Skip to main content

Advertisement

Log in

Polyagonists in Type 2 Diabetes Management

  • REVIEW
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

This review summarizes the new developments in polyagonist pharmacotherapy for type 2 diabetes.

Recent Findings

Several dual- and triple-agonists targeting different pathogenic pathways of type 2 diabetes have entered clinical trials and have led to significant improvements in glycaemia, body weight, fatty liver, and cardio-renal risk factors, with variable adverse event profiles but no new serious safety concerns. Combining agents with complementary and synergistic mechanisms of action have enhanced efficacy and safety. Targeting multiple pathogenic pathways simultaneously has led to enhanced benefits which potentially match those of bariatric surgery. Tirzepatide, cotadutide, BI456906, ritatrutide, and CagriSema have entered phase 3 clinical trials. Outcomes from published clinical studies are reviewed. Efficacy-safety profiles are heterogeneous between agents, suggesting the potential application of precision medicine and need for personalized approach in pharmacological management of type 2 diabetes and obesity.

Summary

Polyagonism has become a key strategy to address the complex pathogenesis of type 2 diabetes and co-morbidities and increasing number of agents are moving through clinical trials. Heterogeneity in efficacy-safety profiles calls for application of precision medicine and need for judicious personalization of care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALT:

Alanine transaminase

AST:

Aspartate aminotransferase

CCK:

Cholecystokinin

CCKR:

Cholecystokinin receptor

CI:

Confidence interval

CKD:

Chronic kidney disease

DACRA:

Dual amylin calcitonin receptor agonists

DBP:

Diastolic blood pressure

GCGR:

Glucagon receptor

GIP:

Glucose-dependent insulinotropic peptide

GIPR:

GIP receptor

GLP-1:

Glucagon-like peptide

GLP-1R:

Glucagon-like peptide receptor

GLP-1-RA:

GLP-1 receptor agonist

HFpEF:

Heart failure with preserved ejection fraction

HR:

Hazard ratio

hsCRP:

High sensitivity C-reactive protein

LDL:

Low density lipoprotein

MACE:

Major adverse cardiovascular events

NASH:

Non-alcoholic steatohepatitis

OR:

Odds ratio

RCT:

Randomized controlled trial

SBP:

Systolic blood pressure

SD:

Standard deviation

T2D:

Type 2 diabetes

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. IDF Diabetes Atlas, 10th Edition [Internet]. Brussels, Belgium: Internation Diabetes Federation; 2021 [cited 2023 Sep 22]. Available from: https://www.diabetesatlas.org

  2. Global health estimates 2020: deaths by cause, age, sex, by country and by region, 2000–2019. Geneva; 2020. https://www.who.int/data/global-health-estimates. Accessed 29 Nov 2023.

  3. Chen W, Binbin G, Lidan S, Qiang Z, Jing H. Evolution of peptide YY analogs for the management of type 2 diabetes and obesity. Bioorg Chem. 2023;140: 106808.

    Article  CAS  PubMed  Google Scholar 

  4. Zhu W, Tanday N, Flatt PR, Irwin N. Pancreatic polypeptide revisited: potential therapeutic effects in obesity-diabetes. Peptides (NY). 2023;160: 170923.

    Article  CAS  Google Scholar 

  5. Mathiesen DS, Lund A, Holst JJ, Knop FK, Lutz TA, Bagger JI. Therapy of endocrine disease: amylin and calcitonin – physiology and pharmacology. Eur J Endocrinol. 2022;186:R93-111.

    Article  CAS  PubMed  Google Scholar 

  6. Rehfeld JF. Premises for cholecystokinin and gastrin peptides in diabetes therapy. Clin Med Insights Endocrinol Diab. 2019;12:117955141988360.

    Article  Google Scholar 

  7. Hammoud R, Drucker DJ. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat Rev Endocrinol. 2023;19:201–16.

    Article  CAS  PubMed  Google Scholar 

  8. Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: a pathophysiological update. Diabetes Obes Metab. 2021;23 Suppl 3:5–29. A detailed review of the functions of GLP-1, GIP, glucagon, and their role in pathogenesis of obesity and type 2 diabetes.

  9. Alexander JT, Staab EM, Wan W, Franco M, Knitter A, Skandari MR, et al. The longer-term benefits and harms of glucagon-like peptide-1 receptor agonists: a systematic review and meta-analysis. J Gen Intern Med. 2022;37:415–38.

    Article  PubMed  Google Scholar 

  10. Whyte MB, Heald A, Field BC. Harnessing the incretin system with multi-agonists. EMJ Innovations. 2022. https://doi.org/10.33590/emjinnov/10115628

  11. Pratt E, Ma X, Liu R, Robins D, Coskun T, Sloop KW, et al. Orforglipron ( <scp>LY3502970</scp> ), A novel, oral non-peptide glucagon-like peptide-1 receptor agonist: a phase 1b, multicentre, blinded, placebo-controlled, randomized, multiple-ascending-dose study in people with type 2 diabetes. Diabetes Obes Metab. 2023;25:2642–9.

    Article  CAS  PubMed  Google Scholar 

  12. Divino V, Boye KS, Lebrec J, DeKoven M, Norrbacka K. GLP-1 RA Treatment and dosing patterns among type 2 diabetes patients in six countries: a retrospective analysis of pharmacy claims data. Diab Ther. 2019;10:1067–88.

    Article  CAS  Google Scholar 

  13. Hasib A. Multiagonist unimolecular peptides for obesity and type 2 diabetes: current advances and future directions. Clin Med Insights Endocrinol Diab. 2020;13:117955142090584.

    Article  Google Scholar 

  14. Bhat VK, Kerr BD, Vasu S, Flatt PR, Gault VA. A DPP-IV-resistant triple-acting agonist of GIP, GLP-1 and glucagon receptors with potent glucose-lowering and insulinotropic actions in high-fat-fed mice. Diabetologia. 2013;56:1417–24.

    Article  CAS  PubMed  Google Scholar 

  15. Thondam SK, Cuthbertson DJ, Wilding JPH. The influence of glucose-dependent insulinotropic polypeptide (GIP) on human adipose tissue and fat metabolism: implications for obesity, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Peptides (NY). 2019;125: 170208.

    Article  Google Scholar 

  16. Mentis N, Vardarli I, Köthe LD, Holst JJ, Deacon CF, Theodorakis M, et al. GIP does not potentiate the antidiabetic effects of GLP-1 in hyperglycemic patients with type 2 diabetes. Diab. 2011;60:1270–6.

    Article  CAS  Google Scholar 

  17. Bergmann NC, Lund A, Gasbjerg LS, Meessen ECE, Andersen MM, Bergmann S, et al. Effects of combined GIP and GLP-1 infusion on energy intake, appetite and energy expenditure in overweight/obese individuals: a randomised, crossover study. Diabetologia. 2019;62:665–75.

    Article  CAS  PubMed  Google Scholar 

  18. Meier JJ, Gallwitz B, Kask B, Deacon CF, Holst JJ, Schmidt WE, et al. Stimulation of insulin secretion by intravenous bolus injection and continuous infusion of gastric inhibitory polypeptide in patients with type 2 diabetes and healthy control subjects. Diabetes. 2004;53:S220–4.

    Article  CAS  PubMed  Google Scholar 

  19. Piteau S, Olver A, Kim S-J, Winter K, Pospisilik JA, Lynn F, et al. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat. Biochem Biophys Res Commun. 2007;362:1007–12.

    Article  CAS  PubMed  Google Scholar 

  20. Novikoff A, O’Brien SL, Bernecker M, Grandl G, Kleinert M, Knerr PJ, et al. Spatiotemporal GLP-1 and GIP receptor signaling and trafficking/recycling dynamics induced by selected receptor mono- and dual-agonists. Mol Metab. 2021;49: 101181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Holst JJ, Rosenkilde MM. GIP as a therapeutic target in diabetes and obesity: insight from incretin co-agonists. J Clin Endocrinol Metab. 2020;105:e2710–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Frias JP, Bastyr EJ 3rd, Louis Vignati, Tschöp MH, Schmitt C, Owen K, Christensen RH, et al. The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090–2746, in patients with type 2 diabetes. Cell Metab. 2017;26:343-352.e2.

    Article  CAS  PubMed  Google Scholar 

  23. Rosenstock J, Wysham C, Frias JP, Kaneko S, Lee CJ, Fernández Landó L, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet. 2021;398:143–55.

    Article  CAS  PubMed  Google Scholar 

  24. Samms RJ, Cosgrove R, Snider BM, Furber EC, Droz BA, Briere DA, et al. GIPR agonism inhibits PYY-induced nausea-like behavior. Diabet. 2022;71:1410–23.

    Article  CAS  Google Scholar 

  25. Frias JP, Nauck MA, Van J, Kutner ME, Cui X, Benson C, et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet. 2018;392:2180–93.

    Article  CAS  PubMed  Google Scholar 

  26. Brubaker PL, Drucker DJ. Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Recept Channels. 2002;8:179–88.

    Article  CAS  PubMed  Google Scholar 

  27. Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, Gidda J, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol. 2009;5:749–57.

    Article  CAS  PubMed  Google Scholar 

  28. Finan B, Ma T, Ottaway N, Müller TD, Habegger KM, Heppner KM, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med. 2013;5:209ra151.

    Article  PubMed  Google Scholar 

  29. Choi I, Lee J, Kim J, Park Y, Jung S, Kim Y, et al. Potent body weight loss and efficacy in a NASH animal model by a novel long-acting GLP-1/glucagon/GIP triple-agonist (HM15211). American Diabetes Association, 77th Scientific Sessions. San Diego, USA; 2017.

  30. Bhat VK, Kerr BD, Flatt PR, Gault VA. A novel GIP-oxyntomodulin hybrid peptide acting through GIP, glucagon and GLP-1 receptors exhibits weight reducing and anti-diabetic properties. Biochem Pharmacol. 2013;85:1655–62.

    Article  CAS  PubMed  Google Scholar 

  31. Gault VA, Bhat VK, Irwin N, Flatt PR. A novel glucagon-like peptide-1 (GLP-1)/glucagon hybrid peptide with triple-acting agonist activity at glucose-dependent insulinotropic polypeptide, GLP-1, and glucagon receptors and therapeutic potential in high fat-fed mice. J Biol Chem. 2013;288:35581–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Finan B, Yang B, Ottaway N, Smiley DL, Ma T, Clemmensen C, et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med. 2014;21:27–36.

    Article  PubMed  Google Scholar 

  33. Trevaskis JL, Mack CM, Sun C, Soares CJ, D’Souza LJ, Levy Odile E, Lewis DY, et al. Improved glucose control and reduced body weight in rodents with dual mechanism of action peptide hybrids. PLoS ONE. 2013;8: e78154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xie Z, Hu J, Gu H, Li M, Chen J. Comparison of the efficacy and safety of 10 glucagon-like peptide-1 receptor agonists as add-on to metformin in patients with type 2 diabetes: a systematic review. Front Endocrinol (Lausanne). 2023;14:1244432. https://doi.org/10.3389/fendo.2023.1244432

  35. Nauck MA, Mirna AEA, Quast DR. Meta-analysis of head-to-head clinical trials comparing incretin-based glucose-lowering medications and basal insulin: an update including recently developed glucagon-like peptide-1 (GLP-1) receptor agonists and the glucose-dependent insulinotropic polypeptide/ GLP-1 receptor co-agonist tirzepatide. Diabetes Obes Metab. 2023;25:1361–71.

    Article  CAS  PubMed  Google Scholar 

  36. Sattar N, McGuire DK, Pavo I, Weerakkody GJ, Nishiyama H, Wiese Russell J and Zoungas S. Tirzepatide cardiovascular event risk assessment: a pre-specified meta-analysis. Nat Med. 2022;28:591–8. An analysis of effect of tirzepatide on cardiovascular risk factors across randomised controlled trials.

  37. Bucheit J, Ayers J, Pamulapati L, Browning A, Sisson E. A novel dual incretin agent, tirzepatide (LY3298176), for the treatment of type 2 diabetes mellitus and cardiometabolic health. J Cardiovasc Pharmacol. 2022;80:171–9.

    Article  CAS  PubMed  Google Scholar 

  38. Wilson JM, Lin Y, Luo MJ, Considine G, Cox AL, Bowsman LM, et al. The dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonist tirzepatide improves cardiovascular risk biomarkers in patients with type 2 diabetes: a post hoc analysis. Diabetes Obes Metab. 2021;24:148–53.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wilson JM, Nikooienejad A, Robins Deborah A, Roell WC, Riesmeyer JS, Haupt A, Duffin KL, et al. The dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist, tirzepatide, improves lipoprotein biomarkers associated with insulin resistance and cardiovascular risk in patients with type 2 diabetes. Diabetes Obes Metab. 2020;22:2451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rosenstock J, Wysham C, Frías JP, Kaneko S, Lee CJ, Fernández Landó L, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. The Lancet. 2021;398:143–55. Phase 3 randomized controlled clinical trial on tirzepatide in the treatment of type 2 diabetes.

  41. Frias JP, Davies MJ, Julio Rosenstock, Pérez Manghi FC, Fernández Landó L, Bergman BK, Liu B, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021;385:503–15.

    Article  CAS  PubMed  Google Scholar 

  42. Ludvik B, Giorgino F, Esteban Jódar, Frias JP, Fernández Landó L, Brown K, Bray R, et al. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): a randomised, open-label, parallel-group, phase 3 trial. Lancet. 2021;398:583–98.

    Article  CAS  PubMed  Google Scholar 

  43. Del Prato S, Kahn SE, Pavo I, Weerakkody GJ, Yang Z, Doupis J, et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet. 2021;398:1811–24.

    Article  PubMed  Google Scholar 

  44. Dahl D, Onishi Y, Norwood P, Ruth Huh, Bray R, Patel H, Rodriguez Á. Effect of subcutaneous tirzepatide vs placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes: the SURPASS-5 randomized clinical trial. JAMA. 2022;327:534–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boye KS, Thieu VT, Sapin H, Lee CJ, Landó LF, Brown K, et al. Patient-reported outcomes in people with type 2 diabetes receiving tirzepatide in the SURPASS clinical trial programme. Diabetes Ther. 2023 https://doi.org/10.1007/s13300-023-01451-z

  46. Mima A, Gotoda H, Lee R, Ami Murakami, Akai R, Lee S. Effects of incretin-based therapeutic agents including tirzepatide on renal outcomes in patients with type 2 diabetes: a systemic review and meta-analysis. Metabol Open. 2023;17:100236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gastaldelli A, Cusi K, Fernández Landó L, Bray R, Brouwers B, Rodriguez Á. Effect of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue in people with type 2 diabetes (SURPASS-3 MRI): a sub study of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 2022;10:393–406.

    Article  CAS  PubMed  Google Scholar 

  48. Min T, Bain SC. The Role of Tirzepatide, Dual GIP and GLP-1 receptor agonist, in the management of type 2 diabetes: the SURPASS clinical trials. Diabetes Ther. 2020;12:143–57.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ali MM, Hafez A, Shaban Abdelgalil Mahmoud, Hasan MT, El-Ghannam MM, Ghogar OM, Elrashedy AA, et al. Impact of Cotadutide drug on patients with type 2 diabetes mellitus: a systematic review and meta-analysis. BMC Endocr Disord. 2022;22:113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nahra R, Wang T, Gadde KM, Oscarsson J, Stumvoll M, Jermutus L, et al. Effects of Cotadutide on metabolic and hepatic parameters in adults with overweight or obesity and type 2 diabetes: a 54-week randomized phase 2b study. Diabetes Care. 2021;44:1433–42 A meta-analysis of metabolic effects on cotadutide.

  51. Capehorn MS, Catarig A-M, Furberg JK, Janez A, Price HC, Tadayon S, et al. Efficacy and safety of once-weekly semaglutide 1.0 mg vs once-daily liraglutide 1.2 mg as add-on to 1–3 oral antidiabetic drugs in subjects with type 2 diabetes (SUSTAIN 10). Diabetes Metab. 2020;46:100–9.

    Article  CAS  PubMed  Google Scholar 

  52. A study to assess the safety and efficacy of SAR425899 in patients with type 2 diabetes mellitus [Internet]. [cited 2023 Sep 22]. Available from: https://clinicaltrials.gov/study/NCT02973321

  53. Frias JP, Deenadayalan S, Erichsen L, Knop FK, Lingvay I, Macura S, et al. Efficacy and safety of co-administered once-weekly cagrilintide 2·4 mg with once-weekly semaglutide 2·4 mg in type 2 diabetes: a multicentre, randomised, double-blind, active-controlled, phase 2 trial. The Lancet. 2023;402:720–30.

    Article  CAS  Google Scholar 

  54. Nørregaard PK, Deryabina MA, Tofteng Shelton P, Fog JU, Daugaard JR, Eriksson P, et al. A novel <scp>GIP</scp> analogue, <scp>ZP</scp> 4165, enhances glucagon-like peptide-1-induced body weight loss and improves glycaemic control in rodents. Diabetes Obes Metab. 2018;20:60–8.

    Article  PubMed  Google Scholar 

  55. Thorsø Larsen A, Karsdal MA, Henriksen K. Treatment sequencing using the dual amylin and calcitonin receptor agonist KBP-336 and semaglutide results in durable weight loss. Eur J Pharmacol. 2023;954: 175837.

    Article  PubMed  Google Scholar 

  56. Rosenstock J, Frias J, Jastreboff AM, Du Y, Lou J, Gurbuz S, et al. Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes: a randomised, double-blind, placebo and active-controlled, parallel-group, phase 2 trial conducted in the USA. Lancet. 2023; Phase 2 randomized controlled clinical trial on the triple agonist retatrutide in the treatment of type 2 diabetes.

  57. Jastreboff AM, Kaplan LM, Frías JP, Wu Q, Du Y, Gurbuz S, et al. Triple–hormone-receptor agonist retatrutide for obesity — a phase 2 trial. N Engl J Med. 2023;389:514–26.

    Article  CAS  PubMed  Google Scholar 

  58. Bettge K, Kahle M, Abd El Aziz MS, Meier JJ, Nauck MA. Occurrence of nausea, vomiting and diarrhoea reported as adverse events in clinical trials studying glucagon-like peptide-1 receptor agonists: a systematic analysis of published clinical trials. Diabetes Obes Metab. 2017;19:336–47.

    Article  CAS  PubMed  Google Scholar 

  59. Xia L, Shen T, Dong W, Su F, Wang J, Wang Q, et al. Comparative efficacy and safety of 8 GLP-1RAs in patients with type 2 diabetes: a network meta-analysis. Diabetes Res Clin Pract. 2021;177: 108904.

    Article  CAS  PubMed  Google Scholar 

  60. Tang Y, Zhang L, Zeng Y, Wang X, Zhang M. Efficacy and safety of tirzepatide in patients with type 2 diabetes: a systematic review and meta-analysis. Front Pharmacol. 2022;13:1016639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse effects of GLP-1 receptor agonists. Rev Diabet Stud. 2014;11:202–30.

    Article  PubMed  Google Scholar 

  62. Trujillo JM, Nuffer W, Smith BA. GLP-1 receptor agonists: an updated review of head-to-head clinical studies. Ther Adv Endocrinol Metab. 2021;12:204201882199732.

    Article  Google Scholar 

  63. Gallwitz B. Clinical perspectives on the use of the GIP/GLP-1 receptor agonist tirzepatide for the treatment of type-2 diabetes and obesity. Front Endocrinol (Lausanne). 2022;13:1004044.

    Article  PubMed  Google Scholar 

  64. Bethel MA, Diaz R, Castellana N, Bhattacharya I, Gerstein HC, Lakshmanan MC. HbA1c Change and diabetic retinopathy during GLP-1 receptor agonist cardiovascular outcome trials: a meta-analysis and meta-regression. Diab Care. 2021;44:290–6.

    Article  Google Scholar 

  65. Mishra R, Raj R, Elshimy G, Isain Zapata, Kannan L, Majety P, Edem D, et al. Adverse events related to tirzepatide. J Endocr Soc. 2023;7:bvad016.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Nreu B, Dicembrini I, Tinti F, Sesti G, Mannucci E, Monami M. Major cardiovascular events, heart failure, and atrial fibrillation in patients treated with glucagon-like peptide-1 receptor agonists: An updated meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2020;30:1106–14.

    Article  CAS  PubMed  Google Scholar 

  67. Friedrichsen MH, Endahl L, Kreiner FF, Goldwater R, Kankam M, Toubro S, et al. Results from three phase 1 trials of NNC9204–1177, a glucagon/GLP-1 receptor co-agonist: effects on weight loss and safety in adults with overweight or obesity. Mol Metab. 2023;101801. https://doi.org/10.1016/j.molmet.2023.101801

  68. Nauck MA, Meier JJ. Management of endocrine disease: are all GLP-1 agonists equal in the treatment of type 2 diabetes? Eur J Endocrinol. 2019;181:R211–34.

    Article  CAS  PubMed  Google Scholar 

  69. Brandt SJ, Müller TD, DiMarchi RD, Tschöp MH, Stemmer K. Peptide-based multi-agonists: a new paradigm in metabolic pharmacology. J Intern Med. 2018;284:581–602.

    Article  CAS  PubMed  Google Scholar 

  70. Kuss O, Opitz ME, Brandstetter LV, Schlesinger S, Roden M, Hoyer A. How amenable is type 2 diabetes treatment for precision diabetology? A meta-regression of glycaemic control data from 174 randomised trials. Diabetologia. 2023;66:1622–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zobel EH, von Scholten BJ, Lindhardt M, Persson F, Hansen TW, Rossing P. Pleiotropic effects of liraglutide treatment on renal risk factors in type 2 diabetes: individual effects of treatment. J Diabetes Complications. 2017;31:162–8.

    Article  PubMed  Google Scholar 

  72. Jakhar K, Vaishnavi S, Kaur P, Singh P, Munshi A. Pharmacogenomics of GLP-1 receptor agonists: focus on pharmacological profile. Eur J Pharmacol. 2022;936: 175356.

    Article  CAS  PubMed  Google Scholar 

  73. Dawed AY, Mari A, Brown A, McDonald TJ, Li L, Wang S, et al. Pharmacogenomics of GLP-1 receptor agonists: a genome-wide analysis of observational data and large randomised controlled trials. Lancet Diabetes Endocrinol. 2023;11:33–41 An analysis of genetic predictors of GLP-1 responsiveness, exploring the future of precision diabetology.

  74. Formichi C, Fignani D, Nigi L, Grieco GE, Brusco N, Licata G, et al. Circulating microRNAs signature for predicting response to GLP1-RA therapy in type 2 diabetic patients: a pilot study. Int J Mol Sci. 2021;22:9454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsai C-Y, Lu H-C, Chou Y-H, Liu P-Y, Chen H-Y, Huang M-C, et al. Gut microbial signatures for glycemic responses of GLP-1 receptor agonists in type 2 diabetic patients: a pilot study. Front Endocrinol (Lausanne). 2022;12. https://doi.org/10.3389/fendo.2021.814770

  76. Kozawa J, Inoue K, Iwamoto R, Kurashiki Y, Okauchi Y, Kashine S, et al. Liraglutide is effective in type 2 diabetic patients with sustained endogenous insulin-secreting capacity. J Diabetes Investig. 2012;3:294–7.

    Article  CAS  PubMed  Google Scholar 

  77. Imai K, Tsujimoto T, Goto A, Goto M, Kishimoto M, Yamamoto-Honda R, et al. Prediction of response to GLP-1 receptor agonist therapy in Japanese patients with type 2 diabetes. Diabetol Metab Syndr. 2014;6:110.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jones AG, Shields BM, Hyde CJ, Henley WE, Hattersley AT. Identifying good responders to glucose lowering therapy in type 2 diabetes: implications for stratified medicine. PLoS ONE. 2014;9: e111235.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Atkinson G, Williamson P, Batterham AM. Issues in the determination of ‘responders’ and ‘non-responders’ in physiological research. Exp Physiol. 2019;104:1215–25.

    Article  PubMed  Google Scholar 

  80. Jonas W, Schürmann A. Genetic and epigenetic factors determining NAFLD risk. Mol Metab. 2021;50: 101111.

    Article  CAS  PubMed  Google Scholar 

  81. Aragam KG, Natarajan P. Polygenic scores to assess atherosclerotic cardiovascular disease risk. Circ Res. 2020;126:1159–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sandholm N, Dahlström EH, Groop P-H. Genetic and epigenetic background of diabetic kidney disease. Front Endocrinol (Lausanne). 2023;14. https://doi.org/10.3389/fendo.2023.1163001

  83. Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6:361–9.

    Article  PubMed  Google Scholar 

  84. Jujić A, Atabaki-Pasdar N, Nilsson PM, Almgren P, Hakaste L, Tuomi T, et al. Glucose-dependent insulinotropic peptide and risk of cardiovascular events and mortality: a prospective study. Diabetologia. 2020;63:1043–54.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mol PGM, Thompson A, Heerspink HJL, Leufkens HGM. Precision medicine in diabetes and diabetic kidney disease: regulatory considerations. Diabetes Obes Metab. 2018;20:19–23.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NPS developed the research question, search strategy and outline of the review article and critically reviewed the manuscript . HAD conducted the literature review, wrote the first draft of the manuscript, prepared tables and figures. Both authors read the submitted manuscript.

Corresponding author

Correspondence to N. P. Somasundaram.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

Nothing to declare.

Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Ethics Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dissanayake, H.A., Somasundaram, N.P. Polyagonists in Type 2 Diabetes Management. Curr Diab Rep 24, 1–12 (2024). https://doi.org/10.1007/s11892-023-01530-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-023-01530-2

Keywords

Navigation