Skip to main content

Advertisement

Log in

Effects of Allergen Exposure and Environmental Risk Factors in Schools on Childhood Asthma

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to assess the prevalence of common allergen exposures and environmental risk factors for asthma in schools, examine the underlying mechanisms of these environmental risk factors, and explore possible prevention strategies.

Recent Findings

Cockroach, mouse, dust mites, fungi, viral infections, ozone pollution, and cleaning products are common allergen exposures and environmental risk factors in schools which may affect asthma morbidity. Novel modifiable environmental risk factors in schools are also being investigated to identify potential associations with increased asthma morbidity.

Summary

While several studies have investigated the benefit of environmental remediation strategies in schools and their impact on asthma morbidity, future studies are warranted to further define the effects of modifiable risk factors in schools and determine whether school mitigation strategies may help improve asthma symptoms in students with asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Porcaro F, Ullmann N, Allegorico A, Di Marco A, Cutrera R. Difficult and severe asthma in children. Children (Basel). 2020;7(12). https://doi.org/10.3390/children7120286.

  2. Martin J, Townshend J, Brodlie M. Diagnosis and management of asthma in children. BMJ Paediatr Open. 2022;6(1). https://doi.org/10.1136/bmjpo-2021-001277.

  3. Mitchell RJ, McMaugh A, Homaira N, Lystad RP, Badgery-Parker T, Cameron CM. The impact of childhood asthma on academic performance: a matched population-based cohort study. Clin Exp Allergy. 2022;52(2):286–296. https://doi.org/10.1111/cea.14022.

  4. Plaza-Gonzalez S, Zabala-Banos MDC, Astasio-Picado A, Jurado-Palomo J. Psychological and sociocultural determinants in childhood asthma disease: impact on quality of life. Int J Environ Res Public Health.  2022;19(5). https://doi.org/10.3390/ijerph19052652.

  5. Chabra R, Gupta M. Allergic and environmentally induced asthma. StatPearls. 2023.

  6. Hughes D. Childhood asthma and school. Paediatr Child Health. 2021;26(1):e4–5. https://doi.org/10.1093/pch/pxaa004.

    Article  PubMed  Google Scholar 

  7. Hahn RA, Truman BI. Education improves public health and promotes health equity. Int J Health Serv. 2015;45(4):657–78. https://doi.org/10.1177/0020731415585986.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pampati S, Rasberry CN, McConnell L, et al. Ventilation improvement strategies among K-12 public schools—The National School COVID-19 Prevention Study, United States, February 14-March 27, 2022. MMWR Morb Mortal Wkly Rep. 2022;71(23):770–775. https://doi.org/10.15585/mmwr.mm7123e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. • Phipatanakul W, Koutrakis P, Coull BA, et al. Effect of school integrated pest management or classroom air filter purifiers on asthma symptoms in students with active asthma: a randomized clinical trial. JAMA. 2021;326(9):839–850. https://doi.org/10.1001/jama.2021.11559. Findings from this study demonstrated that the use of a school-wide integrated pest management program or classroom HEPA filter purifiers did not decrease symptom days with asthma significantly among children with active asthma. However, consideration of particle exposures, asthma symptoms at baseline, and allergen levels in the interpretation of the study findings may likely be required.

  10. Permaul P, Hoffman E, Fu C, et al. Allergens in urban schools and homes of children with asthma. Pediatr Allergy Immunol. 2012;23(6):543–9. https://doi.org/10.1111/j.1399-3038.2012.01327.x.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sheehan WJ, Permaul P, Petty CR, et al. Association between allergen exposure in inner-city schools and asthma morbidity among students. JAMA Pediatr. 2017;171(1):31–38. https://doi.org/10.1001/jamapediatrics.2016.2543.

    Article  PubMed  PubMed Central  Google Scholar 

  12. • Phipatanakul W, Eggleston PA, Wright EC, Wood RA. Mouse allergen. I. The prevalence of mouse allergen in inner-city homes. The National Cooperative Inner-City Asthma Study. J Allergy Clin Immunol. 2000;106(6):1070–4. https://doi.org/10.1067/mai.2000.110796This is the first study describing the distribution and prevalence of mouse allergens in inner-city home environments of asthmatic children.

  13. Phipatanakul W, Celedon JC, Hoffman EB, Abdulkerim H, Ryan LM, Gold DR. Mouse allergen exposure, wheeze and atopy in the first seven years of life. Allergy. 2008;63(11):1512–8. https://doi.org/10.1111/j.1398-9995.2008.01679.x.

    Article  CAS  PubMed  Google Scholar 

  14. Phipatanakul W, Cronin B, Wood RA, et al. Effect of environmental intervention on mouse allergen levels in homes of inner-city Boston children with asthma. Ann Allergy Asthma Immunol. 2004;92(4):420–5. https://doi.org/10.1016/S1081-1206(10)61777-2.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pongracic JA, Visness CM, Gruchalla RS, Evans R 3rd, Mitchell HE. Effect of mouse allergen and rodent environmental intervention on asthma in inner-city children. Ann Allergy Asthma Immunol. 2008;101(1):35–41. https://doi.org/10.1016/S1081-1206(10)60832-0.

    Article  PubMed  Google Scholar 

  16. Phipatanakul W, Matsui E, Portnoy J, et al. Environmental assessment and exposure reduction of rodents: a practice parameter. Ann Allergy Asthma Immunol. 2012;109(6):375–87. https://doi.org/10.1016/j.anai.2012.09.019.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sedaghat AR, Matsui EC, Baxi SN, et al. Mouse sensitivity is an independent risk factor for rhinitis in children with asthma. J Allergy Clin Immunol Pract. 2016;4(1):82–8 e1. https://doi.org/10.1016/j.jaip.2015.09.006.

  18. Grant T, Aloe C, Perzanowski M, et al. Mouse sensitization and exposure are associated with asthma severity in urban children. J Allergy Clin Immunol Pract. 2017;5(4):1008–1014 e1. https://doi.org/10.1016/j.jaip.2016.10.020.

  19. Mudge JM, Armstrong SD, McLaren K, et al. Dynamic instability of the major urinary protein gene family revealed by genomic and phenotypic comparisons between C57 and 129 strain mice. Genome Biol. 2008;9(5):R91. https://doi.org/10.1186/gb-2008-9-5-r91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schulten V, Westernberg L, Birrueta G, et al. Allergen and epitope targets of mouse-specific T cell responses in allergy and asthma. Front Immunol. 2018;9:235. https://doi.org/10.3389/fimmu.2018.00235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steinke JW, Borish L. Th2 cytokines and asthma. Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir Res. 2001;2(2):66–70. https://doi.org/10.1186/rr40.

  22. Anderson WC 3rd, Banzon TM, Chawes B, Papadopoulos NG, Phipatanakul W, Szefler SJ. Factors to consider in prescribing asthma biologic therapies to children. J Allergy Clin Immunol Pract. 2023;11(3):693–701. https://doi.org/10.1016/j.jaip.2022.12.038.

    Article  CAS  PubMed  Google Scholar 

  23. Phipatanakul W, Gold DR, Muilenberg M, Sredl DL, Weiss ST, Celedon JC. Predictors of indoor exposure to mouse allergen in urban and suburban homes in Boston. Allergy. 2005;60(5):697–701. https://doi.org/10.1111/j.1398-9995.2005.00825.x.

    Article  CAS  PubMed  Google Scholar 

  24. Portnoy J, Chew GL, Phipatanakul W, et al. Environmental assessment and exposure reduction of cockroaches: a practice parameter. J Allergy Clin Immunol. 2013;132(4):802–8 e1–25. https://doi.org/10.1016/j.jaci.2013.04.061.

  25. Esty B, Phipatanakul W. School exposure and asthma. Ann Allergy Asthma Immunol. 2018;120(5):482–487. https://doi.org/10.1016/j.anai.2018.01.028.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gray-Ffrench M, Fernandes RM, Sinha IP, Abrams EM. Allergen management in children with Type 2-high asthma. J Asthma Allergy. 2022;15:381–394. https://doi.org/10.2147/JAA.S276994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sheehan WJ, Phipatanakul W. Indoor allergen exposure and asthma outcomes. Curr Opin Pediatr. 2016;28(6):772–777. https://doi.org/10.1097/MOP.0000000000000421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Do DC, Zhao Y, Gao P. Cockroach allergen exposure and risk of asthma. Allergy. 2016;71(4):463–74. https://doi.org/10.1111/all.12827.

    Article  CAS  PubMed  Google Scholar 

  29. Dillon MB, Schulten V, Oseroff C, et al. Different Bla-g T cell antigens dominate responses in asthma versus rhinitis subjects. Clin Exp Allergy. 2015;45(12):1856–67. https://doi.org/10.1111/cea.12643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shaughnessy R, Hernandez M, Haverinen-Shaughnessy U. Effects of classroom cleaning on student health: a longitudinal study. J Expo Sci Environ Epidemiol. 2022;32(5):767–773. https://doi.org/10.1038/s41370-022-00427-8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Donaldson AL, Harris JP, Vivancos R, O’Brien SJ. Risk factors associated with outbreaks of seasonal infectious disease in school settings, England. UK Epidemiol Infect. 2020;148:e287. https://doi.org/10.1017/S0950268820002824.

  32. Cote SM, Petitclerc A, Raynault MF, et al. Short- and long-term risk of infections as a function of group child care attendance: an 8-year population-based study. Arch Pediatr Adolesc Med. 2010;164(12):1132–7. https://doi.org/10.1001/archpediatrics.2010.216.

    Article  PubMed  Google Scholar 

  33. Wu P, Hartert TV. Evidence for a causal relationship between respiratory syncytial virus infection and asthma. Expert Rev Anti Infect Ther. 2011;9(9):731–45. https://doi.org/10.1586/eri.11.92.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Johnston SL, Pattemore PK, Sanderson G, et al. Community study of role of viral infections in exacerbations of asthma in 9–11 year old children. BMJ. 1995;310(6989):1225–9. https://doi.org/10.1136/bmj.310.6989.1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harford TJ, Grove L, Rezaee F, Scheraga R, Olman MA, Piedimonte G. RSV infection potentiates TRPV(1)-mediated calcium transport in bronchial epithelium of asthmatic children. Am J Physiol Lung Cell Mol Physiol. 2021;320(6):L1074–L1084. https://doi.org/10.1152/ajplung.00531.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Navarro Alonso JA, Bont LJ, Bozzola E, et al. RSV: perspectives to strengthen the need for protection in all infants. Emerg Themes Epidemiol. 2021;18(1):15. https://doi.org/10.1186/s12982-021-00104-5.

  37. Wolfe MK, McDonald NC, Arunachalam S, Baldauf R, Valencia A. Impact of school location on children’s air pollution exposure. J Urban Aff. 2020;43(8). https://doi.org/10.1080/07352166.2020.1734013.

  38. Hauptman M, Gaffin JM, Petty CR, et al. Proximity to major roadways and asthma symptoms in the School Inner-City Asthma Study. J Allergy Clin Immunol. 2020;145(1):119–126 e4. https://doi.org/10.1016/j.jaci.2019.08.038.

  39. Hata H, Tonokura K. Impact of next-generation vehicles on tropospheric ozone estimated by chemical transport model in the Kanto region of Japan. Sci Rep. 2019;9(1):3573. https://doi.org/10.1038/s41598-019-40012-y.

  40. Salonen H, Salthammer T, Morawska L. Human exposure to ozone in school and office indoor environments. Environ Int. 2018;119:503–514. https://doi.org/10.1016/j.envint.2018.07.012.

    Article  CAS  PubMed  Google Scholar 

  41. Huang W, Wu J, Lin X. Ozone exposure and asthma attack in children. Front Pediatr. 2022;10:830897. https://doi.org/10.3389/fped.2022.830897.

  42. Enweasor C, Flayer CH, Haczku A. Ozone-induced oxidative stress, neutrophilic airway inflammation, and glucocorticoid resistance in asthma. Front Immunol. 2021;12:631092. https://doi.org/10.3389/fimmu.2021.631092.

  43. Permaul P, Peters MC, Petty CR, et al. The association of plasma IL-6 with measures of asthma morbidity in a moderate-severe pediatric cohort aged 6–18 years. J Allergy Clin Immunol Pract. 2021;9(7):2916-2919.e2. https://doi.org/10.1016/j.jaip.2021.02.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xue Y, Zhou Y, Bao W, et al. STAT3 and IL-6 Contribute to corticosteroid resistance in an OVA and ozone-induced asthma model with neutrophil infiltration. Front Mol Biosci. 2021;8:717962. https://doi.org/10.3389/fmolb.2021.717962.

  45. Shima M, Adachi M. Effect of outdoor and indoor nitrogen dioxide on respiratory symptoms in schoolchildren. Int J Epidemiol. 2000;29(5):862–70. https://doi.org/10.1093/ije/29.5.862.

    Article  CAS  PubMed  Google Scholar 

  46. Kattan M, Gergen PJ, Eggleston P, Visness CM, Mitchell HE. Health effects of indoor nitrogen dioxide and passive smoking on urban asthmatic children. J Allergy Clin Immunol. 2007;120(3):618–24. https://doi.org/10.1016/j.jaci.2007.05.014.

    Article  CAS  PubMed  Google Scholar 

  47. Gaffin JM, Hauptman M, Petty CR, et al. Nitrogen dioxide exposure in school classrooms of inner-city children with asthma. J Allergy Clin Immunol. 2018;141(6):2249-2255.e2. https://doi.org/10.1016/j.jaci.2017.08.028.

    Article  CAS  PubMed  Google Scholar 

  48. Permaul P, Gaffin JM, Petty CR, et al. Obesity may enhance the adverse effects of NO(2) exposure in urban schools on asthma symptoms in children. J Allergy Clin Immunol. 2020;146(4):813-820.e2. https://doi.org/10.1016/j.jaci.2020.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vieira CLZ, Koutrakis P, Huang S, et al. Short-term effects of particle gamma radiation activities on pulmonary function in COPD patients. Environ Res. 2019;175:221–227. https://doi.org/10.1016/j.envres.2019.05.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Turner MC, Krewski D, Chen Y, Pope CA 3rd, Gapstur SM, Thun MJ. Radon and nonrespiratory mortality in the American Cancer Society cohort. Am J Epidemiol. 2012;176(9):808–14. https://doi.org/10.1093/aje/kws198.

    Article  PubMed  Google Scholar 

  51. Mukharesh L, Greco KF, Banzon T, et al. Environmental radon and childhood asthma. Pediatr Pulmonol. 2022;57(12):3165–3168. https://doi.org/10.1002/ppul.26143.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Banzon TM, Greco KF, Li L, et al. Effect of radon exposure on asthma morbidity in the School Inner-City Asthma study. Pediatr Pulmonol. 2023. https://doi.org/10.1002/ppul.26429.

  53. Becher R, Ovrevik J, Schwarze PE, Nilsen S, Hongslo JK, Bakke JV. Do carpets impair indoor air quality and cause adverse health outcomes: a review. Int J Environ Res Public Health. 2018;15(2). https://doi.org/10.3390/ijerph15020184.

  54. Zuiani C, Custovic A. Update on house dust mite allergen avoidance measures for asthma. Curr Allergy Asthma Rep. 2020;20(9):50. https://doi.org/10.1007/s11882-020-00948-y.

  55. Abu Khweek A, Kim E, Joldrichsen MR, Amer AO, Boyaka PN. Insights Into mucosal innate immune responses in house dust mite-mediated allergic asthma. Front Immunol. 2020;11:534501. https://doi.org/10.3389/fimmu.2020.534501.

  56. Jacquet A. Characterization of innate immune responses to house dust mite allergens: pitfalls and limitations. Front Allergy. 2021;2:662378. https://doi.org/10.3389/falgy.2021.662378.

  57. Aggarwal P, Senthilkumaran S. Dust Mite Allergy. StatPearls. 2023.

  58. Jacquet A. Innate immune responses in house dust mite allergy. ISRN Allergy. 2013;2013:735031. https://doi.org/10.1155/2013/735031.

  59. Lazaro-Gorines R, Lopez-Rodriguez JC, Benede S, et al. Der p 1-based immunotoxin as potential tool for the treatment of dust mite respiratory allergy. Sci Rep. 2020;10(1):12255. https://doi.org/10.1038/s41598-020-69166-w.

  60. Hughes KM, Price D, Torriero AAJ, Symonds MRE, Suphioglu C. Impact of fungal spores on asthma prevalence and hospitalization. Int J Mol Sci. 2022;23(8). https://doi.org/10.3390/ijms23084313.

  61. Bush A. Kids, Difficult asthma and fungus. J Fungi (Basel). 2020;6(2). https://doi.org/10.3390/jof6020055.

  62. Baxi SN, Sheehan WJ, Sordillo JE, et al. Association between fungal spore exposure in inner-city schools and asthma morbidity. Ann Allergy Asthma Immunol. 2019;122(6):610–615. https://doi.org/10.1016/j.anai.2019.03.011.

  63. Shin SH, Ye MK, Lee DW, Chae MH, Choi SY. Development and immunopathological characteristics of an Alternaria-induced chronic rhinosinusitis mouse model. PLoS One. 2020;15(6).e0234731. https://doi.org/10.1371/journal.pone.0234731

  64. Castanhinha S, Sherburn R, Walker S, et al. Pediatric severe asthma with fungal sensitization is mediated by steroid-resistant IL-33. J Allergy Clin Immunol. 2015;136(2):312–22 e7.https://doi.org/10.1016/j.jaci.2015.01.016.

  65. Chan BCL, Lam CWK, Tam LS, Wong CK. IL33: Roles in allergic inflammation and therapeutic perspectives. Front Immunol. 2019;10:364. https://doi.org/10.3389/fimmu.2019.00364.

  66. Hicks A, Hicks P. Disinfection in the time of COVID: Safe solutions are critical for schools. Paediatr Child Health. 2022;27(6):324–326. https://doi.org/10.1093/pch/pxac060.

  67. Parks J, McCandless L, Dharma C, et al. Association of use of cleaning products with respiratory health in a Canadian birth cohort. CMAJ. 2020;192(7):E154–E161. https://doi.org/10.1503/cmaj.190819.

  68. Dodson RE, Nishioka M, Standley LJ, Perovich LJ, Brody JG, Rudel RA. Endocrine disruptors and asthma-associated chemicals in consumer products. Environ Health Perspect. 2012;120(7):935–43. https://doi.org/10.1289/ehp.1104052.

  69. Choi H, Schmidbauer N, Sundell J, Hasselgren M, Spengler J, Bornehag CG. Common household chemicals and the allergy risks in pre-school age children. PLoS One. 2010;5(10):e13423. https://doi.org/10.1371/journal.pone.0013423.

  70. Anderson SE, Franko J, Kashon ML, et al. Exposure to triclosan augments the allergic response to ovalbumin in a mouse model of asthma. Toxicol Sci. 2013;132(1):96–106. https://doi.org/10.1093/toxsci/kfs328.

  71. Elghoudi A, Narchi H. Food allergy in children-the current status and the way forward. World J Clin Pediatr. 2022;11(3):253–269. https://doi.org/10.5409/wjcp.v11.i3.253.

  72. Boulet LP, Lavoie KL, Raherison-Semjen C, Kaplan A, Singh D, Jenkins CR. Addressing sex and gender to improve asthma management. NPJ Prim Care Respir Med. 2022;32(1):56. https://doi.org/10.1038/s41533-022-00306-7.

  73. Harley KG, Calderon L, Nolan JES, et al. Changes in Latina women’s exposure to cleaning chemicals associated with switching from conventional to “green” household cleaning products: The LUCIR Intervention Study. Environ Health Perspect. 2021;129(9):97001. https://doi.org/10.1289/EHP8831.

    Article  CAS  PubMed  Google Scholar 

  74. Canguven O, Albayrak S. Do low testosterone levels contribute to the pathogenesis of asthma? Med Hypotheses. 2011;76(4):585–8. https://doi.org/10.1016/j.mehy.2011.01.006.

    Article  CAS  PubMed  Google Scholar 

  75. Koper I, Hufnagl K, Ehmann R. Gender aspects and influence of hormones on bronchial asthma - Secondary publication and update. World Allergy Organ J. 2017;10(1):46. https://doi.org/10.1186/s40413-017-0177-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vesper SJ, Wymer L, Coull BA, et al. HEPA filtration intervention in classrooms may improve some students’ asthma. J Asthma. 2023;60(3):479–86. https://doi.org/10.1080/02770903.2022.2059672.

    Article  PubMed  Google Scholar 

Download references

Funding

The study was financially supported by NIH T32 AI 007512, NIH U01 AI 152033, NIH K24 AI 106822, NIH K23 ES 035459, and NIH U01 AI 160087.

Author information

Authors and Affiliations

Authors

Contributions

E.Y. wrote the main manuscript text and it was reviewed by T.M.B. and W.P.

Corresponding author

Correspondence to Wanda Phipatanakul.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights Informed Consent

The article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarsky, E., Banzon, T.M. & Phipatanakul, W. Effects of Allergen Exposure and Environmental Risk Factors in Schools on Childhood Asthma. Curr Allergy Asthma Rep 23, 613–620 (2023). https://doi.org/10.1007/s11882-023-01108-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-023-01108-8

Keywords

Navigation