Skip to main content

Advertisement

Log in

Adipose Tissue Inflammation and Cardiovascular Disease: An Update

  • Macrovascular Complications in Diabetes (R Shah, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The obesity epidemic is on the rise, and while it is well known that obesity is associated with an increase in cardiovascular risk factors such as type 2 diabetes mellitus, hypertension, and obstructive sleep apnea, recent data has highlighted that the degree and type of fat distribution may play a bigger role in the pathogenesis of cardiovascular disease (CVD) than body mass index (BMI) alone. We aim to review updated data on adipose tissue inflammation and distribution and CVD.

Recent Findings

We review the pathophysiology of inflammation secondary to adipose tissue, the association of obesity-related adipokines and CVD, and the differences and significance of brown versus white adipose tissue. We delve into the clinical manifestations of obesity-related inflammation in CVD. We discuss the available data on heterogeneity of adipose tissue-related inflammation with a focus on subcutaneous versus visceral adipose tissue, the differential pathophysiology, and clinical CVD manifestations of adipose tissue across sex, race, and ethnicity. Finally, we present the available data on lifestyle modification, medical, and surgical therapeutics on reduction of obesity-related inflammation.

Summary

Obesity leads to a state of chronic inflammation which significantly increases the risk for CVD. More research is needed to develop non-invasive VAT quantification indices such as risk calculators which include variables such as sex, age, race, ethnicity, and VAT concentration, along with other well-known CVD risk factors in order to comprehensively determine risk of CVD in obese patients. Finally, pre-clinical biomarkers such as pro-inflammatory adipokines should be validated to estimate risk of CVD in obese patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CVD:

Cardiovascular disease

VAT:

Visceral adipose tissue

SAT:

Subcutaneous adipose tissue

TNF-α:

Tumor necrosis factor-α

IL-6:

Interleukin-6

CRP:

C-reactive protein

LDL:

Low-density lipoprotein

BMI:

Body mass index

CT:

Computed tomography

MRI:

Magnetic resonance imaging

HFpEF:

Heart failure with preserved ejection fraction

AF:

Atrial fibrillation

CI:

Confidence interval

MACE:

Major adverse cardiovascular events

SGLT-2:

Sodium-glucose cotransporter-2

GLP-1:

Glucagon-like peptide-1

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Girón-Ulloa A, González-Domínguez E, Klimek RS, et al. Specific macrophage subsets accumulate in human subcutaneous and omental fat depots during obesity. Immunol Cell Biol. 2020;98(10):868–82. https://doi.org/10.1111/imcb.12380.

    Article  CAS  PubMed  Google Scholar 

  2. Weisberg S, McCann D, Desai M, Rosenbaum M, Leibel R, Ferrante A. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808. https://doi.org/10.1172/JCI19246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aron-Wisnewsky J, Tordjman J, Poitou C, et al. Human adipose tissue macrophages: M1 and M2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab. 2009;94:4619–23.

    Article  CAS  PubMed  Google Scholar 

  4. Cancello R, Henegar C, Viguerie N, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54:2277–86.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu F, Wang A, Li Y, Liang R, Li D, Li B. Adipose Tissue-resident regulatory T cells. Adv Exp Med Biol. 2017;1011(153–162). https://doi.org/10.1007/978-94-024-1170-6_4

  6. Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-Induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res. 2017;118(11):1786–807. https://doi.org/10.1161/CIRCRESAHA.115.306885.Obesity-induced.

    Article  Google Scholar 

  7. Khan T, Muise E, Iyengar P, et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol. 2009;29:1575–91. https://doi.org/10.1128/MCB.01300-08.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman J. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32. https://doi.org/10.1038/372425a0.

    Article  CAS  PubMed  Google Scholar 

  9. Friedman J, Halaas J. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–70. https://doi.org/10.1038/27376.

    Article  CAS  PubMed  Google Scholar 

  10. Li L, Mamputu J, Wiernsperger N, Renier G. Signaling pathways involved in human vascular smooth muscle cell proliferation and matrix metalloproteinase-2 expression induced by leptin: inhibitory effect of metformin. Diabetes. 2005;54:2227–34.

    Article  CAS  PubMed  Google Scholar 

  11. Hongo S, Watanabe T, Arita S, et al. Leptin modulates ACAT1 expression and cholesterol efflux from human macrophages. Am J Physiol Endocrinol Metab. 2009;297:E474–82. https://doi.org/10.1152/ajpendo.90369.2008.

    Article  CAS  PubMed  Google Scholar 

  12. O’Rourke L, Gronning L, Yeaman S, Shepherd P. Glucose-dependent regulation of cholesterol ester metabolism in macrophages by insulin and leptin. J Biol Chem. 2002;277:42557–62. https://doi.org/10.1074/jbc.M202151200.

    Article  CAS  PubMed  Google Scholar 

  13. Bodary P, Gu S, Shen Y, Hasty A, Buckler J, Eitzman D. Recombinant leptin promotes atherosclerosis and thrombosis in apolipoprotein E-deficient mice. Arter Thromb Vasc Biol. 2005;25:e119–22. https://doi.org/10.1161/01.ATV.0000173306.47722.ec.

    Article  CAS  Google Scholar 

  14. Zeadin M, Butcher M, Werstuck G, Khan M, Yee C, Shaughnessy S. Effect of leptin on vascular calcification in apolipoprotein E-deficient mice. Arter Thromb Vasc Biol. 2009;29:2069–75. https://doi.org/10.1161/ATVBAHA.109.195255.

    Article  CAS  Google Scholar 

  15. Fain J, Madan A, Hiler M, Cheema P, Bahouth S. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004;145:2273–82. https://doi.org/10.1210/en.2003-1336.

    Article  CAS  PubMed  Google Scholar 

  16. Schieffer B, Selle T, Hilfiker A, et al. Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation. 2004;110:3493–500. https://doi.org/10.1161/01.CIR.0000148135.08582.97.

    Article  CAS  PubMed  Google Scholar 

  17. Steppan C, Bailey S, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409:307–12. https://doi.org/10.1038/35053000.

    Article  CAS  PubMed  Google Scholar 

  18. Reilly M, Lehrke M, Wolfe M, Rohatgi A, Lazar M, Rader D. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation. 2005;111:932–9. https://doi.org/10.1161/01.CIR.0000155620.10387.43.

    Article  CAS  PubMed  Google Scholar 

  19. Muse E, Feldman D, Blaha M, et al. The association of resistin with cardiovascular disease in the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2015;239:101–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ryo M, Nakamura T, Kihara S, et al. Adiponectin as a biomarker of the metabolic syndrome. Circ J. 2004;68:975–81.

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura Y, Shimada K, Fukuda D, et al. Implications of plasma concentrations of adiponectin in patients with coronary artery disease. Heart. 2004;90:528–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pischon T, Girman C, Hotamisligil G, Rifai N, Hu F, Rimm E. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA. 2004;291(1730–1737). https://doi.org/10.1001/jama.291.14.1730.

  23. Schulze M, Shai I, Rimm E, Li T, Rifai N, Hu F. Adiponectin and future coronary heart disease events among men with type 2 diabetes. Diabetes. 2005;54:534–9.

    Article  CAS  PubMed  Google Scholar 

  24. Yamawaki H, Kuramoto J, Kameshima S, Usui T, Okada M, Hara Y. Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem Biophys Res Commun. 2011;408:339–43. https://doi.org/10.1016/j.bbrc.2011.04.039.

    Article  CAS  PubMed  Google Scholar 

  25. Yousuf O, Mohanty BD, Martin SS, et al. High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? J Am Coll Cardiol. 2013;62(5):397–408. https://doi.org/10.1016/j.jacc.2013.05.016.

    Article  CAS  PubMed  Google Scholar 

  26. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31. https://doi.org/10.1056/nejmoa1707914. Results of this study showed that therapies that lower inflammation lead to a decrease in CVD events independent of lipid lowering therapy

    Article  CAS  PubMed  Google Scholar 

  27. Shin J, Syme C, Wang D, et al. Novel genetic locus of visceral fat and systemic inflammation. J Clin Endocrinol Metab. 2019;104(9):3735–42. https://doi.org/10.1210/jc.2018-02656.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Neeland I, Marso S, Ayers C, et al. Effects of liraglutide on visceral and ectopic fat in adults with overweight and obesity at high cardiovascular risk: a randomised, double-blind, placebo-controlled, clinical trial. Lancet Diabetes Endocrinol. 2021;9(9):595–605. https://doi.org/10.1016/S2213-8587(21)00179-0. GLP-1 agonists lead to favorable remodeling of adipose tissue composition with decreases in VAT concentration along with inflammatory markers such as CRP

    Article  CAS  PubMed  Google Scholar 

  29. Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2021;143(21). https://doi.org/10.1161/CIR.0000000000000973

  30. Bogers R, Bemelmans W, Hoogenveen R, et al. BMI-CHD Collaboration Investigators. Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: a meta-analysis of 21 cohort studies including more than 300 000 persons. Arch Intern Med. 2007;167:1720–1728. https://doi.org/10.1001/archinte.167.16.1720

  31. McGill HJ. Fatty streaks in the coronary arteries and aorta. Lab Invest. Published online 1968:560–564.

  32. Couillard C, Ruel G, Archer W, et al. Circulating levels of oxidative stress markers and endothelial adhesion molecules in men with abdominal obesity. J Clin Endocrinol Metab. 2005;90:6454–9. https://doi.org/10.1210/jc.2004-2438.

    Article  CAS  PubMed  Google Scholar 

  33. Engin A. Endothelial dysfunction in obesity. Adv Exp Med Biol. 2017;960:345–79. https://doi.org/10.1007/978-3-319-48382-5_15.

    Article  CAS  PubMed  Google Scholar 

  34. Rocha V, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol. 2009;6:399–409. https://doi.org/10.1038/nrcardio.2009.55.

    Article  CAS  PubMed  Google Scholar 

  35. Ross R. Atherosclerosis is an inflammatory disease. Am Hear J. 1999;138(pt 2):S419–20. https://doi.org/10.1016/s0002-8703(99)70266-8.

    Article  CAS  Google Scholar 

  36. Schindler T, Cardenas J, Prior J, et al. Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function. J Am Coll Cardiol. 2006;47:1188–95. https://doi.org/10.1016/j.jacc.2005.10.062.

    Article  CAS  PubMed  Google Scholar 

  37. Zieske A, Malcom G, Strong J. Natural history and risk factors of ath- erosclerosis in children and youth: the PDAY study. Pediatr Pathol Mol Med. 2002;21:213–37. https://doi.org/10.1080/15227950252852104.

    Article  PubMed  Google Scholar 

  38. Mancio J, Oikonomou EK, Antoniades C. Perivascular adipose tissue and coronary atherosclerosis. Heart. 2018;104(20):1654–62. https://doi.org/10.1136/heartjnl-2017-312324.

    Article  CAS  PubMed  Google Scholar 

  39. Alpert M, Lavie C, Agrawal H, Aggarwal K, Kumar S. Obesity and heart failure: epidemiology, pathophysiology, clinical manifestations, and management. Transl Res. 2014;164:345–56. https://doi.org/10.1016/j.trsl.2014.04.010.

    Article  CAS  PubMed  Google Scholar 

  40. Kenchaiah S, Evans J, Levy D, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(305–313). https://doi.org/10.1056/NEJMoa020245

  41. Pandey A, Patel K, Vaduganathan M, et al. Physical activity, fitness, and obesity in heart failure with preserved ejection fraction. JACC Hear Fail. 2018;6:975–82. https://doi.org/10.1016/j.jchf.2018.09.006.

    Article  Google Scholar 

  42. Pandey A, LaMonte M, Klein L, et al. Relationship between physical activity, body mass index, and risk of heart failure. J Am Coll Cardiol. 2017;69:1129–42. https://doi.org/10.1016/j.jacc.2016.11.081.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Harada T, Obokata M. Obesity-related heart failure with preserved ejection fraction: pathophysiology, diagnosis, and potential therapies. Hear Fail Clin. 16(3):357–368. https://doi.org/10.1016/j.hfc.2020.02.004

  44. Csige I, Ujvárosy D, Szabó Z, et al. The impact of obesity on the cardiovascular system. J Diabetes Res. Published online 2018:3407306. https://doi.org/10.1155/2018/3407306

  45. Mouton AJ, Li X, Hall ME, Hall JE. Obesity, hypertension, and cardiac dysfunction novel roles of immunometabolism in macrophage activation and inflammation. Circ Res. Published online 2020:789–806. https://doi.org/10.1161/CIRCRESAHA.119.312321

  46. Obokata M, Reddy Y, Pislaru S, Melenovsky V, Borlaug B. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. 2017;136:6–19. https://doi.org/10.1161/CIRCULATIONAHA.116.026807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kitzman D, Lam C. Obese heart failure with preserved ejection fraction phenotype: from pariah to central player. Circulation. 2017;136:20–3. https://doi.org/10.1161/CIRCULATIONAHA.117.028365.

    Article  PubMed  Google Scholar 

  48. Wong C, Sullivan T, Sun M, et al. Obesity and the risk of incident, post-operative, and post-ablation atrial fibrillation: a meta-analysis of 626,603 individuals in 51 studies. JACC Clin Electrophysiol. 2015;1(139–152). https://doi.org/10.1016/j.jacep.2015.04.004

  49. Huxley R, Lopez F, Folsom A, et al. Absolute and attributable risks of atrial fibrillation in relation to optimal and borderline risk factors: the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2011;123:1501–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tsang T, Barnes M, Miyasaka Y, et al. Obesity as a risk factor for the progression of paroxysmal to permanent atrial fibrillation: a longitudinal cohort study of 21 years. Eur Hear J. 2008;29:2227–33. https://doi.org/10.1093/eurheartj/ehn324.

    Article  Google Scholar 

  51. Gami A, Hodge D, Herges R, et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J Am Coll Cardiol. 2007;49:565–71.

    Article  PubMed  Google Scholar 

  52. Mangiafico V, Saberwal B, Lavalle C, et al. Impact of obesity on atrial fibrillation ablation. Arch Cardiovasc Dis. 2020;113(8–9):551–63. https://doi.org/10.1016/j.acvd.2020.03.023.

    Article  PubMed  Google Scholar 

  53. Lavie CJ, Pandey A, Lau DH, Alpert MA, Sanders P. Obesity and atrial fibrillation prevalence, pathogenesis, and prognosis: effects of weight loss and exercise. J Am Coll Cardiol. 2017;70(16):2022–35. https://doi.org/10.1016/j.jacc.2017.09.002.

    Article  PubMed  Google Scholar 

  54. Mahajan R, Nelson A, Pathak R, et al. Electroanatomical remodeling of the atria in obesity: impact of adjacent epicardial fat. JACC Clin Electrophysiol. 2018;4:1529–40. https://doi.org/10.1016/j.jacep.2018.08.014.

    Article  PubMed  Google Scholar 

  55. Hatem S, Redheuil A, Grandjbakhch E. Cardiac adipose tissue and atrial fibrillation. Cardiovasc Res. 2016;109:502–9.

    Article  CAS  PubMed  Google Scholar 

  56. Al-Rawahi M, Proletti R, Thansoulis G. Pericardial fat and atrial fibrillation: epidemiology, mechanisms and interventions. Int J Cardiol. 2015;195:98–103.

    Article  PubMed  Google Scholar 

  57. Thanasoullis G, Massaro J, O’Donnel C. Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Study. Circ Arrhythmia Electrophysiol. 2010;3:345–50.

    Article  Google Scholar 

  58. Ibrahim M. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11(1):11–8.

    Article  PubMed  Google Scholar 

  59. Liu J, Fox CS, Hickson DA, et al. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors : the Jackson Heart Study. 2010;95(December):5419-5426https://doi.org/10.1210/jc.2010-1378

  60. Neeland I, Turer A, Ayers C, Al. E. Body fat distribution and incident cardiovascular disease in obese adults. J Am Coll Cardiol. 2015;65(19):2150–2151. https://doi.org/10.1016/j.jacc.2015.01.061

  61. Neeland I, Hughes C, Ayers C, Malloy C, Jin E. Effects of visceral adiposity on glycerol pathways in gluconeogenesis. Metabolism. 2017;67:80–9.

    Article  CAS  PubMed  Google Scholar 

  62. Smith U, Kahn B. Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med. 2016;280:465–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vasan S, Karpe F. Fat, yet fit. Nat Rev Endocrinol. 2016;12:375–6.

    Article  CAS  PubMed  Google Scholar 

  64. Chang E, Varghese M, Singer K. Gender and sex differences in adipose tissue. Curr Diab Rep. 2018;18(9):69. https://doi.org/10.1007/s11892-018-1031-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fried S, Lee M, Karastergiou K. Shaping fat distribution: new insights into the molecular determinants of depot and sex dependent adipose biology. Obes (Silver Spring). 2015;23(7):1345–52.

    Article  CAS  Google Scholar 

  66. Schwartz R, Shuman W, Larson V, Cain K, Fellingham G, Beard J, et al. The effect of intensive endurance exercise training on body fat distribution in young and older men. Metabolism. 1991;40(5):545–51.

    Article  CAS  PubMed  Google Scholar 

  67. Link J, Hasin-Brumshtein Y, Cantor R, Chen X, Arnold A, Lusis A, et al. Diet, gonadal sex, and sex chromosome complement influence white adipose tissue miRNA expression. BMC Genomics. 2017;18(1):89.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shulman G. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med. 2014;371(23):2237–8.

    PubMed  Google Scholar 

  69. Lu S, McKenna S, Cologer-Clifford A, Nau E, Simon N. Androgen receptor in mouse brain: sex differences and similarities in autoregulation. Endocrinology. 1998;139(4):1594–601.

    Article  CAS  PubMed  Google Scholar 

  70. Locke A, Kahali B, Berndt S, Justice A, Pers T, Day F, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Macotela Y, Boucher J, Tran T, Kahn C. Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes. 2009;58(4):803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ornoy A, Giron S, Aner R, Goldstein M, Boyan B, Schwartz Z. Gender dependent effects of testosterone and 17 beta-estradiol on bone growth and modelling in young mice. Bone Min. 1994;24(1):43–58.

    Article  CAS  Google Scholar 

  73. Chen X, McClusky R, Chen J, Beaven S, Tontonoz P, Arnold A et al. The number of x chromosomes causes sex differences in adiposity in mice. PLoS Genet. 2012;8(5):e1002709.

  74. Xie H, Lim B, Lodish H. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes. 2009;58(5):1050–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Trajkovski M, Ahmed K, Esau C, Stoffel M. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat Cell Biol. 2012;14(12):1330–5.

    Article  CAS  PubMed  Google Scholar 

  76. White U, Tchoukalova Y. Sex dimorphism and depot differences in adipose tissue function. Biochim Biophys Acta. 2014;1842(3):377–92.

    Article  CAS  PubMed  Google Scholar 

  77. Tchoukalova Y, Koutsari C, Votruba S, Tchkonia T, Giorgadze N, Thomou T, et al. Sex and depot-dependent differences in adipogenesis in normal-weight humans. Obes (Silver Spring). 2010;18(10):1875–80.

    Article  Google Scholar 

  78. Tchoukalova Y, Koutsari C, Karpyak M, Votruba S, Wendland E, Jensen M. Subcutaneous adipocyte size and body fat distribution. Am J Clin Nutr. 2008;87(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  79. Shadid S, Koutsari C, Jensen M. Direct free fatty acid uptake into human adipocytes in vivo: relation to body fat distribution. Diabetes. 2007;56(5):1369–75.

    Article  CAS  PubMed  Google Scholar 

  80. Basu S, Haghiac M, Surace P, Challier J, Guerre-Millo M, Singh K, et al. Pregravid obesity associates with increased maternal endotoxemia and metabolic inflammation. Obes (Silver Spring). 2011;19(3):476–82.

    Article  CAS  Google Scholar 

  81. Wells JCK. Ethnic variability in adiposity, thrifty phenotypes and cardiometabolic risk: addressing the full range of ethnicity, including those of mixed ethnicity. Obes Rev. 2012;13(SUPPL.2):14–29. https://doi.org/10.1111/j.1467-789X.2012.01034.x

  82. Rønn PF, Andersen GS, Lauritzen T, et al. Abdominal visceral and subcutaneous adipose tissue and associations with cardiometabolic risk in Inuit, Africans and Europeans: a cross-sectional study. BMJ Open. 2020;10(9):e038071. https://doi.org/10.1136/bmjopen-2020-038071.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sutton-Tyrrell K, Wildman R, Matthews K, Chae C, Lasley B, Brockwell S, et al. Sex- hormone-binding globulin and the free androgen index are related to cardiovascular risk factors in multiethnic premenopausal and perimenopausal women enrolled in the Study of Women Across the Nation (SWAN). Circulation. 2005;111(10):1242–9.

    Article  CAS  PubMed  Google Scholar 

  84. Perry A, Martin L. Race differences in obesity and its relationship to the sex hormone milieu. Horm Mol Biol Clin Investig. 2014;19(3):151–61.

    CAS  PubMed  Google Scholar 

  85. Nazare JA, Smith JD, Borel AL, et al. Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the international study of prediction of intra-abdominal adiposity and its relationship with cardiometabolic risk/intra-. Am J Clin Nutr. 2012;96(4):714–26. https://doi.org/10.3945/ajcn.112.035758.

    Article  CAS  PubMed  Google Scholar 

  86. Mongraw-chaffin M, Gujral UP, Kanaya AM, Namratha R. Relation of ectopic fat with atherosclerotic cardiovascular disease risk score in South Asians living in the USA (from the Mediators of Atherosclerosis in South Asians Living in America [MASALA] Study). Am J Cardiol. 2018;121(3):315–21. https://doi.org/10.1016/j.amjcard.2017.10.026.Relation.

    Article  PubMed  Google Scholar 

  87. Liu J, Coady S, Carr JJ, Hoffmann U, Taylor HA, Fox CS. Differential associations of abdominal visceral, subcutaneous adipose tissue with cardiometabolic risk factors between African and European Americans. Obesity. 2014;22(3):811–8. https://doi.org/10.1002/oby.20307.

    Article  CAS  PubMed  Google Scholar 

  88. Cooper RS. Social inequality, ethnicity and cardiovascular disease. Int J Epidemiol. 2001;30(SUPPL. 1):48–52. https://doi.org/10.1093/ije/30.suppl_1.S48.

    Article  Google Scholar 

  89. Gill C, Lee M, Vatcheva KP, et al. Association of visceral adipose tissue and subclinical atherosclerosis in US-born immigrants. Published online. 2020. https://doi.org/10.1161/JAHA.120.017373.

    Article  Google Scholar 

  90. Neeland IJ, Ross R, Després J, et al. Visceral and ectopic fat , atherosclerosis , and cardiometabolic disease : a position statement. :715–725. https://doi.org/10.1016/S2213-8587(19)30084-1

  91. Wing R, Bolin P, Brancati F, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369:145–54.

    Article  CAS  PubMed  Google Scholar 

  92. Moreno-Navarrete J, Catalan V, Ortega F, et al. Circulating omentin concentration increases after weight loss. 2010, 7, 27. Nutr Metab. 2010;7:27

  93. Lancha A, Moncada R, Valenti V, et al. Effect of sleeve gastrectomy on osteopontin circulating levels and expression in adipose tissue and liver in rats. Obes Surg. 2014;24:1702–8.

    Article  PubMed  Google Scholar 

  94. Roager HM, Vogt JK, Kristensen M, et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome : a randomised. Published online 2019:83–93. https://doi.org/10.1136/gutjnl-2017-314786

  95. Gepner Y, Shelef I, Schwarzfuchs D, Al E. Effect of distinct lifestyle interventions on mobilization of fat storage pools: CENTRAL magnetic resonance imaging randomized controlled trial. Circulation. 2018;137:1143–57.

    Article  PubMed  Google Scholar 

  96. Myette-côté É, Durrer C, Neudorf H, et al. The effect of a short-term low-carbohydrate, high-fat diet with or without postmeal walks on glycemic control and inflammation in type 2 diabetes : a randomized trial. 2021;(47):1210–1219. https://doi.org/10.1152/ajpregu.00240.2018

  97. Tran HQ, Bretin A, Adeshirlarijaney A, et al. “Western Diet’’’-induced adipose inflammation requires a complex gut microbiota.” Cell Mol Gastroenterol Hepatol. 9(2):313–333. https://doi.org/10.1016/j.jcmgh.2019.09.009

  98. Rosenbaum M, Hall KD, Guo J, et al. Glucose and lipid homeostasis and inflammation in humans following an isocaloric ketogenic diet. 2019;27(6):971-981https://doi.org/10.1002/oby.22468.GLUCOSE

  99. Ross R, Bradshaw A. The future of obesity reduction: beyond weight loss. Nat Rev Endocrinol. 2009;5:319–25.

    Article  PubMed  Google Scholar 

  100. Despres J. Obesity and cardiovascular disease: weight loss is not the only target. Can J Cardiol. 2015;21:216–22.

    Article  Google Scholar 

  101. Janiszewski P, Ross R. Physical activity in the treatment of obesity: beyond body weight reduction. Appl Physiol Nutr Metab. 2007;32:512–22.

    Article  PubMed  Google Scholar 

  102. Frodermann V, Rohde D, Courties G, et al. Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nat Med. 2019;25(11):1761–71. https://doi.org/10.1038/s41591-019-0633-x.Exercise.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rao S, Pandey A, Garg S, et al. Effect of exercise and pharmacological interventions on visceral adiposity: a systematic review and meta-analysis of long-term randomized controlled trials. Mayo Clin Proc. 94(2):211–224. https://doi.org/10.1016/j.mayocp.2018.09.019

  104. Pedersen LR, Olsen RH, Anholm C, et al. Effects of 1 year of exercise training versus combined exercise training and weight loss on body composition, low-grade inflammation and lipids in overweight patients with coronary artery disease: a randomized trial. Cardiovasc Diabetol. 2019;18(1):1–13. https://doi.org/10.1186/s12933-019-0934-x.

    Article  CAS  Google Scholar 

  105. Khera R, Pandey A, Chandar AK, et al. Effects of weight-loss medications on cardiometabolic risk profiles: a systematic review and network meta-analysis. Gastroenterology. 2018;154(5):1309-1319.e7. https://doi.org/10.1053/j.gastro.2017.12.024.

    Article  PubMed  Google Scholar 

  106. Xu L, Ota T. Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: focus on fat browning and macrophage polarization. Adipocyte. 2018;7(2):121–8. https://doi.org/10.1080/21623945.2017.1413516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xu L, Nagata N, Nagashimada M, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet induced obese mice. EBioMedicine. 2017;20:137–49. https://doi.org/10.1016/j.ebiom.2017.05.028.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Heffron S, Parham J, Pendse J, Alemán J. Treatment of obesity in mitigating metabolic risk. Circ Res. 126(11):1646–1665. https://doi.org/10.1161/CIRCRESAHA.119.315897. Epub 2020 May 21. Erratum in: Circ Res. 2020 Jul 3;127(2):e79.

  109. Labrecque J, Laforest S, Michaud A, Biertho L, Tchernof A. Impact of bariatric surgery on white adipose tissue inflammation. Can J Diabetes. 2017;41(4):407–17. https://doi.org/10.1016/j.jcjd.2016.12.003.

    Article  PubMed  Google Scholar 

  110. Min T, Prior SL, Dunseath G, Churm R, Barry JD, Stephens JW. Temporal effects of bariatric surgery on adipokines, inflammation and oxidative stress in subjects with impaired glucose homeostasis at 4 years of follow-up. Obes Surg. 2020;30(5):1712–8. https://doi.org/10.1007/s11695-019-04377-3.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Stephens J, Min T, Dunseath G, Churm R, Barry J, Prior S. Temporal effects of laparoscopic sleeve gastrectomy on adipokines, inflammation, and oxidative stress in patients with impaired glucose homeostasis. Surg Obes Relat Dis. 15(12):2011–2017. 1https://doi.org/10.1016/j.soard.2019.04.006

  112. Schauer P, Bhatt D, Kirwan J, et al. Bariatric Surgery versus intensive medical therapy for diabetes - 5-year outcomes. New Engl J Med. 2017;376:641–51.

    Article  PubMed  Google Scholar 

  113. Sjostrom C, Peltonen M, Wedel H, Sjostrom L. Differentiated long-term effects of intentional weight loss on diabetes and hypertension. Hypertension. 2000;36:20–5.

    Article  CAS  PubMed  Google Scholar 

  114. Maciejewski M, Arterburn D, Van Scoyoc L, et al. Bariatric surgery and long-term durability of weight loss. JAMA Surg. 2016;151:1046–55.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lehmann S, Linder N, Retschlag U, et al. MRI assessment of changes in adipose tissue parameters after bariatric surgery. PLoS One. 13(11):e0206735. https://doi.org/10.1371/journal.pone.0206735

  116. Adami G, Carbone F, Montecucco F, Camerini G, Cordera R. Adipose tissue composition in obesity and after bariatric surgery. Obes Surg. 29(9):3030–3038.https://doi.org/10.1007/s11695-019-04030-z

  117. Rossi I, Omotosho P, Poirier J, Spagnoli A, Torquati A. Roux-en-Y gastric bypass decreases serum inflammatory markers and cardiovascular risk factors in obese diabetics. Surgery. 169(3):539–542. https://doi.org/10.1016/j.surg.2020.09.039

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian J. Neeland.

Ethics declarations

Conflict of Interests

Dr. Neeland reports receiving consulting fees/honoraria from Nestle Health Sciences, Boehringer Ingelheim/Lilly Alliance, and Merck & Co. The other authors declare no competing interests.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Macrovascular Complications in Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, M.N., Neeland, I.J. Adipose Tissue Inflammation and Cardiovascular Disease: An Update. Curr Diab Rep 22, 27–37 (2022). https://doi.org/10.1007/s11892-021-01446-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-021-01446-9

Keywords

Navigation