Skip to main content

Advertisement

Log in

Computer-Assisted Clinical Diagnosis and Treatment

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Computer-assisted diagnosis and treatment (CAD/CAT) is a rapidly growing field of medicine that uses computer technology and telehealth to aid in the diagnosis and treatment of various diseases. The purpose of this paper is to provide a review on computer-assisted diagnosis and treatment. This technology gives providers access to diagnostic tools and treatment options so that they can make more informed decisions leading to improved patient outcomes.

Recent Findings

CAD/CAT has expanded in allergy and immunology in the form of digital tools that enable remote patient monitoring such as digital inhalers, pulmonary function tests, and E-diaries. By incorporating this information into electronic medical records (EMRs), providers can use this information to make the best, evidence-based diagnosis and to recommend treatment that is likely to be most effective. A major benefit of CAD/CAT is that by analyzing large amounts of data, tailored recommendations can be made to improve patient outcomes and reduce the risk of adverse events.

Summary

Machine learning can assist with medical data acquisition, feature extraction, interpretation, and decision support. It is important to note that this technology is not meant to replace human professionals. Instead, it is designed to assist healthcare professionals to better diagnose and treat patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. Kunz JC, Shortliffe EH, Buchanan BG, Feigenbaum EA. Computer-assisted decision making in medicine. J Med Philos. 1984;9(2):135–60.

    Article  CAS  PubMed  Google Scholar 

  2. Payne TH. Computer decision support systems. Chest. 2000;118(2 Suppl):47S-52S.

    Article  CAS  PubMed  Google Scholar 

  3. Gorry GA. Computer-assisted clinical decision-making. Methods Inf Med Suppl. 1973;7:215–30.

    CAS  PubMed  Google Scholar 

  4. Middleton B, Sittig DF, Wright A. Clinical decision support: a 25 year retrospective and a 25 year vision. Yearb Med Inform. 2016;(Suppl 1):103–16.

  5. Brown SH, Lincoln MJ, Groen PJ, Kolodner RM. VistA--U.S. Department of Veterans Affairs national-scale HIS. Int J Med Inform. 2003;69(2–3):135–56.

  6. Homsted L. Institute of Medicine report: to err is human: building a safer health care system. Fla Nurse. 2000;48(1):6.

    CAS  PubMed  Google Scholar 

  7. Classen DC. Clinical decision support systems to improve clinical practice and quality of care. JAMA. 1998;280(15):1360–1.

    Article  CAS  PubMed  Google Scholar 

  8. McDonald CJ, Murray R, Jeris D, Bhargava B, Seeger J, Blevins L. A computer-based record and clinical monitoring system for ambulatory care. Am J Public Health. 1977;67(3):240–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raschke RA, Gollihare B, Wunderlich TA, Guidry JR, Leibowitz AI, Peirce JC, et al. A computer alert system to prevent injury from adverse drug events: development and evaluation in a community teaching hospital. JAMA. 1998;280(15):1317–20.

    Article  CAS  PubMed  Google Scholar 

  10. Wright A, Sittig DF, Carpenter JD, Krall MA, Pang JE, Middleton B. Order sets in computerized physician order entry systems: an analysis of seven sites. AMIA Annu Symp Proc. 2010;2010:892–6.

    PubMed  PubMed Central  Google Scholar 

  11. • Kaplan A, Cao H, FitzGerald JM, Iannotti N, Yang E, Kocks JWH, et al. Artificial intelligence/machine learning in respiratory medicine and potential role in asthma and COPD diagnosis. J Allergy Clin Immunol Pract. 2021;9(6):2255–61. This article reviews computer-assisted decision-making for asthma and COPD patients.

  12. Murray NM, Unberath M, Hager GD, Hui FK. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. J Neurointerv Surg. 2020;12(2):156–64.

    Article  PubMed  Google Scholar 

  13. Jena B, Saxena S, Nayak GK, Balestrieri A, Gupta N, Khanna NN, et al. Brain tumor characterization using radiogenomics in artificial intelligence framework. Cancers (Basel). 2022;14(16).

  14. Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574–82.

    Article  PubMed  Google Scholar 

  15. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.

    Article  CAS  PubMed  Google Scholar 

  16. Shamout F, Zhu T, Clifton DA. Machine learning for clinical outcome prediction. IEEE Rev Biomed Eng. 2021;14:116–26.

    Article  PubMed  Google Scholar 

  17. Wright A, Sittig DF, Ash JS, Sharma S, Pang JE, Middleton B. Clinical decision support capabilities of commercially-available clinical information systems. J Am Med Inform Assoc. 2009;16(5):637–44.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Berner E. Clinical decision support systems:: state of the art. AHRQ Publication No. 09–0069-EF. Rockville, Maryland: Agency for Healthcare Research and Quality. June 2009.

  19. Sander C. Genomic medicine and the future of health care. Science. 2000;287(5460):1977–8.

    Article  CAS  PubMed  Google Scholar 

  20. •• Khoury P, Srinivasan R, Kakumanu S, Ochoa S, Keswani A, Sparks R, et al. A framework for augmented intelligence in allergy and immunology practice and research-a work group report of the AAAAI Health Informatics, Technology, and Education Committee. J Allergy Clin Immunol Pract. 2022;10(5):1178–88. Findings from this article provide a high level overview of artificial intelligence in the field of allergy and immunology.

    Article  PubMed  Google Scholar 

  21. Elliott T, Yopes MC. Direct-to-consumer telemedicine. J Allergy Clin Immunol Pract. 2019;7(8):2546–52.

    Article  PubMed  Google Scholar 

  22. Agache I, Eguiluz-Gracia I, Cojanu C, Laculiceanu A, Del Giacco S, Zemelka-Wiacek M, et al. Advances and highlights in asthma in 2021. Allergy. 2021;76(11):3390–407.

    Article  PubMed  Google Scholar 

  23. Exarchos KP, Beltsiou M, Votti CA, Kostikas K. Artificial intelligence techniques in asthma: a systematic review and critical appraisal of the existing literature. Eur Respir J. 2020;56(3).

  24. Nam JG, Park S, Hwang EJ, Lee JH, Jin KN, Lim KY, et al. Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology. 2019;290(1):218–28.

    Article  PubMed  Google Scholar 

  25. Topalovic M, Das N, Burgel PR, Daenen M, Derom E, Haenebalcke C, et al. Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests. Eur Respir J. 2019;53(4).

  26. Loymans RJB, Debray TPA, Honkoop PJ, Termeer EH, Snoeck-Stroband JB, Schermer TRJ, et al. Exacerbations in adults with asthma: a systematic review and external validation of prediction models. J Allergy Clin Immunol Pract. 2018;6(6):1942–52 e15.

  27. Shegog R, Bartholomew LK, Sockrider MM, Czyzewski DI, Pilney S, Mullen PD, et al. Computer-based decision support for pediatric asthma management: description and feasibility of the Stop Asthma Clinical System. Health Informatics J. 2006;12(4):259–73.

    Article  PubMed  Google Scholar 

  28. Matui P, Wyatt JC, Pinnock H, Sheikh A, McLean S. Computer decision support systems for asthma: a systematic review. NPJ Prim Care Respir Med. 2014;24:14005.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Legat L, Van Laere S, Nyssen M, Steurbaut S, Dupont AG, Cornu P. Clinical decision support systems for drug allergy checking: systematic review. J Med Internet Res. 2018;20(9): e258.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dumitru M, Berghi ON, Taciuc IA, Vrinceanu D, Manole F, Costache A. Could artificial intelligence prevent intraoperative anaphylaxis? Reference review and proof of concept. Medicina (Kaunas). 2022;58(11).

  31. • Elkhalifa S, Bhana R, Blaga A, Joshi S, Svejda M, Kasilingam V, et al. Development and validation of a mobile clinical decision support tool for the diagnosis of drug allergy in adults: the Drug Allergy App. J Allergy Clin Immunol Pract. 2021;9(12):4410–8 e4. This article provides an overview of important digital programs that assist with drug allergy diagnosis and management decisions.

  32. ·Dunham TB, Gardner RM, Lippner EA, Fasani DE, Moir E, Halpern-Felsher B, et al. Digital antibiotic allergy decision support tool improves management of beta-lactam allergies. J Allergy Clin Immunol Pract. 2023.

  33. Ramsey A, Sheikh A. Innovations in health care delivery: drug allergy. J Allergy Clin Immunol Pract. 2019;7(7):2143–50.

    Article  PubMed  Google Scholar 

  34. Moussa Y, Shuster J, Matte G, Sullivan A, Goldstein RH, Cunningham D, et al. De-labeling of beta-lactam allergy reduces intraoperative time and optimizes choice in antibiotic prophylaxis. Surgery. 2018.

  35. Alsaidan JA, Portlock J, Ata SI, Aljadhey HS, Franklin BD. Retrospective descriptive assessment of clinical decision support medication-related alerts in two Saudi Arabian hospitals. BMC Med Inform Decis Mak. 2022;22(1):101.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Christopher JJ, Nehemiah HK, Arputharaj K, Moses GL. Computer-assisted medical decision-making system for diagnosis of urticaria. MDM Policy Pract. 2016;1(1):2381468316677752.

    PubMed  PubMed Central  Google Scholar 

  37. Jabez Christopher J, Khanna Nehemiah H, Kannan A. A clinical decision support system for diagnosis of allergic rhinitis based on intradermal skin tests. Comput Biol Med. 2015;65:76–84.

    Article  CAS  PubMed  Google Scholar 

  38. Rider NL, Srinivasan R, Khoury P. Artificial intelligence and the hunt for immunological disorders. Curr Opin Allergy Clin Immunol. 2020;20(6):565–73.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Takao MMV, Carvalho LSF, Silva PGP, Pereira MM, Viana AC, da Silva MTN, et al. Artificial intelligence in allergy and immunology: comparing risk prediction models to help screen inborn errors of immunity. Int Arch Allergy Immunol. 2022;183(11):1226–30.

    Article  PubMed  Google Scholar 

  40. Luo J, Gellad WF. Electronic prior authorization for prescription drugs - challenges and opportunities for reform. N Engl J Med. 2023;388(10):867–70.

    Article  PubMed  Google Scholar 

  41. Fiske A, Henningsen P, Buyx A. Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. J Med Internet Res. 2019;21(5): e13216.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Elston DM. Confirmation bias in medical decision-making. J Am Acad Dermatol. 2020;82(3):572.

    Article  PubMed  Google Scholar 

  43. Gonzalo JD, Ogrinc G. Health systems science: the “broccoli” of undergraduate medical education. Acad Med. 2019;94(10):1425–32.

    Article  PubMed  Google Scholar 

  44. Santen SA, Hamstra SJ, Yamazaki K, Gonzalo J, Lomis K, Allen B, Lawson L, Holmboe ES, Triola M, George P, Gorman PN, Skochelak S. Assessing the transition of training in health systems science from undergraduate to graduate medical education. J Grad Med Educ. 2021;13(3):404–10.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Russell RG, Lovett Novak L, Patel M, Garvey KV, Craig KJT, Jackson GP, Moore D, Miller BM. Competencies for the use of artificial intelligence-based tools by health care professionals. Acad Med. 2023;98(3):348–56.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarti Pandya.

Ethics declarations

Conflict of Interest

Dr. Hamid has no conflicts to disclose. Dr. Pandya has no conflicts to disclose. Dr. Portnoy has no conflicts to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, N., Portnoy, J.M. & Pandya, A. Computer-Assisted Clinical Diagnosis and Treatment. Curr Allergy Asthma Rep 23, 509–517 (2023). https://doi.org/10.1007/s11882-023-01097-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-023-01097-8

Keywords

Navigation