Skip to main content
Log in

Role of Small Molecule Ligands in IgE-Mediated Allergy

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

A significant fraction of allergens bind small molecular ligands, and many of these compounds are classified as lipids. However, in most cases, we do not know the role that is played by the ligands in the allergic sensitization or allergic effector phases.

Recent Findings

More effort is dedicated toward identification of allergens’ ligands. This resulted in identification of some lipidic compounds that can play active immunomodulatory roles or impact allergens’ molecular and allergic properties.

Summary

Four allergen families (lipocalins, NPC2, nsLTP, and PR-10) are among the best characterized in terms of their ligand-binding properties. Allergens from these four families are able to bind many chemically diverse molecules. These molecules can directly interact with human immune system and/or affect conformation and stability of allergens. While there is more data on the allergens and their small molecular ligands, we are just starting to understand their role in allergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Radauer C, Breiteneder H. Pollen allergens are restricted to few protein families and show distinct patterns of species distribution. J Allergy Clin Immunol. 2006;117(1):141–7. https://doi.org/10.1016/j.jaci.2005.09.010.

    Article  CAS  PubMed  Google Scholar 

  2. Radauer C, Breiteneder H. Evolutionary biology of plant food allergens. J Allergy Clin Immunol. 2007;120(3):518–25. https://doi.org/10.1016/j.jaci.2007.07.024.

    Article  CAS  PubMed  Google Scholar 

  3. Haahtela T, Jantunen J, Saarinen K, Tommila E, Valovirta E, Vasankari T, et al. Managing the allergy and asthma epidemic in 2020s-lessons from the Finnish experience. Allergy. 2022;77(8):2367–80. https://doi.org/10.1111/all.15266.

    Article  PubMed  Google Scholar 

  4. Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008;121(4):847–52, e7. https://doi.org/10.1016/j.jaci.2008.01.025.

  5. Mills EN, Jenkins JA, Alcocer MJ, Shewry PR. Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Crit Rev Food Sci Nutr. 2004;44(5):379–407. https://doi.org/10.1080/10408690490489224.

    Article  CAS  PubMed  Google Scholar 

  6. Breiteneder H, Clare Mills EN. Plant food allergens–structural and functional aspects of allergenicity. Biotechnol Adv. 2005;23(6):395–9. https://doi.org/10.1016/j.biotechadv.2005.05.004.

    Article  CAS  PubMed  Google Scholar 

  7. Xu Y, Zhang Q, Tan L, Xie X, Zhao Y. The characteristics and biological significance of NPC2: Mutation and disease. Mutat Res Rev Mutat Res. 2019;782:108284. https://doi.org/10.1016/j.mrrev.2019.108284.

  8. •• Jappe U, Schwager C, Schromm AB, Gonzalez Roldan N, Stein K, Heine H, et al. Lipophilic allergens, different modes of allergen-lipid interaction and their impact on asthma and allergy. Front Immunol. 2019;10:122. https://doi.org/10.3389/fimmu.2019.00122. This is a detailed review on lipophilic allergens and the role of lipid/ligand binding. The manuscript summarizes information on ligands and the modes of ligand-allergen interactions with human immune system. The paper focuses on lipophilic allergens from peanuts and house dust mites. It discusses the impact of ligands on allergic sensitization. The roles of increased digestive resistance, conformational changes, carrier effect, and receptor recognition in asthma and allergy development are presented.

  9. Thomas WR. Allergen ligands in the initiation of allergic sensitization. Curr Allergy Asthma Rep. 2014;14(5):432. https://doi.org/10.1007/s11882-014-0432-x.

    Article  CAS  PubMed  Google Scholar 

  10. Bublin M, Eiwegger T, Breiteneder H. Do lipids influence the allergic sensitization process? J Allergy Clin Immunol. 2014;134(3):521–9. https://doi.org/10.1016/j.jaci.2014.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. •• Chruszcz M, Chew FT, Hoffmann-Sommergruber K, Hurlburt BK, Mueller GA, Pomes A, et al. Allergens and their associated small molecule ligands-their dual role in sensitization. Allergy. 2021;76(8):2367–82. https://doi.org/10.1111/all.14861. This manuscript reviews the most important ligand-binding allergen families and their known ligands, including natural ones, and summarizes recent findings on the role of small-molecule ligands on the allergenicity of allergens from these families. The paper concentrates on important allergens from ns-LTPs, PR-10s, lipocalins, serum albumin, and NPC2 protein family, as well as representative allergens from cockroaches, dust mite, and cats and their known ligands. The roles of hydrophobic small molecule ligands in thermal stability and immunomodulation are highlighted by examples of Ara h 8, Bet v 1, Bla g 1, Bos d 5, and their known ligands.

  12. •• Hopkins GV, Cochrane S, Onion D, Fairclough LC. The role of lipids in allergic sensitization: a systematic review. Front Mol Biosci. 2022;9:832330. https://doi.org/10.3389/fmolb.2022.832330. This review concentrates on role of lipids in allergy sensitization based on nineteen studies on food allergens and aeroallergens from 2002 to 2020.The review concludes that intrinsic lipids are key influencers of allergy sensitization. Most lipid-allergen interactions cause structural changes influencing allergenicity as observed in milk allergens with the exception of retinoic acid, which did not alter the conformation and allergenicity of Bos d 5.

  13. Bonura A, Corinti S, Schiavi E, Giacomazza D, Gianguzza F, Di Felice G, et al. The major allergen of the Parietaria pollen contains an LPS-binding region with immuno-modulatory activity. Allergy. 2013;68(3):297–303. https://doi.org/10.1111/all.12086.

    Article  CAS  PubMed  Google Scholar 

  14. Gruber A, Mancek M, Wagner H, Kirschning CJ, Jerala R. Structural model of MD-2 and functional role of its basic amino acid clusters involved in cellular lipopolysaccharide recognition. J Biol Chem. 2004;279(27):28475–82. https://doi.org/10.1074/jbc.M400993200.

    Article  CAS  PubMed  Google Scholar 

  15. Ichikawa S, Takai T, Yashiki T, Takahashi S, Okumura K, Ogawa H, et al. Lipopolysaccharide binding of the mite allergen Der f 2. Genes Cells. 2009;14(9):1055–65. https://doi.org/10.1111/j.1365-2443.2009.01334.x.

    Article  CAS  PubMed  Google Scholar 

  16. Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med. 2002;196(12):1645–51. https://doi.org/10.1084/jem.20021340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ellenbogen Y, Jimenez-Saiz R, Spill P, Chu DK, Waserman S, Jordana M. The Initiation of Th2 Immunity Towards Food Allergens. Int J Mol Sci. 2018;19(5). https://doi.org/10.3390/ijms19051447.

  18. Gioannini TL, Teghanemt A, Zhang D, Coussens NP, Dockstader W, Ramaswamy S, et al. Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci USA. 2004;101(12):4186–91. https://doi.org/10.1073/pnas.0306906101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maeda K, Caldez MJ, Akira S. Innate immunity in allergy. Allergy. 2019;74(9):1660–74. https://doi.org/10.1111/all.13788.

    Article  PubMed  Google Scholar 

  20. Cubells-Baeza N, Gomez-Casado C, Tordesillas L, Ramirez-Castillejo C, Garrido-Arandia M, Gonzalez-Melendi P, et al. Identification of the ligand of Pru p 3, a peach LTP. Plant Mol Biol. 2017;94(1–2):33–44. https://doi.org/10.1007/s11103-017-0590-z.

    Article  CAS  PubMed  Google Scholar 

  21. • Gonzalez-Klein Z, Cuevas-Zuviria B, Wangorsch A, Hernandez-Ramirez G, Pazos-Castro D, Romero-Sahagun A, et al. The key to the allergenicity of lipid transfer protein (LTP) ligands: a structural characterization. Biochim Biophys Acta Mol Cell Biol Lipids. 2021:158928. https://doi.org/10.1016/j.bbalip.2021.158928. This study reports the natural ligands of four allergenic lipid transfer proteins (Tri a 14, Art v 3, Par j 2, and Ole e 7) and compares them with the natural ligand of Pru p 3. These ligands were also bound by Pru p 3, but with varied binding affinities. Ligands were isolated from naturally extracted lipid transport proteins, characterized, and analyzed via mass spectrometry.

  22. Gonzalez-Klein Z, Pazos-Castro D, Hernandez-Ramirez G, Garrido-Arandia M, Diaz-Perales A, Tome-Amat J. Lipid ligands and allergenic LTPs: redefining the paradigm of the protein-centered vision in allergy. Front Allergy. 2022;3:864652. https://doi.org/10.3389/falgy.2022.864652.

  23. Abdullah SU, Alexeev Y, Johnson PE, Rigby NM, Mackie AR, Dhaliwal B, et al. Ligand binding to an allergenic lipid transfer protein enhances conformational flexibility resulting in an increase in susceptibility to gastroduodenal proteolysis. Sci Rep. 2016;6:30279. https://doi.org/10.1038/srep30279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shenkarev ZO, Melnikova DN, Finkina EI, Sukhanov SV, Boldyrev IA, Gizatullina AK, et al. Ligand binding properties of the lentil lipid transfer protein: molecular insight into the possible mechanism of lipid uptake. Biochemistry. 2017;56(12):1785–96. https://doi.org/10.1021/acs.biochem.6b01079.

    Article  CAS  PubMed  Google Scholar 

  25. •• Aina R, Dubiela P, Geiselhart S, Bublin M, Bruschi M, Radauer C, et al. Distinct lipid transfer proteins display different IgE-binding activities that are affected by fatty acid binding. Allergy. 2019;74(4):827–31. https://doi.org/10.1111/all.13682. This manuscript concentrates on interactions between of three nsLTPS allergens ( Cor a 8, Mal d 3, and Hel a 3) with fatty acids. It is reported that ligands like oleic acid cause conformational changes of Mal d 3 and Cor a 8 regions that comprise the IgE epitopes. Such conformational changes increased the IgE interaction, thereby increasing the allergenicity of these nsLTPs proteins.

  26. Dubiela P, Del Conte R, Cantini F, Borowski T, Aina R, Radauer C, et al. Impact of lipid binding on the tertiary structure and allergenic potential of Jug r 3, the non-specific lipid transfer protein from walnut. Sci Rep. 2019;9(1):2007. https://doi.org/10.1038/s41598-019-38563-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grzyb J, Latowski D, Strzalka K. Lipocalins - a family portrait. J Plant Physiol. 2006;163(9):895–915. https://doi.org/10.1016/j.jplph.2005.12.007.

    Article  CAS  PubMed  Google Scholar 

  28. Hilger C, Kuehn A, Hentges F. Animal lipocalin allergens. Curr Allergy Asthma Rep. 2012;12(5):438–47. https://doi.org/10.1007/s11882-012-0283-2.

    Article  CAS  PubMed  Google Scholar 

  29. Chruszcz M, Kapingidza AB, Dolamore C, Kowal K. A robust method for the estimation and visualization of IgE cross-reactivity likelihood between allergens belonging to the same protein family. PLoS One. 2018;13(11):e0208276. https://doi.org/10.1371/journal.pone.0208276.

  30. Dartt DA. Tear lipocalin: structure and function. Ocul Surf. 2011;9(3):126–38. https://doi.org/10.1016/s1542-0124(11)70022-2.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lakshmi B, Mishra M, Srinivasan N, Archunan G. Structure-based phylogenetic analysis of the lipocalin superfamily. PLoS One. 2015;10(8):e0135507. https://doi.org/10.1371/journal.pone.0135507.

  32. Clifton MC, Rupert PB, Hoette TM, Raymond KN, Abergel RJ, Strong RK. Parsing the functional specificity of siderocalin/lipocalin 2/NGAL for siderophores and related small-molecule ligands. J Struct Biol X. 2019;2:100008. https://doi.org/10.1016/j.yjsbx.2019.100008.

  33. Jensen-Jarolim E, Pacios LF, Bianchini R, Hofstetter G, Roth-Walter F. Structural similarities of human and mammalian lipocalins, and their function in innate immunity and allergy. Allergy. 2016;71(3):286–94. https://doi.org/10.1111/all.12797.

    Article  CAS  PubMed  Google Scholar 

  34. • Virtanen T. Inhalant mammal-derived lipocalin allergens and the innate immunity. Front Allergy. 2021;2:824736. https://doi.org/10.3389/falgy.2021.824736. This study reviews mammalian lipocalin allergens with a detailed summary of their structural features and their role in the innate immune system for allergy development.

  35. Pomes A, Davies JM, Gadermaier G, Hilger C, Holzhauser T, Lidholm J, et al. WHO/IUIS allergen nomenclature: providing a common language. Mol Immunol. 2018;100:3–13. https://doi.org/10.1016/j.molimm.2018.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Apostolovic D, Sanchez-Vidaurre S, Waden K, Curin M, Grundstrom J, Gafvelin G, et al. The cat lipocalin Fel d 7 and its cross-reactivity with the dog lipocalin Can f 1. Allergy. 2016;71(10):1490–5. https://doi.org/10.1111/all.12955.

    Article  CAS  PubMed  Google Scholar 

  37. Munera M, Sanchez A, Sanchez J, Nordmann M, Perez M, Aparicio D. Allergy to Mus m 1: Allergy to Mus m 1: a review of structural, and immunological features. Immunol Lett. 2019;209:1–3. https://doi.org/10.1016/j.imlet.2019.03.012.

    Article  CAS  PubMed  Google Scholar 

  38. Arruda LK, Vailes LD, Mann BJ, Shannon J, Fox JW, Vedvick TS, et al. Molecular cloning of a major cockroach (Blattella germanica) allergen, Bla g 2. Sequence homology to the aspartic proteases. J Biol Chem. 1995;270(33):19563–8. https://doi.org/10.1074/jbc.270.33.19563.

  39. Roth-Walter F, Afify SM, Pacios LF, Blokhuis BR, Redegeld F, Regner A, et al. Cow’s milk protein beta-lactoglobulin confers resilience against allergy by targeting complexed iron into immune cells. J Allergy Clin Immunol. 2020. https://doi.org/10.1016/j.jaci.2020.05.023.

    Article  PubMed  Google Scholar 

  40. • Min J, Foo ACY, Gabel SA, Perera L, DeRose EF, Pomes A, et al. Structural and ligand binding analysis of the pet allergens Can f 1 and Fel d 7. Front Allergy. 2023;4:1133412. https://doi.org/10.3389/falgy.2023.1133412. The study reports the structural similarities and fatty acid preference of cross-reactive allergens Can f 1 and Fel d 7. The major finding of this research was that Can f 1 and Fel d 7 had a preference to bind 16 carbon chain fatty acids with higher affinity among the 75 screened fatty acids.

  41. Breustedt DA, Schonfeld DL, Skerra A. Comparative ligand-binding analysis of ten human lipocalins. Biochem Biophys Acta. 2006;1764(2):161–73. https://doi.org/10.1016/j.bbapap.2005.12.006.

    Article  CAS  PubMed  Google Scholar 

  42. Janssen-Weets B, Kerff F, Swiontek K, Kler S, Czolk R, Revets D, et al. Mammalian derived lipocalin and secretoglobin respiratory allergens strongly bind ligands with potentially immune modulating properties. Front Allergy. 2022;3:958711. https://doi.org/10.3389/falgy.2022.958711.

  43. Offermann LR, Chan SL, Osinski T, Tan YW, Chew FT, Sivaraman J, et al. The major cockroach allergen Bla g 4 binds tyramine and octopamine. Mol Immunol. 2014;60(1):86–94. https://doi.org/10.1016/j.molimm.2014.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Roth-Walter F, Pacios LF, Gomez-Casado C, Hofstetter G, Roth GA, Singer J, et al. The major cow milk allergen Bos d 5 manipulates T-helper cells depending on its load with siderophore-bound iron. PLoS One. 2014;9(8):e104803. https://doi.org/10.1371/journal.pone.0104803.

  45. Fluckinger M, Haas H, Merschak P, Glasgow BJ, Redl B. Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores. Antimicrob Agents Chemother. 2004;48(9):3367–72. https://doi.org/10.1128/AAC.48.9.3367-3372.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hufnagl K, Ghosh D, Wagner S, Fiocchi A, Dahdah L, Bianchini R, et al. Retinoic acid prevents immunogenicity of milk lipocalin Bos d 5 through binding to its immunodominant T-cell epitope. Sci Rep. 2018;8(1):1598. https://doi.org/10.1038/s41598-018-19883-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Redl B, Habeler M. The diversity of lipocalin receptors. Biochimie. 2022;192:22–9. https://doi.org/10.1016/j.biochi.2021.09.008.

    Article  CAS  PubMed  Google Scholar 

  48. Herre J, Gronlund H, Brooks H, Hopkins L, Waggoner L, Murton B, et al. Allergens as immunomodulatory proteins: the cat dander protein Fel d 1 enhances TLR activation by lipid ligands. J Immunol. 2013;191(4):1529–35. https://doi.org/10.4049/jimmunol.1300284.

    Article  CAS  PubMed  Google Scholar 

  49. Emara M, Royer PJ, Abbas Z, Sewell HF, Mohamed GG, Singh S, et al. Recognition of the major cat allergen Fel d 1 through the cysteine-rich domain of the mannose receptor determines its allergenicity. J Biol Chem. 2011;286(15):13033–40. https://doi.org/10.1074/jbc.M111.220657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Royer PJ, Emara M, Yang C, Al-Ghouleh A, Tighe P, Jones N, et al. The mannose receptor mediates the uptake of diverse native allergens by dendritic cells and determines allergen-induced T cell polarization through modulation of IDO activity. J Immunol. 2010;185(3):1522–31. https://doi.org/10.4049/jimmunol.1000774.

    Article  CAS  PubMed  Google Scholar 

  51. Angelina A, Martin-Cruz L, de la Rocha-Munoz A, Lavin-Plaza B, Palomares O. C-type lectin receptor mediated modulation of T2 immune responses to allergens. Curr Allergy Asthma Rep. 2023;23(3):141–51. https://doi.org/10.1007/s11882-023-01067-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Habeler M, Lindner HH, Redl B. A role of heparan sulphate proteoglycan in the cellular uptake of lipocalins ss-lactoglobulin and allergen Fel d 4. Biol Chem. 2020;401(9):1081–92. https://doi.org/10.1515/hsz-2020-0132.

    Article  CAS  PubMed  Google Scholar 

  53. Lascombe MB, Gregoire C, Poncet P, Tavares GA, Rosinski-Chupin I, Rabillon J, et al. Crystal structure of the allergen Equ c 1. A dimeric lipocalin with restricted IgE-reactive epitopes. J Biol Chem. 2000;275(28):21572–7. https://doi.org/10.1074/jbc.M002854200.

  54. Niemi MH, Rytkonen-Nissinen M, Miettinen I, Janis J, Virtanen T, Rouvinen J. Dimerization of lipocalin allergens Sci Rep. 2015;5:13841. https://doi.org/10.1038/srep13841.

    Article  PubMed  Google Scholar 

  55. Niemi MH, Rytkonen-Nissinen M, Janis J, Virtanen T, Rouvinen J. Structural aspects of dog allergies: the crystal structure of a dog dander allergen Can f 4. Mol Immunol. 2014;61(1):7–15. https://doi.org/10.1016/j.molimm.2014.04.003.

    Article  CAS  PubMed  Google Scholar 

  56. Ichikawa S, Hatanaka H, Yuuki T, Iwamoto N, Kojima S, Nishiyama C, et al. Solution structure of Der f 2, the major mite allergen for atopic diseases. J Biol Chem. 1998;273(1):356–60. https://doi.org/10.1074/jbc.273.1.356.

    Article  CAS  PubMed  Google Scholar 

  57. Bessot JC, Pauli G. Mite allergens: an overview. Eur Ann Allergy Clin Immunol. 2011;43(5):141–56.

    CAS  PubMed  Google Scholar 

  58. Wang RQ, Wang YJ, Xu ZQ, Zhou YJ, Cao MD, Zhu W, et al. Canis familiaris allergen Can f 7: Expression, purification and analysis of B cell epitopes in Chinese children with dog allergies. Int J Mol Med. 2019;43(3):1531–41. https://doi.org/10.3892/ijmm.2019.4065.

    Article  CAS  PubMed  Google Scholar 

  59. Zhu DX, Li L, Xu ZQ, Zhang C, Zhang JS, Sun JL, et al. Cat-NPC2, a Newly Identified Allergen, With High Cross-Reactivity to Can f 7. Allergy, Asthma Immunol Res. 2021;13(1):122–40. https://doi.org/10.4168/aair.2021.13.1.122.

    Article  CAS  PubMed  Google Scholar 

  60. Reginald K, Chew FT. The major allergen Der p 2 is a cholesterol binding protein. Sci Rep. 2019;9(1):1556. https://doi.org/10.1038/s41598-018-38313-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med. 1999;189(11):1777–82. https://doi.org/10.1084/jem.189.11.1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu RH, Wu CT, Wu TS, Yu FY, Ko JL, Lue KH, et al. Systematic characterization of the group 2 house dust mite allergen in dermatophagoides microceras. Front Cell Infect Microbiol. 2021;11:793559. https://doi.org/10.3389/fcimb.2021.793559.

  63. Keber MM, Gradisar H, Jerala R. MD-2 and Der p 2 - a tale of two cousins or distant relatives? J Endotoxin Res. 2005;11(3):186–92. https://doi.org/10.1179/096805105X35206.

    Article  CAS  PubMed  Google Scholar 

  64. Belcher JD, Zhang P, Nguyen J, Kiser ZM, Nath KA, Hu J, et al. Identification of a heme activation site on the MD-2/TLR4 complex. Front Immunol. 2020;11:1370. https://doi.org/10.3389/fimmu.2020.01370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu S, Benoff B, Liou HL, Lobel P, Stock AM. Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. J Biol Chem. 2007;282(32):23525–31. https://doi.org/10.1074/jbc.M703848200.

    Article  CAS  PubMed  Google Scholar 

  66. Zhu J, Guo M, Ban L, Song LM, Liu Y, Pelosi P, et al. Niemann-Pick C2 proteins: a new function for an old family. Front Physiol. 2018;9:52. https://doi.org/10.3389/fphys.2018.00052.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Glesner J, Kapingidza AB, Godzwon M, Offermann LR, Mueller GA, DeRose EF, et al. A human IgE antibody binding site on Der p 2 for the design of a recombinant allergen for immunotherapy. J Immunol. 2019;203(9):2545–56. https://doi.org/10.4049/jimmunol.1900580.

    Article  CAS  PubMed  Google Scholar 

  68. •• Khatri K, Richardson CM, Glesner J, Kapingidza AB, Mueller GA, Zhang J, et al. Human IgE monoclonal antibody recognition of mite allergen Der p 2 defines structural basis of an epitope for IgE cross-linking and anaphylaxis in vivo. PNAS Nexus. 2022;1(3):pgac054. https://doi.org/10.1093/pnasnexus/pgac054. This paper presents the novel structure of major dust mite allergen Der p 2 in complex with human-derived IgE antibody. The paper highlights the conformational epitopes of Der p 2 in human-derived antibody recognition, which could be targeted for designing mutants to be used as hypo-allergens in allergy immunotherapy. The structure presented in this paper represents an apo form of Der p 2. It is shown that Der p 2 is a conformationally flexible molecule and can undergo conformational changes upon antibody binding.

  69. Madni ZK, Tripathi SK, Salunke DM. Structural insights into the lipid transfer mechanism of a non-specific lipid transfer protein. Plant J. 2020;102(2):340–52. https://doi.org/10.1111/tpj.14627.

    Article  CAS  PubMed  Google Scholar 

  70. Pasquato N, Berni R, Folli C, Folloni S, Cianci M, Pantano S, et al. Crystal structure of peach Pru p 3, the prototypic member of the family of plant non-specific lipid transfer protein pan-allergens. J Mol Biol. 2006;356(3):684–94. https://doi.org/10.1016/j.jmb.2005.11.063.

    Article  CAS  PubMed  Google Scholar 

  71. Salminen TA, Blomqvist K, Edqvist J. Lipid transfer proteins: classification, nomenclature, structure, and function. Planta. 2016;244(5):971–97. https://doi.org/10.1007/s00425-016-2585-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. O'Malley A, Pote S, Giangrieco I, Tuppo L, Gawlicka-Chruszcz A, Kowal K, et al. Structural characterization of act c 10.0101 and Pun g 1.0101-allergens from the non-specific lipid transfer protein family. Molecules. 2021;26(2). https://doi.org/10.3390/molecules26020256.

  73. Oeo-Santos C, Lopez-Rodriguez JC, Garcia-Mouton C, San Segundo-Acosta P, Jurado A, Moreno-Aguilar C, et al. Biophysical and biological impact on the structure and IgE-binding of the interaction of the olive pollen allergen Ole e 7 with lipids. Biochim Biophys Acta Biomembr. 2020;1862(6):183258. https://doi.org/10.1016/j.bbamem.2020.183258.

  74. Offermann LR, Bublin M, Perdue ML, Pfeifer S, Dubiela P, Borowski T, et al. Structural and functional characterization of the hazelnut allergen Cor a 8. J Agric Food Chem. 2015;63(41):9150–8. https://doi.org/10.1021/acs.jafc.5b03534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Scheurer S, Schulke S. Interaction of non-specific lipid-transfer proteins with plant-derived lipids and its impact on allergic sensitization. Front Immunol. 2018;9:1389. https://doi.org/10.3389/fimmu.2018.01389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bosi S, Fiori J, Dinelli G, Rigby N, Leoncini E, Prata C, et al. Isolation and characterization of wheat derived nonspecific lipid transfer protein 2 (nsLTP2). J Food Sci. 2018;83(6):1516–21. https://doi.org/10.1111/1750-3841.14175.

    Article  CAS  PubMed  Google Scholar 

  77. Han GW, Lee JY, Song HK, Chang C, Min K, Moon J, et al. Structural basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography. J Mol Biol. 2001;308(2):263–78. https://doi.org/10.1006/jmbi.2001.4559.

    Article  CAS  PubMed  Google Scholar 

  78. Dubiela P, Aina R, Polak D, Geiselhart S, Humeniuk P, Bohle B, et al. Enhanced Pru p 3 IgE-binding activity by selective free fatty acid-interaction. J Allergy Clin Immunol. 2017;140(6):1728–31, e10. https://doi.org/10.1016/j.jaci.2017.06.016.

  79. Finkina EI, Melnikova DN, Bogdanov IV, Matveevskaya NS, Ignatova AA, Toropygin IY, et al. Impact of different lipid ligands on the stability and IgE-binding capacity of the lentil allergen Len c 3. Biomolecules. 2020;10(12). https://doi.org/10.3390/biom10121668.

  80. Pazos-Castro D, Gonzalez-Klein Z, Montalvo AY, Hernandez-Ramirez G, Romero-Sahagun A, Esteban V, et al. NLRP3 priming due to skin damage precedes LTP allergic sensitization in a mouse model. Sci Rep. 2022;12(1):3329. https://doi.org/10.1038/s41598-022-07421-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tordesillas L, Cubells-Baeza N, Gomez-Casado C, Berin C, Esteban V, Barcik W, et al. Mechanisms underlying induction of allergic sensitization by Pru p 3. Clin Exp Allergy. 2017;47(11):1398–408. https://doi.org/10.1111/cea.12962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pasternak O, Biesiadka J, Dolot R, Handschuh L, Bujacz G, Sikorski MM, et al. Structure of a yellow lupin pathogenesis-related PR-10 protein belonging to a novel subclass. Acta Crystallogr A. 2005;61(Pt 1):99–107. https://doi.org/10.1107/S0907444904028173.

    Article  CAS  Google Scholar 

  83. Fernandes H, Michalska K, Sikorski M, Jaskolski M. Structural and functional aspects of PR-10 proteins. FEBS J. 2013;280(5):1169–99. https://doi.org/10.1111/febs.12114.

    Article  CAS  PubMed  Google Scholar 

  84. Franz-Oberdorf K, Eberlein B, Edelmann K, Hucherig S, Besbes F, Darsow U, et al. Fra a 1.02 Is the most potent isoform of the bet v 1-like allergen in strawberry fruit. J Agric Food Chem. 2016;64(18):3688–96. https://doi.org/10.1021/acs.jafc.6b00488.

  85. Swoboda I, Scheiner O, Kraft D, Breitenbach M, Heberle-Bors E, Vicente O. A birch gene family encoding pollen allergens and pathogenesis-related proteins. Biochem Biophys Acta. 1994;1219(2):457–64. https://doi.org/10.1016/0167-4781(94)90072-8.

    Article  CAS  PubMed  Google Scholar 

  86. McBride JK, Cheng H, Maleki SJ, Hurlburt BK. Purification and characterization of pathogenesis related class 10 panallergens. Foods. 2019;8(12). https://doi.org/10.3390/foods8120609.

  87. Radauer C, Lackner P, Breiteneder H. The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol Biol. 2008;8:286. https://doi.org/10.1186/1471-2148-8-286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Moraes AH, Asam C, Almeida FCL, Wallner M, Ferreira F, Valente AP. Structural basis for cross-reactivity and conformation fluctuation of the major beech pollen allergen Fag s 1. Sci Rep. 2018;8(1):10512. https://doi.org/10.1038/s41598-018-28358-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fuhrer S, Unterhauser J, Zeindl R, Eidelpes R, Fernandez-Quintero ML, Liedl KR, et al. The structural flexibility of PR-10 food allergens. Int J Mol Sci. 2022;23(15). https://doi.org/10.3390/ijms23158252.

  90. Hurlburt BK, Offermann LR, McBride JK, Majorek KA, Maleki SJ, Chruszcz M. Structure and function of the peanut panallergen Ara h 8. J Biol Chem. 2013;288(52):36890–901. https://doi.org/10.1074/jbc.M113.517797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kofler S, Asam C, Eckhard U, Wallner M, Ferreira F, Brandstetter H. Crystallographically mapped ligand binding differs in high and low IgE binding isoforms of birch pollen allergen bet v 1. J Mol Biol. 2012;422(1):109–23. https://doi.org/10.1016/j.jmb.2012.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Markovic-Housley Z, Degano M, Lamba D, von Roepenack-Lahaye E, Clemens S, Susani M, et al. Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. J Mol Biol. 2003;325(1):123–33. https://doi.org/10.1016/s0022-2836(02)01197-x.

    Article  CAS  PubMed  Google Scholar 

  93. Hurlburt BK, McBride J, Pote S, Chruszcz M, Maleki SJ. Ligand binding preferences of pathogenesis-related class 10 (PR-10) allergens. J Allergy Clin Immun. 2016;137(2):Ab268-Ab. https://doi.org/10.1016/j.jaci.2015.12.1017.

  94. Asam C, Batista AL, Moraes AH, de Paula VS, Almeida FC, Aglas L, et al. Bet v 1–a Trojan horse for small ligands boosting allergic sensitization? Clin Exp Allergy. 2014;44(8):1083–93. https://doi.org/10.1111/cea.12361.

    Article  CAS  PubMed  Google Scholar 

  95. Casanal A, Zander U, Munoz C, Dupeux F, Luque I, Botella MA, et al. The strawberry pathogenesis-related 10 (PR-10) Fra a proteins control flavonoid biosynthesis by binding to metabolic intermediates. J Biol Chem. 2013;288(49):35322–32. https://doi.org/10.1074/jbc.M113.501528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. •• Soh WT, Aglas L, Mueller GA, Gilles S, Weiss R, Scheiblhofer S, et al. Multiple roles of Bet v 1 ligands in allergen stabilization and modulation of endosomal protease activity. Allergy. 2019;74(12):2382–93. https://doi.org/10.1111/all.13948. This manuscript describes the role of ligands in the stability of Bet v 1 as well as the subsequent effect on birch allergy. Assorted ligands, including ANS, naringenin, LPS, quercetin 3-O-sophoroside, bacteria-derived compounds, and various phytoprostanes, were evaluated with Bet v 1 for confirmation of ligand binding, immunological assays, evaluation of endolysosomal degradation, and proteolytic stability. It was determined that pollen- and bacteria-derived compounds had varying binding affinity to Bet v 1, and the interaction of Bet v 1 with the compounds had significant effect on the ability of the protein to withstand heat and protease activity, as well as affect the processing of Bet v 1 and its presentation to dendritic cells. It was concluded that ligand binding does have significant impact on the allergenicity of Bet v 1, a phenomenon that may likely be extended of other PR-10s.

  97. Seutter von Loetzen C, Hoffmann T, Hartl MJ, Schweimer K, Schwab W, Rosch P, et al. Secret of the major birch pollen allergen Bet v 1: identification of the physiological ligand. Biochem J. 2014;457(3):379–90. https://doi.org/10.1042/BJ20130413.

  98. • Regner A, Szepannek N, Wiederstein M, Fakhimahmadi A, Paciosis LF, Blokhuis BR, et al. Binding to iron quercetin complexes increases the antioxidant capacity of the major birch pollen allergen bet v 1 and reduces its allergenicity. Antioxidants (Basel). 2022;12(1). https://doi.org/10.3390/antiox12010042. The authors present the hypothesis that, similarly to the lipocalin family, Bet v 1 is capable of binding compounds such as iron quercetin complexes that may modulate the allergenicity of Bet v 1 as well as impact the function of the protein. The Bet v 1-iron quercetin complex was found to have an impact on human immune cells, not just on IgE binding.

  99. Bufe A. The biological function of allergens: relevant for the induction of allergic diseases? Int Arch Allergy Immunol. 1998;117(4):215–9. https://doi.org/10.1159/000024013.

    Article  CAS  PubMed  Google Scholar 

  100. Chebib S, Schwab W. Microscale thermophoresis reveals oxidized glutathione as high-affinity ligand of Mal d 1. Foods. 2021;10(11). https://doi.org/10.3390/foods10112771.

  101. Jacob T, von Loetzen CS, Reuter A, Lacher U, Schiller D, Schobert R, et al. Identification of a natural ligand of the hazel allergen Cor a 1. Sci Rep. 2019;9(1):8714. https://doi.org/10.1038/s41598-019-44999-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Seutter von Loetzen C, Jacob T, Hartl-Spiegelhauer O, Vogel L, Schiller D, Sporlein-Guttler C, et al. Ligand recognition of the major birch pollen allergen bet v 1 is isoform dependent. PLoS One. 2015;10(6):e0128677. https://doi.org/10.1371/journal.pone.0128677.

  103. Smole U, Balazs N, Hoffmann-Sommergruber K, Radauer C, Hafner C, Wallner M, et al. Differential T-cell responses and allergen uptake after exposure of dendritic cells to the birch pollen allergens Bet v 1.0101, Bet v 1.0401 and Bet v 1.1001. Immunobiology. 2010;215(11):903–9. https://doi.org/10.1016/j.imbio.2009.11.003.

  104. Chruszcz M, Ciardiello MA, Osinski T, Majorek KA, Giangrieco I, Font J, et al. Structural and bioinformatic analysis of the kiwifruit allergen Act d 11, a member of the family of ripening-related proteins. Mol Immunol. 2013;56(4):794–803. https://doi.org/10.1016/j.molimm.2013.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sliwiak J, Sikorski M, Jaskolski M. PR-10 proteins as potential mediators of melatonin-cytokinin cross-talk in plants: crystallographic studies of LlPR-10.2B isoform from yellow lupine. FEBS J. 2018;285(10):1907–22. https://doi.org/10.1111/febs.14455.

  106. Fernandes H, Bujacz A, Bujacz G, Jelen F, Jasinski M, Kachlicki P, et al. Cytokinin-induced structural adaptability of a Lupinus luteus PR-10 protein. FEBS J. 2009;276(6):1596–609. https://doi.org/10.1111/j.1742-4658.2009.06892.x.

    Article  CAS  PubMed  Google Scholar 

  107. Fernandes H, Pasternak O, Bujacz G, Bujacz A, Sikorski MM, Jaskolski M. Lupinus luteus pathogenesis-related protein as a reservoir for cytokinin. J Mol Biol. 2008;378(5):1040–51. https://doi.org/10.1016/j.jmb.2008.03.027.

    Article  CAS  PubMed  Google Scholar 

  108. Pasternak O, Bujacz GD, Fujimoto Y, Hashimoto Y, Jelen F, Otlewski J, et al. Crystal structure of Vigna radiata cytokinin-specific binding protein in complex with zeatin. Plant Cell. 2006;18(10):2622–34. https://doi.org/10.1105/tpc.105.037119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Olayioye MA, Vehring S, Muller P, Herrmann A, Schiller J, Thiele C, et al. StarD10, a START domain protein overexpressed in breast cancer, functions as a phospholipid transfer protein. J Biol Chem. 2005;280(29):27436–42. https://doi.org/10.1074/jbc.M413330200.

    Article  CAS  PubMed  Google Scholar 

  110. Karle AC, Oostingh GJ, Mutschlechner S, Ferreira F, Lackner P, Bohle B, et al. Nitration of the pollen allergen bet v 1.0101 enhances the presentation of bet v 1-derived peptides by HLA-DR on human dendritic cells. PLoS One. 2012;7(2):e31483. https://doi.org/10.1371/journal.pone.0031483.

  111. Reinmuth-Selzle K, Ackaert C, Kampf CJ, Samonig M, Shiraiwa M, Kofler S, et al. Nitration of the birch pollen allergen Bet v 1.0101: efficiency and site-selectivity of liquid and gaseous nitrating agents. J Proteome Res. 2014;13(3):1570–7. https://doi.org/10.1021/pr401078h.

  112. Unterhauser J, Ahammer L, Rainer T, Eidelpes R, Fuhrer S, Nothegger B, et al. Covalent polyphenol modification of a reactive cysteine in the major apple allergen Mal d 1. Food Chem. 2023;410:135374. https://doi.org/10.1016/j.foodchem.2022.135374.

  113. Garrido-Arandia M, Silva-Navas J, Ramirez-Castillejo C, Cubells-Baeza N, Gomez-Casado C, Barber D, et al. Characterisation of a flavonoid ligand of the fungal protein Alt a 1. Sci Rep. 2016;6:33468. https://doi.org/10.1038/srep33468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. • Foo ACY, Thompson PM, Perera L, Arora S, DeRose EF, Williams J, et al. Hydrophobic ligands influence the structure, stability, and processing of the major cockroach allergen Bla g 1. Sci Rep. 2019;9(1):18294. https://doi.org/10.1038/s41598-019-54689-8. The manuscript shows a novel structural fold responsible for ligand interaction in Bla g 1. By employing molecular dynamic simulations, conformational changes in Bla g 1 (apo form) and phospholipoid bound structure are shown, highlighting the changes in the secondary structure of allergen upon ligand binding. Furthermore, the paper shows that ligand-bound Bla g 1 has reduced conformational dynamics, which correlates to the enhanced thermal stability of Bla g 1. The enhanced thermal stability is related to the endosomal processing of this allergen which ultimately influences the allergenicity of this allergen.

  115. Bienboire-Frosini C, Durairaj R, Pelosi P, Pageat P. The major cat allergen Fel d 1 binds steroid and fatty acid semiochemicals: a combined in silico and in vitro study. Int J Mol Sci. 2020;21(4). https://doi.org/10.3390/ijms21041365.

  116. Gregory LG, Lloyd CM. Orchestrating house dust mite-associated allergy in the lung. Trends Immunol. 2011;32(9):402–11. https://doi.org/10.1016/j.it.2011.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Foo ACY, Thompson PM, Mueller GA. Removal and replacement of endogenous ligands from lipid-bound proteins and allergens. J Vis Exp. 2021(168). https://doi.org/10.3791/61780.

Download references

Funding

Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number 5R01AI077653-12 (to MC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksymilian Chruszcz.

Ethics declarations

Conflict of Interest

Dr. Kowal reports personal fees from ALK Abello, personal fees from Astra Zeneca, personal fees from Aurovitas Pharma Polska, personal fees from Berlin Chemie, personal fees from Boehringer Ingelheim, personal fees from EMMA MDT, personal fees from HAL Allergy, personal fees from Stallergenes, outside of the submitted work. Other declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatri, K., O’Malley, A., Linn, C. et al. Role of Small Molecule Ligands in IgE-Mediated Allergy. Curr Allergy Asthma Rep 23, 497–508 (2023). https://doi.org/10.1007/s11882-023-01100-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-023-01100-2

Keywords

Navigation