure. Circ Heart Fail. 2019;12:e006086.

    Article  PubMed  Google Scholar 

  80. Agarwal KS, Bhimaraj A, Xu J, et al. Decreasing heart failure readmissions among older patients with cognitive impairment by engaging caregivers. J Cardiovasc Nurs. 2020;35:253–61.

    Article  PubMed  Google Scholar 

  81. Umehara T, Katayama N, Tsunematsu M, Kakehashi M. Factors affecting hospital readmission heart failure patients in Japan: a multicenter retrospective cohort study. Heart Vessels. 2020;35:367–75.

    Article  PubMed  Google Scholar 

  82. García Bruñén JM, Povar Echeverria M, Díez-Manglano J, et al. Cognitive impairment in patients hospitalized for congestive heart failure: data from the RICA registry. Intern Emerg Med. 2021;16:141–8.

    Article  PubMed  Google Scholar 

  83. Huynh QL, Negishi K, Blizzard L, et al. Mild cognitive impairment predicts death and readmission within 30 days of discharge for heart failure. Int J Cardiol. 2016;221:212–7.

    Article  PubMed  Google Scholar 

  84. Lan H, Hawkins LA, Kashner M, Perez E, Firek CJ, Silvet H. Cognitive impairment predicts mortality in outpatient veterans with heart failure. Heart Lung. 2018;47:546–52.

    Article  PubMed  Google Scholar 

  85. Byrne CJ, Toukhsati SR, Toia D, O’Halloran PD, Hare DL. Hopelessness and cognitive impairment are risk markers for mortality in systolic heart failure patients. J Psychosom Res. 2018;109:12–8.

    Article  PubMed  Google Scholar 

  86. Kewcharoen J, Prasitlumkum N, Kanitsoraphan C, et al. Cognitive impairment associated with increased mortality rate in patients with heart failure: a systematic review and meta-analysis. J Saudi Heart Assoc. 2019;31:170–8.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Saito H, Matsue Y, Suzuki M, et al. Discordance between subjective and objective evaluations of cognitive function in old Japanese patients with heart failure. Australas J Ageing. 2019;38:57–9.

    Article  PubMed  Google Scholar 

  88. Hanon O, Vidal JS, de Groote P, et al. Prevalence of memory disorders in ambulatory patients aged ≥70 years with chronic heart failure (from the eficare study). Am J Cardiol. 2014;113:1205–10.

    Article  PubMed  Google Scholar 

  89. Hooghiemstra AM, Leeuwis AE, Bertens AS, et al. Frequent cognitive impairment in patients with disorders along the heart-brain axis. Stroke. 2019;50:3369–75.

    Article  PubMed  Google Scholar 

  90. Kim J, Hwang SY, Heo S, Shin MS, Kim SH. Predicted relationships between cognitive function, depressive symptoms, self-care adequacy, and health-related quality of life and major events among patients with heart failure. Eur J Cardiovasc Nurs. 2019;18:418–26.

    Article  PubMed  Google Scholar 

  91. Connors EJ, Hauson AO, Barlet BD, et al. Neuropsychological assessment and screening in heart failure: a meta-analysis and systematic review. Neuropsychol Rev. 2021;31:312–30.

    Article  PubMed  Google Scholar 

  92. O’Connor DW, Pollitt PA, Hyde JB, et al. The reliability and validity of the mini-mental state in a British community survey. J Psychiatr Res. 1989;23:87–96.

    Article  PubMed  Google Scholar 

  93. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.

    Article  PubMed  Google Scholar 

  94. Alagiakrishnan K, Mah D, Dyck JRB, Senthilselvan A, Ezekowitz J. Comparison of two commonly used clinical cognitive screening tests to diagnose mild cognitive impairment in heart failure with the golden standard European consortium criteria. Int J Cardiol. 2017;228:558–62.

    Article  PubMed  Google Scholar 

  95. Hickman L, Ferguson C, Davidson PM, et al. Key elements of interventions for heart failure patients with mild cognitive impairment or dementia: a systematic review. Eur J Cardiovasc Nurs. 2020;19:8–19.

    Article  PubMed  Google Scholar 

  96. Pressler SJ, Therrien B, Riley PL, et al. Nurse-enhanced memory intervention in heart failure: the memoir study. J Card Fail. 2011;17:832–43.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Viveiros J, Sethares K, Shapiro A. Repeated recall as an intervention to improve memory performance in heart failure patients. Eur J Cardiac Nurse. 2017;16:724–32.

    Article  Google Scholar 

  98. Kua ZJ, Valenzuela M, Dong Y. Can computerized cognitive training improve cognition in patients with heart failure?: A review. J Cardiovasc Nurs. 2019;34:E19-e27.

    Article  PubMed  Google Scholar 

  99. Gary RA, Paul S, Corwin E, et al. Exercise and cognitive training as a strategy to improve neurocognitive outcomes in heart failure: a pilot study. Am J Geriatr Psychiatry. 2019;27:809–19.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Davis KK, Mintzer M, Himmelfarb CRD, Hayat MJ, Rotman S, Allen J. Targeted intervention improves knowledge but not self-care or readmissions in heart failure patients with mild cognitive impairment. Eur J Heart Fail. 2012;14:1041–9.

    Article  PubMed  Google Scholar 

  101. Huynh QL, Whitmore K, Negishi K, et al. Cognitive impairment as a determinant of response to management plans after heart failure admission. Eur J Heart Fail. 2021;23:1205–14. This prospective study has found a DMP reduces the risk of readmission or death at 30 days and 90 days in HF patients, with a greater effect in those with cognitive dysfunction compared to patients with normal cognition.

    Article  CAS  PubMed  Google Scholar 

  102. Schopfer DW, Forman DE. Cardiac rehabilitation in older adults. Can J Cardiol. 2016;32:1088–96.

    Article  PubMed  Google Scholar 

  103. Flint KM, Pastva AM, Reeves GR. Cardiac rehabilitation in older adults with heart failure: fitting a square peg in a round hole. Clin Geriatr Med. 2019;35:517–26.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Redwine LS, Pung MA, Wilson K, Bangen KJ, Delano-Wood L, Hurwitz B. An exploratory randomized sub-study of light-to-moderate intensity exercise on cognitive function, depression symptoms and inflammation in older adults with heart failure. J Psychosom Res. 2020;128:109883.

    Article  PubMed  Google Scholar 

  105. Tanne D, Freimark D, Poreh A, et al. Cognitive functions in severe congestive heart failure before and after an exercise training program. Int J Cardiol. 2005;103:145–9.

    Article  PubMed  Google Scholar 

  106. Goh KL, Bhaskaran K, Minassian C, Evans SJ, Smeeth L, Douglas IJ. Angiotensin receptor blockers and risk of dementia: cohort study in UK clinical practice research datalink. Br J Clin Pharmacol. 2015;79:337–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li NC, Lee A, Whitmer RA, et al. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ. 2010;340:b5465.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chitnis AS, Aparasu RR, Chen H, Kunik ME, Schulz PE, Johnson ML. Use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and risk of dementia in heart failure. Am J Alzheimers Dis Other Demen. 2016;31:395–404.

    Article  PubMed  Google Scholar 

  109. Sink KM, Leng X, Williamson J, et al. Angiotensin-converting enzyme inhibitors and cognitive decline in older adults with hypertension: results from the cardiovascular health study. Arch Intern Med. 2009;169:1195–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Poorgolizadeh E, Homayouni Moghadam F, Dormiani K, Rezaei N, Nasr-Esfahani MH. Do neprilysin inhibitors walk the line? Heart ameliorative but brain threatening! Eur J Pharmacol. 2021;894:173851.

    Article  CAS  PubMed  Google Scholar 

  111. Cannon JA, Shen L, Jhund PS, et al. Dementia-related adverse events in PARADIGM-HF and other trials in heart failure with reduced ejection fraction. Eur J Heart Fail. 2017;19:129–37.

    Article  CAS  PubMed  Google Scholar 

  112. Sharma M, Hart RG, Smith EE, et al. Rivaroxaban for prevention of covert brain infarcts and cognitive decline: the compass MRI substudy. Stroke. 2020;51:2901–9.

    Article  CAS  PubMed  Google Scholar 

  113. McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.

    Article  PubMed  Google Scholar 

  114. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008.

    Article  CAS  PubMed  Google Scholar 

  115. Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413–24.

    Article  CAS  PubMed  Google Scholar 

  116. Fumagalli S, Pieragnoli P, Ricciardi G, et al. Cardiac resynchronization therapy improves functional status and cognition. Int J Cardiol. 2016;219:212–7.

    Article  PubMed  Google Scholar 

  117. Duncker D, Friedel K, König T, et al. Cardiac resynchronization therapy improves psycho-cognitive performance in patients with heart failure. EP Europace. 2015;17:1415–21.

    Article  Google Scholar 

  118. Dixit NK, Vazquez LD, Cross NJ, et al. Cardiac resynchronization therapy: a pilot study examining cognitive change in patients before and after treatment. Clin Cardiol. 2010;33:84–8.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hoth KF, Poppas A, Ellison KE, et al. Link between change in cognition and left ventricular function following cardiac resynchronization therapy. J Cardiopulm Rehabil Prev. 2010;30:401–8.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Terhoeven V, Nikendei C, Cranz A, et al. Effects of MitraClip on cognitive and psychological function in heart failure patients: the sicker the better. Eur J Med Res. 2019;24:14.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Howes LG. Cardiovascular effects of drugs used to treat Alzheimer’s disease. Drug Saf. 2014;37:391–5.

    Article  CAS  PubMed  Google Scholar 

  122. Huang A, Huang A, Janssen P, Kahwash R, Campbell C. Memantine is associated with decreased hospital admissions for heart failure exacerbation, but not arrhythmia: a single-centre study. J Am Coll Cardiol. 2020;75:1090–1090.

    Article  Google Scholar 

  123. Ichijo Y, Kono S, Yoshihisa A, et al. Impaired frontal brain activity in patients with heart failure assessed by near-infrared spectroscopy. J Am Heart Assoc. 2020;9:e014564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth L. Potter.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Comorbidities

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, S., Huynh, Q. & Potter, E.L. Cognitive Dysfunction in Heart Failure: Pathophysiology and Implications for Patient Management. Curr Heart Fail Rep 19, 303–315 (2022). https://doi.org/10.1007/s11897-022-00564-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-022-00564-z

Keywords

Navigation