Skip to main content

Advertisement

Log in

Allergies Come Clean: The Role of Detergents in Epithelial Barrier Dysfunction

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The prevalence and incidence of allergic disease have been rising in Westernized countries since the twentieth century. Increasingly, evidence suggests that damage to the epithelium initiates and shapes innate and adaptive immune responses to external antigens. The objective of this review is to examine the role of detergents as a potential risk factor for developing allergic disease.

Recent Findings

Herein, we identify key sources of human detergent exposure. We summarize the evidence suggesting a possible role for detergents and related chemicals in initiating epithelial barrier dysfunction and allergic inflammation. We primarily focus on experimental models of atopic dermatitis, asthma, and eosinophilic esophagitis, which show compelling associations between allergic disease and detergent exposure. Mechanistic studies suggest that detergents disrupt epithelial barrier integrity through their effects on tight junction or adhesion molecules and promote inflammation through epithelial alarmin release.

Summary

Environmental exposures that disrupt or damage the epithelium may account for the increasing rates of allergic disease in genetically susceptible individuals. Detergents and related chemical compounds represent possible modifiable risk factors for the development or exacerbation of atopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALI:

Air-liquid interface

ACD:

Allergic contact dermatitis

CMC:

Critical micelle concentration

DMSO:

Dimethylsulfoxide

EoE:

Eosinophilic esophagitis

FITC:

Fluorescein isothiocyanate

ICD:

Irritant contact dermatitis

IgE:

Immunoglobulin E

OVA:

Ovalbumin

PGE3:

Prostaglandin E3

ROS:

Reactive oxygen species

SDBS:

Sodium dodecyl benzene sulfonate

SDS:

Sodium dodecyl sulfate

SLS:

Sodium lauryl sulfate

TEER:

Transepithelilal electrical resistance

US:

United States

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Centers for Disease Control and Prevention, National Center for Health Statistics. FastStats: Allergies. 2021 April 21, 2023]; Available from: https://www.cdc.gov/nchs/fastats/allergies.htm.

  2. Centers for Disease Control and Prevention; Asthma, National Health Interview (NHIS) Data. 2020 April 21, 2023]; Available from: https://www.cdc.gov/asthma/nhis/2020/table2-1.htm.

  3. Gupta RS, et al. The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics. 2011;128(1):e9-17.

    PubMed  Google Scholar 

  4. Jackson KD, Howie LD, Akinbami LJ. Trends in allergic conditions among children: United States, 1997–2011. NCHS Data Brief. 2013;121:1–8.

    Google Scholar 

  5. Attwood SE, et al. Esophageal eosinophilia with dysphagia. A distinct clinicopathologic syndrome. Dig Dis Sci. 1993;38(1):109–16.

  6. Straumann A, et al. Idiopathic eosinophilic esophagitis: a frequently overlooked disease with typical clinical aspects and discrete endoscopic findings. Schweiz Med Wochenschr. 1994;124(33):1419–29.

    CAS  PubMed  Google Scholar 

  7. Dellon ES, Hirano I. Epidemiology and Natural History of Eosinophilic Esophagitis. Gastroenterology. 2018;154(2):319–332 e3.

  8. Attwood SE, Furuta GT. Eosinophilic esophagitis: historical perspective on an evolving disease. Gastroenterol Clin North Am. 2014;43(2):185–99.

    PubMed  PubMed Central  Google Scholar 

  9. Spechler SJ, Konda V, Souza R. Can eosinophilic esophagitis cause achalasia and other esophageal motility disorders? Am J Gastroenterol. 2018;113(11):1594–9.

    PubMed  Google Scholar 

  10. Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rook GA, et al. Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders. Springer Semin Immunopathol. 2004;25(3–4):237–55.

    CAS  PubMed  Google Scholar 

  12. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pascal M, et al. Microbiome and allergic diseases Front Immunol. 2018;9:1584.

    PubMed  Google Scholar 

  14. Myles IA. Allergy as a disease of dysbiosis: is it time to shift the treatment paradigm? Front Cell Infect Microbiol. 2019;9:50.

    PubMed  PubMed Central  Google Scholar 

  15. Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol. 2020;145(6):1499–509.

    PubMed  PubMed Central  Google Scholar 

  16. Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21(11):739–51.

    CAS  PubMed  Google Scholar 

  17. Singer MM, Tjeerdema RS. Fate and effects of the surfactant sodium dodecyl sulfate. Rev Environ Contam Toxicol. 1993;133:95–149.

    CAS  PubMed  Google Scholar 

  18. Pothoven KL, Schleimer RP. The barrier hypothesis and Oncostatin M: restoration of epithelial barrier function as a novel therapeutic strategy for the treatment of type 2 inflammatory disease. Tissue Barriers. 2017;5(3): e1341367.

    PubMed  PubMed Central  Google Scholar 

  19. Levinson, M.I., Surfactant production : present realities and future perspectives, in Handbook of detergents: part F: production (1st ed.), U. Zoller and P. Sosis, Editors. 2008, CRC Press. https://doi.org/10.1201/9781420014655.

  20. National Archives, Code of Federal Regulations, Title 21, Chapter I, Subchapter B, Part 172, Subpart I, § 172.822, Sodium lauryl sulfate April 21, 2023]; Available from: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-172/subpart-I/section-172.822.

  21. HERA Substance Team. Human & Environmental Risk Assessment (HERA) on ingredients of European household cleaning products: Alcohol Sulphates Human Health Risk Assessment. 2002 March 17, 2022]; p. 122]. Available from: https://www.heraproject.com/files/3-HH-04-%20HERA%20AS%20HH%20web%20wd.pdf.

  22. SkinSAFE. April 24, 2023]; Available from: https://www.skinsafeproducts.com/.

  23. Narkar Y, et al. Evaluation of mucosal damage and recovery in the gastrointestinal tract of rats by a penetration enhancer. Pharm Res. 2008;25(1):25–38.

    CAS  PubMed  Google Scholar 

  24. de Freitas Araujo Reis MY, et al. A general approach on surfactants use and properties in drug delivery systems. Curr Pharm Des. 2021;27(42):4300–4314.

  25. Keller S, et al. Thermodynamics of lipid membrane solubilization by sodium dodecyl sulfate. Biophys J. 2006;90(12):4509–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. le Maire M, Champeil P, Moller JV. Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta. 2000;1508(1–2):86–111.

    PubMed  Google Scholar 

  27. Juan-Colas J, et al. The mechanism of vesicle solubilization by the detergent sodium dodecyl sulfate. Langmuir. 2020;36(39):11499–507.

    CAS  PubMed  Google Scholar 

  28. Winogradoff D, John S, Aksimentiev A. Protein unfolding by SDS: the microscopic mechanisms and the properties of the SDS-protein assembly. Nanoscale. 2020;12(9):5422–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Otzen DE, et al. How do surfactants unfold and refold proteins? Adv Colloid Interface Sci. 2022;308: 102754.

    CAS  PubMed  Google Scholar 

  30. Nilzen A, Wikstrom K. The influence of lauryl sulphate on the sensitization of guineapigs to chrome and nickle. Acta Derm Venereol. 1955;35(4–5):292–9.

    CAS  PubMed  Google Scholar 

  31. Kligman AM. The identification of contact allergens by human assay. II. Factors influencing the induction and measurement of allergic contact dermatitis. J Invest Dermatol. 1966;47(5):375–92.

  32. De Rentiis AMA, et al. Assessment of the different skin sensitization potentials of irritants and allergens as single substances and in combination using the KeratinoSens assay. Contact Dermatitis. 2021;84(5):317–25.

    PubMed  Google Scholar 

  33. De Jong WH, et al. Determination of the sensitising activity of the rubber contact sensitisers TMTD, ZDMC, MBT and DEA in a modified local lymph node assay and the effect of sodium dodecyl sulfate pretreatment on local lymph node responses. Toxicology. 2002;176(1–2):123–34.

    PubMed  Google Scholar 

  34. Cumberbatch M, et al. Influence of sodium lauryl sulphate on 2,4-dinitrochlorobenzene-induced lymph node activation. Toxicology. 1993;77(1–2):181–91.

    CAS  PubMed  Google Scholar 

  35. Clausen SK, et al. Study of adjuvant effect of model surfactants from the groups of alkyl sulfates, alkylbenzene sulfonates, alcohol ethoxylates and soaps. Food Chem Toxicol. 2000;38(11):1065–74.

    CAS  PubMed  Google Scholar 

  36. Prottey C, Ferguson TF. The effect of surfactants upon rat peritoneal mast cells in vitro. Food Cosmet Toxicol. 1976;14(5):425–30.

    CAS  PubMed  Google Scholar 

  37. Alexander BR. An assessment of the comparative sensitization potential of some common isothiazolinones. Contact Dermatitis. 2002;46(4):191–6.

    CAS  PubMed  Google Scholar 

  38. Castanedo-Tardana MP, Zug KA. Methylisothiazolinone. Dermatitis. 2013;24(1):2–6.

    CAS  PubMed  Google Scholar 

  39. Bonnekoh H, et al. Topical inflammasome inhibition with disulfiram prevents irritant contact dermatitis. Clin Transl Allergy. 2021;11(5): e12045.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee SW, et al. Effects of anionic surfactants on the water permeability of a model stratum corneum lipid membrane. Langmuir. 2014;30(1):220–6.

    CAS  PubMed  Google Scholar 

  41. Ananthapadmanabhan KP, et al. Cleansing without compromise: the impact of cleansers on the skin barrier and the technology of mild cleansing. Dermatol Ther. 2004;17(Suppl 1):16–25.

    PubMed  Google Scholar 

  42. Chiang A, Tudela E, Maibach HI. Percutaneous absorption in diseased skin: an overview. J Appl Toxicol. 2012;32(8):537–63.

    CAS  PubMed  Google Scholar 

  43. Mao G, et al. Imaging the distribution of sodium dodecyl sulfate in skin by confocal Raman and infrared microspectroscopy. Pharm Res. 2012;29(8):2189–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fullerton A, Broby-Johansen U, Agner T. Sodium lauryl sulphate penetration in an in vitro model using human skin. Contact Dermatitis. 1994;30(4):222–5.

    CAS  PubMed  Google Scholar 

  45. Morris SAV, et al. The effect of prolonged exposure on sodium dodecyl sulfate penetration into human skin. Toxicol In Vitro. 2021;77: 105246.

    CAS  PubMed  Google Scholar 

  46. Watanabe H, et al. Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity. J Invest Dermatol. 2007;127(8):1956–63.

    CAS  PubMed  Google Scholar 

  47. Mizutani T, et al. Sodium lauryl sulfate stimulates the generation of reactive oxygen species through interactions with cell membranes. J Oleo Sci. 2016;65(12):993–1001.

    CAS  PubMed  Google Scholar 

  48. Cohen C, et al. Measurement of inflammatory mediators produced by human keratinocytes in vitro: a predictive assessment of cutaneous irritation. Toxicol In Vitro. 1991;5(5–6):407–10.

    CAS  PubMed  Google Scholar 

  49. Torma H, Lindberg M, Berne B. Skin barrier disruption by sodium lauryl sulfate-exposure alters the expressions of involucrin, transglutaminase 1, profilaggrin, and kallikreins during the repair phase in human skin in vivo. J Invest Dermatol. 2008;128(5):1212–9.

    PubMed  Google Scholar 

  50. Agner T. Susceptibility of atopic dermatitis patients to irritant dermatitis caused by sodium lauryl sulphate. Acta Derm Venereol. 1991;71(4):296–300.

    CAS  PubMed  Google Scholar 

  51. Cork MJ, et al. Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol. 2009;129(8):1892–908.

    CAS  PubMed  Google Scholar 

  52. Xian M, et al. Anionic surfactants and commercial detergents decrease tight junction barrier integrity in human keratinocytes. J Allergy Clin Immunol. 2016;138(3):890–893 e9.

  53. Bormann JL, Maibach HI. Draize human repeat insult patch test (HRIPT): seven decades of pitfalls and progress. Regul Toxicol Pharmacol. 2021;121: 104867.

    CAS  PubMed  Google Scholar 

  54. Agner T, et al. Combined effects of irritants and allergens. Synergistic effects of nickel and sodium lauryl sulfate in nickel- sensitized individuals. Contact Dermatitis. 2002;47(1):21–6.

  55. Jacob SE, Amini S. Cocamidopropyl betaine. Dermatitis. 2008;19(3):157–60.

    CAS  PubMed  Google Scholar 

  56. Fowler JF Jr. Cocamidopropyl betaine. Dermatitis. 2004;15(1):3–4.

    PubMed  Google Scholar 

  57. Loxham M, Davies DE. Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients. J Allergy Clin Immunol. 2017;139(6):1736–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Boonpiyathad T, et al. Immunologic mechanisms in asthma. Semin Immunol. 2019;46: 101333.

    CAS  PubMed  Google Scholar 

  59. Heijink IH, et al. Epithelial cell dysfunction, a major driver of asthma development. Allergy. 2020;75(8):1902–17.

    PubMed  Google Scholar 

  60. Cullinan P, et al. An outbreak of asthma in a modern detergent factory. Lancet. 2000;356(9245):1899–900.

    CAS  PubMed  Google Scholar 

  61. Medina-Ramon M, et al. Asthma, chronic bronchitis, and exposure to irritant agents in occupational domestic cleaning: a nested case-control study. Occup Environ Med. 2005;62(9):598–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zock JP, et al. The use of household cleaning sprays and adult asthma: an international longitudinal study. Am J Respir Crit Care Med. 2007;176(8):735–41.

    PubMed  PubMed Central  Google Scholar 

  63. van Rooy FG, et al. A cross-sectional study among detergent workers exposed to liquid detergent enzymes. Occup Environ Med. 2009;66(11):759–65.

    PubMed  Google Scholar 

  64. Adisesh A, et al. Occupational asthma and rhinitis due to detergent enzymes in healthcare. Occup Med (Lond). 2011;61(5):364–9.

    CAS  PubMed  Google Scholar 

  65. Laborde-Casterot H, et al. Occupational rhinitis and asthma due to EDTA-containing detergents or disinfectants. Am J Ind Med. 2012;55(8):677–82.

    CAS  PubMed  Google Scholar 

  66. Le Moual N, et al. Domestic use of cleaning sprays and asthma activity in females. Eur Respir J. 2012;40(6):1381–9.

    PubMed  Google Scholar 

  67. • Wang M, et al. Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. J Allergy Clin Immunol. 2019;143(5):1892–903. This study demonstrated laundry detergent rinse residue (concentration less than 1:20,000 dilution of laundry detergent) has cytotoxic and barrier disruptive effects on human bronchial epithelial cells.

    CAS  PubMed  Google Scholar 

  68. Siegel IA, Gordon HP. Surfactant-induced alterations of permeability of rabbit oral mucosa in vitro. Exp Mol Pathol. 1986;44(2):132–7.

    CAS  PubMed  Google Scholar 

  69. Herlofson BB, Barkvoll P. Sodium lauryl sulfate and recurrent aphthous ulcers. A preliminary study Acta Odontol Scand. 1994;52(5):257–9.

    CAS  PubMed  Google Scholar 

  70. Stec IP. A possible relationship between desquamation and dentifrices. A clinical study. J Am Dent Hyg Assoc. 1972;46(1):42–5.

  71. Herlofson BB, Barkvoll P. Oral mucosal desquamation caused by two toothpaste detergents in an experimental model. Eur J Oral Sci. 1996;104(1):21–6.

    CAS  PubMed  Google Scholar 

  72. Perez-Lopez D, et al. Oral mucosal peeling related to dentifrices and mouthwashes: a systematic review. Med Oral Patol Oral Cir Bucal. 2019;24(4):e452–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jenkins SM, Addy R. Newcombe, Triclosan and sodium lauryl sulphate mouthwashes (I). Effects on salivary bacterial counts. J Clin Periodontol. 1991;18(2):140–4.

  74. Kabara JJ. Structure-function relationships of surfactants as antimicrobial agents. J Soc Cosmet Chem. 1978;29(11):733–41.

    CAS  Google Scholar 

  75. Howett MK, et al. A broad-spectrum microbicide with virucidal activity against sexually transmitted viruses. Antimicrob Agents Chemother. 1999;43(2):314–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Birkeland, JM, Steinhaus EA. selective bacteriostatic action of sodium lauryl sulfate and of “Dreft.”. Proc Soc Exp Biol Med. 1939;40(1):86–88.

  77. Diaz De Rienzo MA, et al. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria. FEMS Microbiol Lett. 2016:363(2):fnv224.

  78. Travers J, et al. IL-33 is induced in undifferentiated, non-dividing esophageal epithelial cells in eosinophilic esophagitis. Sci Rep. 2017;7(1):17563.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. •• Doyle AD, et al. Detergent exposure induces epithelial barrier dysfunction and eosinophilic inflammation in the esophagus. Allergy. 2023;78(1):192–201. This study demonstrated SDS at 1:600 dilution found in toothpaste elicits barrier disruption and inflammatory signals in human esophageal epithelium. In addition, 0.5% SDS (1:6 dilution of toothpaste) in drinking water elicited eosinophilic inflammation in the mouse esophagus.

  80. Epstein S, et al. Possible deleterious effects of using soap substitutes in dentrifices. J Am Dent Assoc. 1939;26:1461–71.

    CAS  Google Scholar 

  81. Tanzer J, et al. Laundry detergent promotes allergic skin inflammation and esophageal eosinophilia in mice. PLoS ONE. 2022;17(6): e0268651.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. • Ogulur I, et al. Gut epithelial barrier damage caused by dishwasher detergents and rinse aids. J Allergy Clin Immunol. 2023;151(2):469–84. This study demonstrated dish detergent rinse aid at levels similar to those on cleaned dishes has cytotoxic and barrier disruptive effects on human gut epithelial cells.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Huijun Luo, PhD, Arina Putikova, and Jessica Gibson for their scientific contributions to EoE studies referenced in this article. Figure 1 created with BioRender.com.

Funding

This work was supported by the Donald R. Levin Family Foundation. M. Y. M. is a member of the Immunology Graduate Program and is supported by the Mayo Clinic Graduate School of Biomedical Sciences. B.L.W. also reports funding from NIH (K23AI158813-01). H. K. was supported by funding from NIH (R37AI71106, R01AI128729).

Author information

Authors and Affiliations

Authors

Contributions

B. L. W. and A. D. D. co-wrote the first draft of the manuscript. All authors have reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Benjamin L. Wright.

Ethics declarations

Conflict of Interest

Mayo Clinic and Dr. Yiannias have a financial relationship with SkinSAFE.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, B.L., Masuda, M.Y., Ortiz, D.R. et al. Allergies Come Clean: The Role of Detergents in Epithelial Barrier Dysfunction. Curr Allergy Asthma Rep 23, 443–451 (2023). https://doi.org/10.1007/s11882-023-01094-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-023-01094-x

Keywords

Navigation