Skip to main content
Log in

Zirkadiane Uhren und Schlaf – nachgeschaltete Funktion oder Crosstalk?

Circadian clocks and sleep—downstream function or crosstalk?

  • Übersichten
  • Published:
Somnologie Aims and scope Submit manuscript

Zusammenfassung

Innere, sog. zirkadiane Uhren regulieren zahlreiche Körperfunktionen – darunter unseren Schlaf-Wach-Rhythmus – im 24-h-Takt. Während die Funktion des zirkadianen Systems in der Regulation der Phasenlage des Schlafs (Prozess C) lange bekannt war, zeigen neuere Studien eine weit engere Verknüpfung von Uhrensystem und Schlaffunktion auf mehreren Ebenen. Genetische Defekte im molekularen Uhrwerk haben Auswirkungen auf den Schlafhomöostat (Prozess S). Umgekehrt wirken Änderungen im natürlichen Schlafzyklus zurück auf die Funktion der zirkadianen Uhr – und das nicht nur im zentralen Nervensystem (ZNS), sondern insbesondere auch in peripheren Organen. Dieser Schlaf-Uhr-Crosstalk könnte viele der negativen Effekte von Rhythmus- und Schlafstörungen auf den Energiestoffwechsel erklären. Gleichzeitig bietet er neue Ansatzpunkte für die Prävention und Behandlung von schlafassoziierten pathologischen Effekten, z. B. bei Schichtarbeitern. Dieser Übersichtsartikel beschreibt die Interaktion von Uhrensystem und Schlaf-Regelkreisen im ZNS und deren Effekte auf periphere physiologische Prozesse, insbesondere den Energiestoffwechsel. Er skizziert ein Modell der engen Kopplung von Schlaf und Uhrenfunktion und deren Bedeutung als Angriffspunkt für die Behandlung von durch Schlafstörungen bedingte Erkrankungen.

Abstract

Endogenous, so-called circadian clocks regulate numerous body functions—including our sleep–wake rhythm—with a period of 24 h. Although the role of the circadian system in regulating the timing of sleep (process C) has long been known, recent studies reveal a far closer connection of the clock system and sleep function on several levels. Genetic defects in the molecular clockwork have a marked impact on the sleep homeostat (process S). Conversely, changes in the natural sleep cycle affect the functioning of the circadian clock—and not only in the central nervous system (CNS), but also in peripheral organs in particular. This sleep-clock crosstalk could explain many of the negative effects of rhythm and sleep disorders on energy metabolism. At the same time, it offers new starting points for the prevention and treatment of sleep-associated pathological effects, e.g. in shift workers. This review describes the interaction of the clock system and sleep control circuits in the CNS and their effects on peripheral physiological processes with a focus on energy metabolism. It outlines a model of close coupling between sleep and clock function and its importance as a point of attack for the treatment of diseases associated with sleep disorders .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Archer SN, Laing EE, Möller-Levet CS et al (2014) Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A 111:E682–E691. https://doi.org/10.1073/pnas.1316335111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Astiz M, Heyde I, Oster H (2019) Mechanisms of communication in the mammalian circadian timing system. Int J Mol Sci. https://doi.org/10.3390/ijms20020343

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barclay JL, Husse J, Bode B et al (2012) Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. Plos One 7:e37150. https://doi.org/10.1371/journal.pone.0037150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Begemann K, Neumann A‑M, Oster H (2020) Regulation and function of extra-SCN circadian oscillators in the brain. Acta Physiol 229:e13446. https://doi.org/10.1111/apha.13446

    Article  CAS  Google Scholar 

  5. Borbély AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    PubMed  Google Scholar 

  6. Challet E (2017) Circadian aspects of adipokine regulation in rodents. Best Pract Res Clin Endocrinol Metab 31:573–582. https://doi.org/10.1016/j.beem.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  7. Chen Z, Yoo S‑H, Takahashi JS (2018) Development and therapeutic potential of small-molecule modulators of circadian systems. Annu Rev Pharmacol Toxicol 58:231–252. https://doi.org/10.1146/annurev-pharmtox-010617-052645

    Article  CAS  PubMed  Google Scholar 

  8. Deboer T, Vansteensel MJ, Détári L, Meijer JH (2003) Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6:1086–1090. https://doi.org/10.1038/nn1122

    Article  CAS  PubMed  Google Scholar 

  9. Ferrie JE, Kumari M, Salo P et al (2011) Sleep epidemiology—a rapidly growing field. Int J Epidemiol 40:1431–1437. https://doi.org/10.1093/ije/dyr203

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gillette MU, Medanic M, McArthur AJ et al (1995) Intrinsic neuronal rhythms in the suprachiasmatic nuclei and their adjustment. Ciba Found Symp 183:134–144. https://doi.org/10.1002/9780470514597.ch8 (discussion 144–153)

    Article  CAS  PubMed  Google Scholar 

  11. Gompf HS, Aston-Jones G (2008) Role of orexin input in the diurnal rhythm of locus coeruleus impulse activity. Brain Res 1224:43–52. https://doi.org/10.1016/j.brainres.2008.05.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo Y, Liu Y, Huang X et al (2013) The effects of shift work on sleeping quality, hypertension and diabetes in retired workers. Plos One. https://doi.org/10.1371/journal.pone.0071107

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hastings MH, Smyllie NJ, Patton AP (2020) Molecular-genetic manipulation of the suprachiasmatic nucleus circadian clock. J Mol Biol 432:3639–3660. https://doi.org/10.1016/j.jmb.2020.01.019

    Article  CAS  PubMed  Google Scholar 

  14. Heyde I, Kiehn J‑T, Oster H (2018) Mutual influence of sleep and circadian clocks on physiology and cognition. Free Radic Biol Med 119:8–16. https://doi.org/10.1016/j.freeradbiomed.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  15. Heyde I, Oster H (2020) Network-like organization of the circadian system regulates metabolic homeostasis. Obesity. https://doi.org/10.1002/oby.22773

    Article  PubMed  Google Scholar 

  16. Hillman D, Mitchell S, Streatfeild J et al (2018) The economic cost of inadequate sleep. Sleep. https://doi.org/10.1093/sleep/zsy083

    Article  PubMed  Google Scholar 

  17. Husse J, Hintze SC, Eichele G et al (2012) Circadian clock genes Per1 and Per2 regulate the response of metabolism-associated transcripts to sleep disruption. Plos One 7:e52983. https://doi.org/10.1371/journal.pone.0052983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Husse J, Kiehn J‑T, Barclay JL et al (2017) Tissue-specific dissociation of diurnal transcriptome rhythms during sleep restriction in mice. Sleep. https://doi.org/10.1093/sleep/zsx068

    Article  PubMed  Google Scholar 

  19. Kalsbeek A, Verhagen LAW, Schalij I et al (2008) Opposite actions of hypothalamic vasopressin on circadian corticosterone rhythm in nocturnal versus diurnal species. Eur J Neurosci 27:818–827. https://doi.org/10.1111/j.1460-9568.2008.06057.x

    Article  PubMed  Google Scholar 

  20. Kolbe I, Leinweber B, Brandenburger M, Oster H (2019) Circadian clock network desynchrony promotes weight gain and alters glucose homeostasis in mice. Mol Metab 30:140–151. https://doi.org/10.1016/j.molmet.2019.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meyer-Kovac J, Kolbe I, Ehrhardt L et al (2017) Hepatic gene therapy rescues high-fat diet responses in circadian Clock mutant mice. Mol Metab 6:512–523. https://doi.org/10.1016/j.molmet.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Möller-Levet CS, Archer SN, Bucca G et al (2013) Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A 110:E1132–1141. https://doi.org/10.1073/pnas.1217154110

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mrosovsky N, Hattar S (2005) Diurnal mice (Mus musculus) and other examples of temporal niche switching. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191:1011–1024. https://doi.org/10.1007/s00359-005-0017-1

    Article  CAS  PubMed  Google Scholar 

  24. Naylor E, Bergmann BM, Krauski K et al (2000) The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 20:8138–8143

    Article  CAS  Google Scholar 

  25. Paschos GK, Ibrahim S, Song W‑L et al (2012) Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med 18:1768–1777. https://doi.org/10.1038/nm.2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roenneberg T, Kuehnle T, Pramstaller PP et al (2004) A marker for the end of adolescence. Curr Biol Cb 14:R1038–R1039. https://doi.org/10.1016/j.cub.2004.11.039

    Article  CAS  PubMed  Google Scholar 

  27. Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263. https://doi.org/10.1038/nature04284

    Article  CAS  PubMed  Google Scholar 

  28. Schmid SM, Hallschmid M, Schultes B (2015) The metabolic burden of sleep loss. Lancet Diabetes Endocrinol 3:52–62. https://doi.org/10.1016/S2213-8587(14)70012-9

    Article  CAS  PubMed  Google Scholar 

  29. Schwartz WJ, Klerman EB (2019) Circadian neurobiology and the physiologic regulation of sleep and wakefulness. Neurol Clin 37:475–486. https://doi.org/10.1016/j.ncl.2019.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tsang AH, Koch CE, Kiehn J‑T et al (2020) An adipokine feedback regulating diurnal food intake rhythms in mice. Elife. https://doi.org/10.7554/eLife.55388

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wilms B, Leineweber EM, Mölle M et al (2018) Sleep loss disrupts morning-to-evening differences in human white adipose tissue transcriptome. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2018-01663

    Article  Google Scholar 

  32. Wisor JP, O’Hara BF, Terao A et al (2002) A role for cryptochromes in sleep regulation. BMC Neurosci 3:20. https://doi.org/10.1186/1471-2202-3-20

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhu Y, Stevens RG, Hoffman AE et al (2011) Epigenetic impact of long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol Int 28:852–861. https://doi.org/10.3109/07420528.2011.618896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Oster.

Ethics declarations

Interessenkonflikt

K. Begemann und H. Oster geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begemann, K., Oster, H. Zirkadiane Uhren und Schlaf – nachgeschaltete Funktion oder Crosstalk?. Somnologie 25, 126–130 (2021). https://doi.org/10.1007/s11818-020-00275-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-020-00275-4

Schlüsselwörter

Keywords

Navigation